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4.2.4 Armed with this new method we now have the ability to generate  i directly 

from a single model fit. 
 

4.3 Bayesian Understanding of the ‘Case Deleted’ Estimates 

 
4.3.1 The Hat matrix provides the influence of each data point on the parameters.  
The total of each row adding to one, and hence can be thought of as a credibility in a 
Bayesian context. 
4.3.2 For a linear model the estimate will be formed as follows: 

p
ppi yh . 

This can be rearranged as follows 
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4.3.3 For the Generalised Linear Model a first order approximation would be 
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For Log-Poisson and Logit-Binomial models it can be  shown that     1 ii Vg  , 

giving 4.1.4  
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 for unit weights. 

4.3.4 We undertook a numerical checking of a Log-Gamma model as for this 

structure   
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 and hence reject 4.1.4.  
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5. NOISE REDUCED PARAMETERS 

 

5.1 Desire for an Amended Set of Parameters 

5.1.1 The realisation that the ‘Case Deleted’ Estimate  i is a useful noise 

independent measure, and easily calculated, led to a couple of initial attempts to use it 
directly to influence the model output estimates. 
 

5.2 First and Second Attempts, Mean Adjustors 

5.2.1 The first thought was that the noise in the model output could be reduced by 
artificially offsetting each data point to remove an equivalent amount, 

  iiii yy  * .  These can then be refitted to obtain a new set of estimates, *
i . 

5.2.2 The second attempt applied a second tier model to the ‘Case Deleted’ 
Estimates from the first  iiy * to try to produce some new estimates *

i with less 

noise. 
5.2.3 Neither of these produces results which are significantly different from the 
original estimates.  This can be understood by reflecting on the way that GLM models 
select their parameters by placing them at the ‘mean’ position of the sub-domain for 
each parameter.  Hence the data has a symmetry about this mean, and the noise 

 ii    reflects this too.  So both methods above represent symmetrical adjustments 

to the data which have little effect on the new estimates. 
5.2.4 Consider the example illustrated in figure 10. 
Here we have a well populated domain with data points on the left defining a value of 

i shown as the lower green dashed line.  Then a new parameter based solely upon 

two data points 21, yy is considered, this will move the ordinary estimates to the mid-

point of the two points shown as *

i
 the red dashed line.  With this parameter included 

the Case Deleted model for 1y  will produce 
  2
*

1
y  and similarly the Case Deleted 

model for 2y  will produce 
  1
*

2
y .  

Figure 10: ‘Case Deleted’ Deviance – Increasing with Model Complexity 
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5.2.5 The Deviances calculated for this parameter will show 
   ** ,,

iiii ySDySD    but here the “Case Deleted” Deviance will be substantially 

worse     iiii ySDyCDD  ,, **  .  The symmetry of the adjustments can be seen 

easily here, and hence despite the failure of the extra parameter to add value, we can 
see why its value remains unchanged. 
 

5.3 The need for a variance penalty function to drive the adjustor 

5.3.1 Looking again at the formulation of the ‘Case Deleted’ Estimates  i , notice 

that they involve terms representing the mean i and through the Hat diagonal ih the 

variance.  Instead therefore we need to develop a penalty function to reward the 
model for good mean values and penalise by increasing variance. 
5.3.2 However we cannot simply replace i with  i in the likelihood and refit, since 

the extra deviance introduced already possesses the symmetry above, and hence there 
is little impact on the parameters values by the method. 
5.3.3 Now let’s focus instead on a more direct penalty function.  Take the results of 
the free fit i with corresponding  i .  Now consider that the variance introduced by a 

parameter, as expressed by the Variance/Covariance matrix, will be scaled if the 
parameter itself is artificially scaled.  Specifically the impact on the covariances will 
allow the model to rebalance in the presence of correlated parameters. 
5.3.4 The Variance/Covariance matrix itself will adjust simply according to the 
normal result for scaled variances.     ii YVarYVar 2  .  In this case the elements of 

the Variance/Covariance matrix need to be replaced with 
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
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j
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

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5.3.5 From this a scaled version of the Hat diagonal can be calculated. 

 
jk kj
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5.4 Idea of a Model Depreciation Index 

5.4.1 To draw an analogy, the value of a model is like that of a used car.  The instant 
it rolls off the forecourt it loses a chunk of its predictive power simply by virtue of the 
fact that it is now being used on new data rather than measured in a circular fashion 
against the data used to define it. 
5.4.2 As time passes, the value decreases further, as was illustrated by the Model 
Validation working party last year.  Figure 11 is an extract from page 10 of their 
report. 

 
Figure 11.  Source: Model Validation Working Party 
 
5.4.3 The Noise Reduction technique provides an indication of that initial 
depreciation, by reference to the scale factors which have been derived. 
5.4.4 Without applying the scale factors, deploying the full model, would result in a 
worse model than the scaled one. 
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6. CALCULATION OF NOISE REDUCED MODEL 

 

6.1 Specification of penalty function and two tier modelling process 

6.1.1 First obtain the results of the normal Generalised Linear Model fit, as outlined 
in A.1.10.  Next calculate the ‘Case Deleted’ Linear Predictors 

    iii
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, and Estimates      ii g  1
.
 

