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ABSTRACT 

 
Mean reversion exists in many different forms within investment markets, none of these forms is 

necessarily inconsistent with efficient markets.  However, there is a lack of precision in what many 
investment practitioners mean by the term “mean reversion”.  In this paper we review the various forms 
of this phenomena and both the evidence (if any) and implications (if any) of their existence.  In doing 
so we propose a formal mathematical definition of what most investment practitioners seem to mean by 
“mean reversion”, based on the correlation of returns between disjoint intervals.   We then look at some 
of the mathematical properties of processes that mean revert (or avert) under our definition and propose 
a mean reverting (or averting) model that is consistent with a simple form of market efficiency.  Finally 
we review the actuarial implications of adopting mean revering models and highlight some important, 
and possibly surprising, considerations in using them in a world of market consistent valuations.   
 
  
 

1. INTRODUCTION 
 
“Is it really worse to lose £10,000 in the stock market than to lose £10,000 from a burglary? Personally 
I would rather lose the money in the stock market. At least it is your own fault if you lose money in the 

stock market, and you might make it back again" 
  

BAJ 9 (2003) part III, p607 
 
1.1 Much of financial theory is based on random walk models of asset prices, 

returns and yields. However, over the last 20 years or so the theory has been 
extended to look much more closely at departures from a random walk. This 
theory has been used for many purposes, including investment strategy, capital 
adequacy and the pricing and hedging of options. 

 
1.2 The random walk is a special case of a wider class of models, which includes 

mean reverting or mean averting models. It has been suggested that some 
classes of mean reverting models reduce the capital supposedly required for 
many classes of insurance business, relative to results obtained from random 
walks, because of the degree of long-term investment risk typically retained by 
life offices. This has stimulated renewed actuarial interest in the mean 
reverting class of models.  
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1.3 As discussed also in our concluding remarks, an issue of cherry-picking arises: 
modelling mean reversion appears at first sight to allow offices to carry lower 
capital requirements whereas possible causes of apparent or actual mean 
reversion in asset returns, such as jumps in asset prices or mean reverting 
volatility are not usually modelled. These latter features would of course be 
associated with other attributes of returns, such as fat tails, which would 
probably require the setting up of higher capital requirement (depending on 
where the fat tail kicks in). 

 
1.4 From the outset, it is important to stress that many forms of mean reversion do 

not imply market inefficiency, although in popular investment folklore mean 
reversion is regarded quite wrongly as proof of inefficiency.   We will show 
that mean reversion may arise quite naturally in many different forms in a 
market where the distribution of future returns, or risk aversion, varies over 
time.   

 
1.5 Our paper is set out as follows.  We first consider in the first four sections 

what we mean by mean reversion.  It may seem somewhat surprising that it 
takes so long to establish a definition, but it is worth noting that many 
investment professionals who profess to believe in mean reversion are often 
unable to provide a precise definition of exactly what they mean by this.  As 
we shall see, there is no existing universal measure of “mean reversion” and 
the definition that we believe investment professionals often struggle towards 
(a form involving in fact simultaneously both mean reversion and aversion) is 
not the same as the standard definition of time series analysis (namely 
“stationarity”). 

 
1.6 Once we have defined mean reversion, and in the process considered some of 

the evidence for this, we go on to discuss the comparison of statistical models 
in terms of their mean reverting tendencies and look at some generic 
mathematical attributes of mean revering (or averting) asset return processes .  
Finally we propose a simple model that combines the intuitive investment 
practitioners’ description of “mean reversion” with strong empirical and 
economic support but which could be described as either mean averting or 
mean reverting depending on some critical parameter settings and which could 
be viewed as having some quite surprising and disconcerting implications in a 
market consistent valuation framework.  In our conclusions we discuss the 
implications of our results for actuarial work. 
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2. “ASSET PRICES ALWAYS FALL AFTER HITTING A MAXIMUM” 
 
2.1 As discussed in the introduction, there are many possible definitions of mean 

reversion, which seems to mean different things to different people.   The 
broadest definition is probably as follows: 

 
Definition 1: An asset model is mean reverting if asset prices tend to fall 
(rise) after hitting a maximum (minimum). 
 
 
The definition is popular because it is linked to a straightforward test. Look at 
historically extreme stock market highs, and establish whether the market 
subsequently fell. 
  

2.2 Using this definition, many analysts can convince themselves that stock 
markets obviously mean revert. For example, (so the thinking goes), the stock 
market was clearly overvalued in the summer of 1987 and also in the later 
1990s. This overvaluation explains the subsequent falls. Or, a common 
perception is that equity markets mean revert because it so happened that 
equities rose after the 1974 market low was reached.  

 
2.3 The trouble with this definition is its breadth. It is a truism that markets fall 

after hitting a maximum – because a local maximum necessarily hits a higher 
value than those on nearby dates. Any process at all is mean reverting in this 
sense. So although the 1987 crash might satisfy this definition of mean 
reversion, this proof is of no use in refining the class of appropriate models. It 
is helpful therefore to move to a narrower definition, which will be harder to 
validate empirically, but also distinguishes better between classes of stochastic 
processes.   

 
2.4 Before we move on, however, it is worth making the point that it can be 

perfectly consistent with an efficient and arbitrage free market to have some 
processes in an asset model where all market participants do indeed know that 
a high or low point has been reached.   

 
2.5 To illustrate this, consider a trivial deterministic model.  In a deterministic 

world stocks and cash must have identical returns and cash rates must 
deterministically follow the current path of forward interest rates.   Here 
everyone can know that interest rates (bond prices) or stock returns have 
reached a high (low) or low (high) point without violating the trivial market 
efficient and arbitrage free conditions.  If the current forward interest rate 
curve is smoothly upward or downward sloping then this could in turn be 
viewed as a form (possibly the simplest conceivable form) of mean reversion.  
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3. AUTOCORRELATION – NEGATIVE AND POSITIVE 
 
3.1 Autocorrelation of returns is a well known attribute of certain discrete time 

asset models (described generically as VAR models, not to be confused with 
value at risk) that are commonly referred to as “mean reverting”.  This gives 
us our second, more mathematically precise, candidate definition of mean 
reversion:  

 
Definition 2: An asset model is mean reverting if returns are negatively auto-
correlated. 

 
3.2 This is the sort of process discussed in Lee (1991): 
  

“Under this model, which has wide intuitive appeal, a below average return in 
one period is likely to be followed by “compensatory” above average returns 
in subsequent periods.  It has frequently been said for example that the 
fantastic returns achieved in the 1980s were really a catching up exercise to 
make up for the poor returns in the 1970s”  

 
3.3 This description captures well the intuitive element of this form of mean 

reversion.  The model is expressed in discrete time as follows: 
 

ttt WRaR σµµ ++−= − )( 1 …(3.1) 
 

where Rt  is the return in period t, µ  is the mean return in a single period, Wt  is 
a standard normal variate and a (<1) is the (negative) autocorrelation 
coefficient.   
 

3.4 In order to assess the informal evidence for this form of mean reversion in 
equity markets, we looked at 100 years of equity return data in 16 countries 
(the decennial Dimson, Marsh & Staunton (2003) data set, split according to 
returns in each decade of the last century).  Looking at autocorrelation over ten 
year periods to investigate the common intuition referred to by Lee, we found 
no evidence that poor (good) returns in one decade are followed by good 
(poor) returns in the next.  

 
3.5 The returns in the period subsequent to a large equity market fall (and rise), 

for example, were broadly identical to the average return in the period as a 
whole (based on 16 worst and best return decades, one for each country).  We 
also looked at the UK annual equity return data (Barclays 2003). We mined 
the data to find the future holding period most correlated with annual returns. 
This was 2 years, i.e. returns in a year are negatively correlated (-0.2) in the 
data set with returns in the subsequent two years. Taking the 102 years of data 
as a whole, we had 100 observations with 52 years exhibiting mean reversion 
and 48 mean aversion. The negative correlation arose primarily in respect of 6 
or so specific observations.  

 
3.6 There was evidence of mean reversion following negative return years (60% 

of these are followed by a period of positive return performance); in the case 
of positive return years 40% are followed by negative returns in the 
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succeeding two years. Breaking this down, 8 of the 10 worst performing years 
were followed by positive returns over the succeeding two years and 5 of the 
10 best performing years were followed by negative returns.  Finally, we 
looked at 75 years of US equity return data. This exhibited a little less 
autocorrelation (-0.1 rather than -0.2) against subsequent two-year holding 
periods (other periods had lower correlation). 

 
 
3.7 The empirical support for this intuitive form of mean reversion is therefore far 

from convincing.  Furthermore, the difficulty of deciding over which period to 
look for this effect highlights a particular problem.  Lee’s definition refers to 
the 1980s “catching up” with the 1970s – so the returns in these decades were 
negatively auto-correlated if we looked at discrete decades– but presumably if 
we had just looked at annual periods we would have found that the returns in 
the 1980s were generally above average and all returns in the 1970s generally 
below average.  This would seem to maybe suggest an element of positive 
autocorrelation if we change the time step.  A hint of this potential for 
confusion in the intuitive explanation is indeed revealed in Lee’s definition of 
positive autocorrelation (our emphasis in italics): 

 
”Under this model, if past returns have been better (or worse) than average, 
then the return in the next period is likely to be a little worse/(better) (i.e. there 
is a tendency to revert to the mean), but still better (worse) than average.”   
 
Positive auto correlation is in discrete time the same process as above, but 
with a>1 

 
3.8 So it seems that there is some uncertainty as to whether mean reversion is a 

positive or negative auto correlation phenomenon – or possibly both?  This is  
quite an important issue to nail.  A shown by Lee, the asymptotic volatility of 
the continuously compounded return is: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

− )1( a
tσ  

 
Clearly the sign of a can make a not inconsiderable difference, even for 
relatively small absolute values. 

 
3.9 One way of reconciling this positive versus negative autocorrelation 

conundrum is to look at an unambiguous example of “mean reversion”, 
namely pull to parity on a bond.  The process whereby a bond price always 
converges on its nominal amount as it approaches maturity is, after all, a pretty 
clear example of a statistical process that always knows where it is heading, 
eventually. 