Now using the superscript * to denote new parameters and estimates *
j , *

i , *
i  

which we will estimate from the new penalty function.   
6.1.2 The Hat diagonal ih is a measure of the influence attaching to the data point 

iy with  ih1 the influence of the remaining points.  This includes the effect of the 

Variance of parameter j ,  jVar  and the Covariance of this with the other 

parameters  kjCov  , .  Now suppose that j is scaled back to a value *
j , this will 

reduce the variance to    j
j

j
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
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
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results that would occur from a model which had generated these parameter values 
directly.  Using these values we can scale back the ‘Case Deleted’ Estimates that 

would apply to the new parameters.      iii
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
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h
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* .  The superscript * quantities are then derived using a 

similar method to original parameters, described in Appendix A, with non-linear 
adjustments to allow for the more complex definition of  i . 
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7. WORKED EXAMPLE 

 

7.1 Log Poisson Frequency Model 

7.1.1 This example is taken from a Motor Third Party Bodily Injury example 
dataset.  This model has a large sample size of 500,000 with around 30,000 responses. 
7.1.2 A full complexity model was built upon the data, using 31 factors with 54 
parameters, of which 8 were interactions. 
7.1.3 Figure 12 shows the relationship between the Standard Error ( x-axis ) 
reported by the GLM and the Scale Factor ( y-axis ) recommended by the Noise 
Reduction technique. 
7.1.4 A few parameters were retained beyond the normal acceptance threshold, to 
show the fall-off between higher errors and the scale factor. 

Figure 12: Scatter Chart of GLM Standard Error and Noise Reduced Scale Factor for a Log-Poisson 
Frequency Model 
 
7.1.5 Figure 13 shows the ratio of the two models ( x-axis ), and the average 
observed response and model prediction values ( y-axis ), plus the exposure as bars  
( 2nd y-axis ).  Models here have been fitted on the training dataset, and then rescored 
against the hold-out dataset, the chart then measures their value against observed data 
from the hold-out dataset. 
7.1.6 The models show varying predictions with a ratio substantially between  
+/- 5%.  The noise reduced model produces predictions which are scaled towards the 
mean, which temper the predictions made by the GLM at the extremes of the 
distribution. 
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Figure 13: Out of Sample Model Comparison Chart for a Log-Poisson Frequency Model 
 
7.1.7 Using a simple business model with a price comparison website level of 
elasticity fixed at 10 shows a profit margin improvement in this example of 0.57% at 
constant volumes. 

7.2 Log Gamma Severity Model 

7.2.1 This example is taken from a Motor Accidental Damage Severity example 
dataset.  To contrast with the previous frequency model, a sample size of 12,000 was 
used with an average response of 1,450. 
7.2.2 A full complexity model was built upon the data, using 18 factors with 59 
parameters, of which 17 were interactions.  
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Figure 14: Scatter Chart of GLM Standard Error and Noise Reduced Scale Factor for a Log-Gamma 
Severity 

 
Figure 15: Out of Sample Model Comparison Chart for a Log-Gamma Severity Model 
 
7.2.3 Using a simple business model with a price comparison website level of 
elasticity fixed at 10 shows a profit margin improvement in this example of 0.69% at 
constant volumes. 

7.3 Logit Binomial Proportion of Collisions with Bodily Injury Model 

7.3.1 This example is a propensity model built on a Motor dataset using collision as 
the exposure measure, and proportion of Bodily Injuries on the claim as the response.  
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Such an approach is sometimes used to increase the patterns detected in sparse Bodily 
Injury data. The sample size was 22,000. 
7.3.2 The model is using 19 factors with 108 parameters with no interactions. 
  

 
Figure 16: Scatter Chart of GLM Standard Error and Noise Reduced Scale Factor for a Logit-Binomial 
Propensity Model 

 
Figure 17: Out of Sample Model Comparison Chart for a Logit-Binomial Propensity Model 
 
7.3.3 Using a simple business model with a price comparison website level of 
elasticity fixed at 10 shows a large profit margin improvement in this example of 
3.4% at constant volumes. 

0%

20%

40%

60%

80%

100%

120%

1% 10% 100% 1000% 10000%

S
c

a
le

 R
a

ti
o

Standard Error

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

15%

20%

25%

30%

35%

92% 96% 100% 104% 108% 112% 116%

Exposure Traditional Noise Reduced Observed



REDEFINING THE DEVIANCE OBJECTIVE 
FOR GENERALISED LINEAR MODELS 

 
 
 

 23  

7.4 Poor Model 

7.4.1 In this example a particularly poor set of parameters were retained to find out 
how effectively the technique was at removing ones that are not significant.  The chart 
below shows that scale factors quite close to zero are achieved.  The resultant model 
however was still very poor, as the technique does nothing to add significant factors 
which are missing from the original model.    