 
3.10 “Pull to parity” reversion implies that any rise or fall in a bond price must 

result in a corresponding fall or rise in the returns over subsequent periods to 
maturity, as a consequence of the fact that the bond matures at £100, and 
applies whether or not interest rates mean revert (which we discuss further 
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below).  The form of reversion implies that the initial shock to the bond price 
will be negatively correlated with the subsequent returns over the period to 
maturity period.   On the other hand, these subsequent returns will all tend to 
be above average as a consequence of this initial shock (positive 
autocorrelation).  This pull to parity effect seems to be at the heart of the 
intuition in the above definition – returns are supposed to catch up after the 
initial shock and there is a mix of both positive and negative autocorrelation. 

 
3.11 An interesting observation (of wider application) is that even this – apparently 

unambiguous – form of mean reversion does depend on our frame of 
reference.  Instead of looking at the absolute bond return after the shock, we 
might prefer to look for positive or negative autocorrelation in the excess bond 
returns over and above the cash rate.  In many ways, particularly when looking 
at equity returns, for example, this is a more sensible way to look at the 
question of mean reversion.  However, since the initial shock comes from a 
rise or fall in interest rates, we might find that the higher bond returns 
subsequent to the shock are offset by the higher or lower cash rate – so the 
excess return in subsequent periods is unaffected by the shock.  This analysis 
would then reveal no autocorrelation at all, positive or negative in the excess 
return. 

 
3.12 In summary there seems to be some arbitrariness in the choice of time period 

of returns under the autocorrelation definition of mean reversion – we have a 
combination of positive and negative autocorrelation that has many analogies 
with the effects of “pull to parity” in a bond.  We would prefer a definition of 
mean reversion that is invariant under choice of time interval. Observing that 
mean reversion involves some negative autocorrelation followed by some 
positive autocorrelation is not particularly helpful.  We have also noted in 
passing the important question of the frame of reference - it is necessary to 
determine whether we are talking about excess returns (over cash) or total 
returns.  In the case of classical pull to parity, mean reversion effects disappear 
if we work with excess return over cash, we shall see this again in our 
subsequent discussion of equity mean reversion.   
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4. STATIONARITY 

 
Definition 

 
4.1 The equation for the return process Rt in equation (3.1) in the last section is in 

fact an example of a so called stationary process.  If we wander outside the 
field of asset models into the world of econometric or other time series 
modelling then we would find stationarity as the unambiguous and widely 
understood definition of “mean reversion”.  Thus our difficulties in applying 
this definition can’t be in the formula itself.  Perhaps the problem is in our 
attempt to define mean reversion in terms of stationary returns.  Lets therefore 
look at a wider definition. 

 
Definition 3: An asset model is mean reverting if interest rates (and 
volatilities), yields or growth rates are stationary 

 
4.2 A stationary process has the same distribution at every point in time, 

unconditional on the immediate past. Under suitable conditions, the sample 
distribution of observations over a very long time period will converge to the 
stationary distribution. 

 
4.3 If an observation falls high up in the tail of the stationary distribution, it is 

likely that the following observation will be nearer to the long term average. 
This can give the appearance of a force driving observations over time towards 
a long term mean. This mean reverting force is countered by the influence of 
random noise which pushes the process away from its current value. 

 
 
4.4 The simplest form of stationary process is a first order autoregressive process. 

Assuming normal distributions, equation (3.1) above can be generalised as 
follows (for –1 < A  < 1) 

),()(

1
,~

2
1

2

2

0

σµµ

σµ

NXAX

A
NX

tt +−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

…(4.1) 

 
4.5 As mentioned above, stationary series have proved fruitful for analysing 

economic quantities such as interest rates (and volatilities), or dividend yields 
because at first sight it is plausible that these have a natural long term mean 
level.  However, taking interest rates as an example, the underlying process is 
essentially unknowable, being determined for example, at the whim of 
Government intervention in the markets. For example, although the 
Government may have a current inflation rate target of 2% or 2.5%, the next 
Government might choose 5%. Similarly, there is no underlying economic 
theory which suggests that dividend yields should be stationary. This means 
that one needs to exercise a good deal of judgment in interpreting the results of 
a model which assumes that these processes are in fact stationary. 
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Interest rates 
 
4.6 Evidence for mean reversion (albeit relative to the current yield curve rather 

than a fixed constant) in interest rates is not hard to come by (nor as we 
repeatedly stress does it violate any concept of arbitrage free or efficient 
markets).  Given the implied exponential decay in the volatility of forward 
rates, as discussed below, the simplest measure of this phenomenon is the 
average level of decline in implied volatility of forward interest rates (as 
measured by the implied volatilities of caplets and floorlets, for example). 
When volatility is measured as the standard deviation of forward rates divided 
by the square root of time, one observes a decay pattern, particularly for long 
tenor (20 yr+) interest rates, ie. strong mean reversion. For example, at the 
current time the annual rate of decay in volatility is around 6% pa.    

 
4.7 Some of this apparent mean reversion may be an artefact arising because 

nominal interest rates cannot decline to below zero, and therefore the pattern 
of future volatility is bounded from below by a positive interest constraint.  
When volatility is measured as the standard deviation of the log of forward 
rates divided by the square root of time, one observes only a modest decay 
pattern, i.e. low mean reversion. For example, at the current time the annual 
rate of decay in volatility measured in this way is approximately 2% pa.   This 
is another important observation with wider implications – strong evidence for 
mean reversion on the basis of one distributional assumption for a model may 
be weak evidence under another assumption.  A test for stationarity may turn 
out to be joint test for stationarity and a particular distributional assumption. 

 
4.8 The classical example of a mean reverting interest rate model is the Hull & 

White (1990) extended Vasicek model – and we will use this model to 
illustrate some important aspects of stationarity.  Strictly the Hull & White 
model replaces the constant mean in the above definition with a time 
dependent µt but otherwise this is an example of a stationary process).  The 
time dependent mean ensures that the drift of the short rate follows the slope 
of the initial forward rate curve and when the short rate deviates from the 
initial curve, it is pulled back to it at rate a.   

 
4.9 As suggested above, it can be shown that this model implies that the 

innovations to the short rate must also perturb the forward rate curve with 
perturbations that decay exponentially at rate a, reflecting the anticipated 
reversion of the short rate back to the mean.  So in this model exponentially 
decaying forward rate volatilities and mean reversion in the short rate are 
equivalent. 

 
4.10 When expressed as exponentially decaying forward rate volatility, mean 

reversion in interest rates does not of course sound at all inconsistent with 
efficient or arbitrage free markets.  However, at first sight mean reverting 
short rates might appear to give rise to free lunches to those who know where 
rates are heading.  This illusion is easily dispelled though.  Knowledge that 
interest rates will mean revert to the original forward rate curve is of course 
factored into this decaying response of longer bonds to changes in interest 
rates - prices of longer dated bonds already reflect the expected mean 
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reversion of the short rate  – which is why the volatility of forward rates 
decays exponentially.   

 
4.11 At risk of labouring this simple point, the important issue to highlight is 

therefore that aside from simple pull to parity “mean reversion” (discussed 
previously), under this model of stationary interest rates, bond prices do not 
display any mean reversion – mean reverting interest rates do not lead to 
mean reverting bond prices. 

 
Volatilities 

 
4.12 It is appropriate to mention here also the possibility that volatility (of interest 

rates, stock prices, commodity prices etc) can also display similar mean 
reversion or stationarity again without introducing mean reversion in the 
corresponding asset price (i.e. an option on a bond, stock or commodity).  This 
is of course another leg up in terms of sophistication in our hierarchy of 
modelling development, but the analogy with interest rates is direct to the 
extent that existing option prices can already embed a mean revering volatility 
term structure assumption – to the extent that volatility follows this anticipated 
process, option prices will not themselves display mean reversion.  Option 
traders cannot necessarily earn free lunches from the knowledge that 
volatilities mean revert. 

 
4.13 The evidence for mean reversion in equity market return volatility is also very 

strong.  UBS kindly supplied us with data for 3-month and 5-year implied 
volatilities on the FTSE 100 (approximately the last 10 years) and DJ Euro-
Stoxx Indices (approximately the last 5 years). The annualised rate of mean 
reversion for these series measured against a model where log volatility 
reverts to a constant level was 76%pa, 39%pa, 93%pa and 88%pa for the four 
series. Clearly, these specific numbers just relate to the average over the 
observation period and may not necessarily relate to current levels of mean 
reversion.    

 
4.14 Deterministic mean reversion of volatility – directly analogous to an upward 

or downward term structure of interest rates is feasible (and indeed often a 
convenient assumption for pricing options), although it implies time 
inhomogeneity. In simple terms the world would be becoming a more or less 
volatile place over time in a deterministic manner.  In other words we are  
saying that by time we reach 2010 the world will be a more or less volatile 
place than we see today.    

 
4.15 A more realistic model would perhaps suggest a mean reverting stochastic 

process for volatility, such as the GARCH model (which incidentally also 
introduces fat tailed distributional properties).  The GARCH model again 
basically follows the form of our second definition, with the asset variance  
being the random variable (Xt).  We will return to this model later.    

 
4.16 So we have two good examples of stationarity in asset models of the form 

described above where the evidence for its existence in data is fairly 
unambiguous and the implications for the efficient market hypothesis of this 
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form of “mean reversion” are basically nil – bonds or options (or both) can 
already reflect either deterministic or stochastic mean reversion in interest 
rates or volatility so that we do not observe any associated mean reversion in 
prices – asset prices can continue to describe a random walk despite the 
stationarity of these associated processes.  Market efficiency is not violated 
either in the physical or the options market. 

 
Equity Dividend Yields 

 
4.17 Another commonly cited example of mean reversion in the actuarial literature 

is of course the equity dividend yield.  Over the 100 years to 2001, analysis of 
the data suggests, on the face of it, a rate of equity dividend yield mean 
reversion of around 23% pa. The data is similar to the evidence for equity 
return mean reversion discussed in the previous section: of 100 observations, 
41 exhibited mean aversion and 59 mean reversion. Most of the mean 
reversion was associated with reversion following an extreme market decline, 
also as discussed above.   