 
Figure 18: Scatter Chart of GLM Standard Error and Noise Reduced Scale Factor for a Poor Model 
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8. CONCLUSIONS 

 

8.1 Summary of results  

8.1.1 Larger datasets and increased competition spurred by price comparison 
websites have created a natural environment for the development of models at the 
limit of complexity.  In this situation over-fitting is an increasing problem that cannot 
simply be avoided by the rejection of borderline parameters, as this would risk the 
penalty of anti-selection. 
8.1.2 The Case Deleted Deviance measure discussed in this paper provides an 
objective method to compare two models that is consistent with the standard error 
when the two models only differ by a single parameter.  It can also be used to 
compare more complex differences between nested models, and also where the two 
models are not nested.  This is an improvement on the current deviance measure.  
8.1.3 The Noise Reduction technique then makes use of this measure to produce 
scaled back parameters for a model.  This is a novel alternative to the standard 
approach of accepting or rejecting a parameter completely.  It also represents a 
mechanism to select parameters which will be most predictive on a hold-out dataset, 
rather than simply optimising the parameter values based on the training dataset. 
8.1.4 Given the real business risks of anti-selection from using a model which is too 
simple, another alternative using this technique would be to deliberately over-fit the 
model including some borderline parameters, and then use this method to scale them 
back.  Further research could be conducted to investigate the relative benefits of this 
new process compared to the standard method. 
8.1.5 This technique clearly will not directly solve the issue of identifying patterns 
not in the data due to insufficient exposure in the ‘corners’ of risk segments. Currently 
this issue is dealt with by underwriting overlays either through additional loadings or 
acceptance/referral criteria and this process will still need to be applied after the 
"pure" modelling process. 
8.1.6 Beyond the demonstration of this technique to GLM modelling, this concept 
can be applied to any model forms where parameters are derived from a dataset.  
Classification techniques for postcode smoothing and vehicle grouping may benefit 
from this, as could other methods such as decision trees and neural networks. 
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APPENDIX A 
 

GENERALISED LINEAR MODELS 
 

A.1 Derivation and Notation 
A.1.1 The following derivation is drawn from Anderson et al. (2007)and Dobson 
(2001)and although well known is included so that the non-linear variant can be 
derived using the same notation in the main body of the text. 
A.1.2 Let iY be a series of random variables belonging to the exponential family of 

distributions, expressed in canonical form with natural parameter i  by the pdf. 

      








 


 ,exp, iiii

i
ii ybayyf  where i is a constant related to iY  

representing the weight which is commonly the exposure for insurance applications, 
and   is the scale parameter 

A.1.3 Given   1,  iii dyyf  we have  
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A.1.4 The first of these gives    ii aYE   and substituting this into the second 

gives        ii
ii

i
i YVarYEYEa





  2  

we define    iii aYE    and         ii
iii YVaraaaV


  1  

A.1.5 Let the log likelihood function be denoted by 

       
i

iiii
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ii ybayyl 

 ,,  

A.1.6 Further define the linear predictor and the link function for the model 
 ii g   , where the linear predictor is a linear combination of the parameters 


j

jiji X  . 

A.1.7 First we define the score statistic 
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
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 ij
j

i X





. 

Giving 
 
        






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j
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



 

Where 
    ii

i
i

Vg
W




2
  for reasons that will become clearer below. 

Note also that            0







 

i
iiijii

i
iiijiij YEXgWyXgWEUE   

A.1.8 Next, Dobson (2001) derives an approximation by first defining  the 
information matrix  kjjk UUCovJ , , and using   0jUE  

                
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


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
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
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




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
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
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i
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i
jk XWXXX
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YVarXX

Vg
J







2

2

 

A.1.9 To solve for the parameters in the general case we use an extension of the 

Newton Raphson formula    
k

k
m

jk
m

j
m

j
m UU

11  to find the root of  0
j

jU  
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
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
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U
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



 

At the stationary point we are seeking   
i

iiiji yX   will be close to zero. 

For the structures noted in 4.3.3 this will be exactly zero, and     1 ii Vg  , giving 

  
0




k

ii gW




 

Hence the first term is normally ignored. 

  jk
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i
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j
jk JXWXXgW

U
U 
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













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






 

A.1.10 Then we obtain the usual formula for iteration m , where 

    













ik
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m
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m
i

m
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p
pkp

m
pjj

m
j

m ygWXXWX 
1

1 ˆˆ  

sometimes written as      













ik
i

m
ii

m
i

m

i
m

ik
p

pkp
m

pjj
m ygWXXWX 

1

1 ˆ  

A.1.11 From these results the Variance-Covariance matrix is available 
1









 

p
pkp

m
pjjk XWXC along with the Hat Matrix 

jk
ppkjkijiip WXCXWH 2/12/1 and 

the Hat diagonal iii Hh   
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