 
4.18 Tests for equity yield mean reversion are however prone to a number of biases 

and the association between the apparent mean reversion and extreme market 
decline is an immediate cause for concern - tests for mean reversion often 
assume normality of returns and yet events (such as 1974) that have a very low 
probability in this distribution (and suggest non normality) often make a large 
contribution to the quoted confidence of the test.  More importantly, however, 
the evidence for mean reversion in equity dividend yields has been 
substantially over stated in the past, due to biases in the regressions used, as 
discussed in Exley, Smith & Wright (2002).  After correcting for these biases 
it can be argued that the evidence for stationarity of equity dividend yields is 
far weaker than the evidence for stationarity in interest rates and volatilities.   

 
4.19 However, even if equity dividend yields were stationary we can use some of 

our insights gained so far to see why equity price movements could still follow 
a time invariant random walk or at least the behaviour could be perfectly 
consistent with efficient markets (the risk premium may simply vary 
consistently over time).    

 
4.20 A good place to start is to look at the analogy between an equity and an 

inflation linked bond (we can consider an equity to behave like an index 
linked bond with the retail prices index replaced by a dividend index).   If the 
real yield on this bond rises (by analogy, the dividend yield rises) the price of 
the asset falls.  There are two reasons why the yield could rise (in a situation 
where the nominal interest rate remains constant) either the risk premium on 
the asset has risen unexpectedly or expected growth of the income (inflation or 
dividends) has unexpectedly fallen.    We are careful to add the words 
“unexpected” here as we have already explained (at some length) expected  
rises or falls can be already discounted in the term structure of interest rates.   

 
4.21 The easy one to start with is of course the case where an unexpected  rise in 

equity yields is associated with an unexpected fall in dividend growth 
expectations.  If these expectations are in the form of a decaying perturbation 
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to some trend growth (i.e. dividend growth expectations are also stationary) – 
then it would be perfectly natural to see mean reverting dividend yields but the 
subsequent equity returns would be the same as they were before the 
unexpected news arrived – i.e a random walk with unchanged mean. The 
initial price fall that triggered the rise in yields would simply ensure that the 
future price appreciation compensated for the lower (although mean reverting 
back to trend) dividend growth.  We would not observe any predictability in 
the subsequent asset price changes – a high dividend yield would not predict 
higher returns.    

 
4.22 That was the simple case.  Now let’s consider the more complicated example 

of an unexpected rise in the equity risk premium.  The effect of this 
unexpected change would be a fall in the price of equities, followed by a  
higher risk premium in subsequent periods.   This is really a form of “pull to 
parity” effect.  As in our simple conventional interest rate example subsequent 
returns would be viewed as neither negatively nor positively autocorrelated if 
they were measured relative to the new risk premium. 

 
4.23 Of course a mean reverting risk premium is not necessarily inconsistent with 

efficient markets if either risk or risk aversion are also mean reverting.  We 
will return to this later.  The fact that the apparent mean reversion effect 
disappears when we consider returns in excess of the market price of risk will 
also turn out to be a very important observation when we consider the risk 
neutral version – and hence option valuation implications – of this form of 
mean reversion. 

 
Stationary Drift in Asset Models 

 
4.24 So although we remain extremely sceptical as to whether equity dividend 

yields are stationary, we have in the process of discussing explanations for this 
phenomenon arrived at the possibility of a stationary process for the equity 
risk premium that could generate the sort of intuitive but not yet properly 
defined “mean reverting” behaviour in equity prices described in our second 
definition – call it pull to par or call it a “catching up period” after a fall.   

 
4.25 The difference between this process and our autocorrelation process is subtle, 

but the key is that we have introduced a second process determining the risk 
premium that is distinct from the process for equity returns.  The subtle 
comparison is thus: 

 
Positive autocorrelation: 

 
  

ttt WRaR σµµ ++−= − )( 1 …(3.1) (again) 
 

A stationary equity risk premium (Xt) might also look something like: 
 

XtXtt WaXX σ+= −1 …(4.2a) 
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RtRtt WXR σµ ++= ..(4.2b) 
 
   

4.26 In the second case the return on the asset Rt  is a function of the risk premium 
(defined as Xt + µ) and the effect of shocks to the asset price itself, which may 
be positively (or more likely negatively, under the “pull to parity” analogy) 
correlated with shocks to the risk premium. Rather than assuming that the total 
return is positively autocorrelated or stationary (as aRt-1 appears on the R.H.S 
of equation (3.1)), we now have a stationary drift process.   

 
4.27 This twin process approach gets us very close to a workable definition of 

mean reversion is assets such as equities. 
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5. INCREMENTS OVER DISJOINT INTERVALS NEGATIVELY CORRELATED 

 
5.1 Many analysts think of share prices in two portions – a true underlying value, 

plus or minus a short term fluctuation (associated with the fluctuating equity 
risk premium above). This suggests that the market value fluctuates around a 
fundamental or true value, but that the true value is also subject to random 
movements. 

 
5.2 One way of approaching this is to describe the mean revering process by 

Xt+Wt .  This gives us a model similar to above of the form: 
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….(5.1) 

 
Note we have rigged the starting point so that X0+W0 = 0.   
 

5.3 This has the same structure as the form of mean reversion that we proposed at 
the end of the previous section and is close to a model that could plausibly 
describe share prices, or at least log share prices.  

 
5.4 However, we still have a major challenge to decide whether the actual process 

is, or is not, of this form. This test is particularly difficult as we do not in 
practice observe X and W separately, but only the log share price, that is Xt and 
Wt. We could conceivably test stationarity given observations of X, but the 
need to unscramble X from the random walk W adds a whole new layer of 
complexity.  This would of course be easy if we could identify X (the “equity 
risk premium”) with an observable such as the equity dividend yield. 

 
5.5 However, as discussed earlier, the old faithful actuarial indicator lets us down 

badly – we believe (see Exley, Smith & Wright 2002) that there is no 
conclusive evidence that equity dividend yields mean revert nor, even if they 
did, that this mean reversion can predict the equity risk premium (X in the 
above formula).    

 
5.6 This type of model also suffers from identifiability problems. In particular, if  
 

vXX + (1+A)vXW = 0…(5.2) 
 

then the process is indistinguishable from a random walk (for proof of this 
result see Appendix 1) . So once again, to establish that a process is a sum of a 
random walk and a stationary process, is not to eliminate the possibility that 
the original process might also be a random walk. 
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5.7 This is a surprising result – we have successfully generalised the intuitive 
association between mean reversion and autocorrelation but it turns out that it 
is still not sufficient to define mean reversion in terms of this two stage 
process.  Negative correlation between the shocks to the asset price and shocks 
to the risk premium does not necessarily generate what most practitioners 
would regard as “mean reverting” behaviour.   This leads us to our final 
definition.  

 
Definition 4: A process is mean reverting if increments over disjoint intervals 
are negatively correlated. 
 

5.8 We will see this also appropriately generalises the notion of a stationary 
process, and captures the intuitive notion that a fall is more likely after a rise 
(namely the concept of autocorrelation discussed in definition 2). However, 
this definition does truly exclude some possible processes that satisfy these 
notions of stationarity without being mean reverting in a practitioner’s sense 
of the word. Therefore, we can separate models into mean reverting and not 
mean reverting, with each a priori being plausible. 

 
5.9 For example, let us consider the processes previously discussed, and evaluate 

the covariance of increments. Let us take r < s < t < u. Then 
 
 

( )

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+−+

+−−

+−−

+−

−
++

=

−−+−−+

−

−

−

−

)1)(1(
)1)(1(
)1)(1(

)1)(1(

1
)1(

,

2

rtr

sts

rur

sus

XWXX

ttuurrss

AA
AA
AA

AA

A
vAv

WXWXWXWXCov

 

 
We can rearrange the curly brackets as follows: 
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We can see that if A > 0 then mean reversion is equivalent to vXX + 
(1+A)vXW > 0. 
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6. MEASUREMENT OF MEAN REVERSION 
 

Statistical Model Comparisons 
 
6.1 As observed in the Introduction to this paper, unlike means, standard 

deviations and correlations, there is no single accepted numerical measure of 
mean reversion. To say that a model has mean reversion of 5%, or of 500, is 
meaningless. Several comparisons exist of model statistics. See for example 
Smith (1996), Lee and Wilkie (2001) or PriceWaterhouseCoopers (2003). 
None of these comparisons extend to measures of mean reversion. 

 
6.2 It does not help that mean reversion means different things to different people. 

In the parlance of econometrics a mean reverting process should be stationary, 
but as we have seen, this is not a useful definition given that the main focus of 
attention is likely to be the “mean reversion” or otherwise of stock prices.  A 
broader usage of the term has therefore become common in the asset 
modelling community, but this usage conflicts with classical time series 
terminology. This confusion over terminology has hitherto complicated the 
creation of standard parameter definitions. 

 
6.3 However, the development in the previous section provides us with a useful 

way forward in defining a standard diagnostic tool to establish the extent to 
which a particular model displays mean reversion.  Such a diagnostic tool 
would clearly have value to regulators, end users and others seeking to 
understand key differences between various models.  

 
Short and long term volatility 

 
6.4 What then would be the generic parameters such a benchmark model should 

show? Let us suppose that the mean reversion acts like a time-varying drift as 
discussed above. Over very short time periods, the drift is difficult to observe, 
because it is a drift per unit time and you do not have many units of time.  Or 
put another way, as you reduce the time interval the volatility of the process 
(typically of order √dt) increasingly dominates the drift (or order dt) and 
nuances of the drift process will be dwarfed by the crude volatility term.   

 
6.5 So, sampled at frequent intervals over short time spans, a mean reverting 

process could look a lot like a random walk, with some volatility σS. This is 
our first generic parameter. As short-term volatility is easy to compute – and 
we have few constraints on data – the data may become rather granular if we 
look on a second by second basis but within reasonable limits we can get quite 
a good handle on short term volatility by using small time steps.  We might 
expect different models to show some consensus on this parameter, at least for 
two alternative models calibrated to the same data set. 

 
6.6 Let us now look at very long holding periods. A mean reverting model shows 

dependence of returns from one period to the next, but that influence has to 
decay if the two periods are separated by a large time interval. Over periods 
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separated by a wide interval, we might expect something close to 
independence, because in a market efficient environment information that 
impacts prices on one day is not likely to be hugely correlated with 
information that happens many years later. Therefore, over very long time 
scales, most models should look something like a random walk. The volatility 
of this long term random walk will not necessarily be equal to the short term 
volatility σS but instead would take some different value σL, which forms our 
second parameter.  

 
6.7 As this second parameter describes volatilities over long holding periods, it is 

intrinsically difficult to measure and will depend heavily on calibration. 
Whereas we have (almost) unlimited access to non overlapping short time 
periods (e.g. hourly data) there are not many independent ten, twenty or thirty 
year time periods to work with.  We can expect σL to vary from one model to 
the next, according to the selected model-building methodology.  

 
6.8 The difference between long and short-term volatilities already gives one way 

to describe mean reversion. Strong mean reversion is characterised by long-
term volatility well below the short-term volatility. For a random walk, the 
long and short term volatilities are equal. 

 
 

Measuring Volatilities: History and Simulations 
 
6.9 There are two situations requiring volatility measurement.  If we are 

calibrating a particular model we need to measure volatility in actual data.  If 
we are comparing two or more different models (lets assume that they are 
black boxes) by looking at simulated data generated by the models.  

 
6.10 The first situation relates to either historic volatility, based on one observed 

time series or implied volatility derived from derivative prices. Essentially the 
major problem in the case of taking measurements from historic data is 
sampling error. The observed history is only one possible outcome of 
thousands that could have occurred, and there is no guarantee the observed 
history is representative in any way. Lack of data is a major problem, resulting 
in subtle biases we will later consider.    

 
6.11 The problems may be different, and generally less acute in the case of 

calibrating against derivative price data, but they still exist.  If a model is 
calibrated against derivative prices then the choice of derivatives may be 
important – the model may accurately price the chosen calibration instrument 
but be hopeless at pricing other instruments.  The issue of time homogeneity is 
also important – a time decaying volatility structure may be indistinguishable 
from the effects of mean reversion in a time inhomogeneous model. This 
distinction is unimportant for derivative pricing on day one, but it matters 
greatly if a model is marched forward in time.   

 
6.12 The second situation we need to consider involves the estimation of volatility 

from simulation output (generated from a black box model, say). Here, lack of 
data is not a problem. If sampling error is significant one can simply run more 
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simulations from the black box. Instead, the difficulty that arises is the 
proliferation of different ways of calculating volatilities. 

 
6.13 For example, consider a 1-year volatility. We could measure this as the 

volatility of the return in year 1, or alternatively as the forward start volatility 
of return between t=20 and t=21. For most models, the forward start volatility 
will be higher. This is because for the forthcoming year, we already know 
current levels of interest rates and the returns in immediately preceding years. 
To some extent this may help us predict the next year’s returns. Some of the 
volatility in the first year returns will be reduced by the fact that all 
simulations start from common initial conditions. The forward start volatility 
may be higher because each simulation starts from a different point at t=20. 

 
6.14 In exceptional circumstances, however, the forward start volatility may be 

lower than the one-year volatility. This can happen in a model with stochastic 
volatility whose starting conditions specify a starting volatility well above the 
long term mean. 

 
6.15 From a time series analysis point of view, we are most interested in 

unconditional volatilities that have minimal dependence on initial conditions. 
In other words, our ideal definition of a one-year volatility should be forward 
start volatility, starting some point in the long future. In practice, simulation 
data may well be supplied with a finite horizon, and so some extrapolation 
may be required to develop the limiting forward start volatility. 

 
Maximum predictability 

 
6.16 We have now defined and clarified notions of long and short-term volatility. 

The next important property is required to describe where the transition occurs 
between short-term behaviour and long-term behaviour. We capture this using 
the notion of maximum predictability. 

 
6.17 We concluded section 5 with a useful and quite broad definition of mean 

reverting processes as one where returns in one period are negatively 
correlated with those in other periods. We have argued that this correlation is 
likely to be close to zero for very small periods, and also for very long periods. 
It follows that there is some finite period length, which has a largest absolute 
correlation with the return in some subsequent period. We call this the most 
predictive period. 

 
6.18 It seems reasonable to assume that if one interval is most predictive of another, 

then these two intervals will be adjacent, because every intervening interval 
results in a loss of information. For similar reasons, a symmetry argument 
suggests that the optimally predictive interval pair will be the same length. 
This optimally predictive period term is an important attribute of the time 
series, as is the value of the optimum correlation achieved. This gives two 
more attributes of a mean reverting series, which we can define in generic 
terms.  

 
6.19 These attributes are shown below for the Wilkie model 



 18

 
 
6.20 The optimal predictive term may be close to 1 year, or even less. For annually 

projected series it is therefore helpful to extrapolate the observed volatilities to 
shorter time frames, so that a non-integer optimal predictive length can be 
estimated. 

 
6.21 Thus far, we have defined four numerical attributes of a mean reverting 

process: 
 
• Short-term volatility 
• Long-term volatility 
• Optimal predictive term 
• Optimal predictive correlation 
 

These are mutually constrained to some extent. For example, if the long term 
volatility is close to the short term volatility, then the process is much like a 
random walk, and so we would be surprised to find a large optimal predictive 
correlation. We are not here suggesting that optimal predictive term and 
correlation are perfect measures. Correlation and its structure varies over time. 
One needs to be pragmatic and analyse a data set to see whether correlation is 
so different from 0 that the concept of optimal predictive correlation adds to 
the analysis. 
 
Prediction based on Return History 

 
6.22 We have examined the distribution of return in one period given the return 

over a previous period. The observed correlation gives us a possible predictor 
of future returns. Given a predictor of a future price, we can decompose the 
price variance as: 
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 The variance of the predictor (“σXX”, in our earlier model) 
 Plus residual variance (“σWW”) 

 
This decomposition will vary according to the information basis of the 
predictor. The predictor could be based on: 

 
 A ratio such as the dividend or earnings yield  
 The historic return over a particular past period  
 The entire history of historic returns 

 
6.23 We have described the first of these using the optimal predictive correlation. 

The second form of predictor was discussed, in terms of past data, in section 2. 
Economically, it is also relevant to establish the extent to which future 
movements can be predicted given all past movements. This reconciles to the 
economic notion of weak-form market efficiency. Therefore, we have another 
potential statistic: 

 
• Predictive correlation based on total history 

 
As this is the result of a multivariate conditional expectation, the calculation is 
delicate, both from the point of view of inverting large matrices and also the 
tendency for sampling error to generate spurious evidence of predictability. 
The regression actually gives us an r2 statistic from which we extract a square 
root to express as a correlation. 
 

6.24 We could choose the time horizon over which to measure the predictive 
correlation; the most natural horizon for comparison purposes is the previously 
defined optimal predictive term. 

 
Information structures 
 

6.25 Time series properties are usually defined in terms of forward start volatilities. 
However, many actuarial investigations start from known initial conditions 
and therefore the initial start volatilities are more relevant.   An information 
structure is a way of relating initial start volatilities to the forward start 
volatilities. Information structures are discussed in Appendix 2.  
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7. MEAN REVERSION AND RANDOM WALKS – MATHEMATICAL FORMULATION 

 
Random Walks 

 
7.1 We consider models of log asset prices. Let St be a total return index of prices, 

and write  
St = exp(Zt) 

 
Our processes are defined for all real t, both in the past (t < 0) and the future (t 
> 0). 

 
7.2 Under a classical random walk, the change in Zt over a time interval h is 

normal, with mean µh and variance σ2h. The parameter µ is called the drift and 
σ the volatility. 

 
Difference Stationary Processes 

 
7.3 A random walk is an example of a difference stationary process, because the 

distribution of the difference Zt+h – Zt depends on the holding period h but not 
on the start of the period t. There are many other possible difference stationary 
processes besides the random walk, including mean-reverting processes. 

 
7.4 In each of these definitions, we are concerned only with unconditional 

distributions, which know nothing of the history of the model. In a projection 
model, we are more usually concerned with conditional distributions. For 
example, one might start a projection model at time 0, and assume knowledge 
of interest rates, past returns and so on up to time 0. A stochastic model might 
then generate distributions conditional on what was known at time 0. The 
return distribution in year 1 might well be different from that of year 5, simply 
because at time 0, more is known about year 1.  

 
7.5 However, this would not necessarily violate stationarity, as these distributions 

are conditional ones. To get unconditional distributions, we would need to 
start projecting from a long time back, say t = -1000 years.  

 
 

Volatility Structure 
 
7.6 For a general difference stationary process, we can define the variance 

function, that is the variance  v(h) of the log return over a holding period h. In 
symbols. 

)()( tht ZZhv −= +Var  
 

From this, we can define the volatility function (also known as volatility term 
structure): 
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For a random walk, the volatility function has a constant value σ.  
 
7.7 We now consider a more general class of processes, where σ(h) varies by h. 

We assume that the long and short limits exist and are given by σL, σS 
respectively. 
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These describe processes which behave over short time scales like a random 
walk with volatility σS, and also like a random walk over long time scales, but 
with a different volatility σL. 

 
 
7.8 There are several possible choices for volatility functions with the desired 

limits σS and σL. For calibration purposes, it is convenient for v(h) to be linear 
in both σS

2 and σL
2. We consider the following cases: 

 
Possible volatility term structures given σS, σL. 
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7.9 These are all continuous monotone volatility functions. In each case, the 

parameter α > 0 determines the speed with which the volatility term structure 
moves from the short limit to the long limit, a larger α implying faster 
convergence. The value of k determines long-range dependency, with large 
values of k denoting low memory between returns on distant intervals. We can 
verify that these expressions do indeed have limiting volatility σS for small h 
and σL for large h.  

 
Mean Reversion and Aversion 

 
7.10 We now investigate the concepts of mean reversion and mean aversion. A 

difference stationary process is reverting if changes are negatively 
autocorrelated, that is, if a price rise is more likely to be followed by a price 
fall. Conversely, if a rise is more likely to be followed by another rise then the 
process is averting. 
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7.11 We can measure this by examining the covariance of changes over two 
disjoint periods. In symbols, we look for the covariance Cov(Zs – Zr, Zu – Zt), 
for r<s<t<u.  We then classify difference stationary processes as follows: 

 
Reverting Cov(Zs – Zr, Zu – Zt) ≤ 0 for all r<s<t<u.   
Averting Cov(Zs – Zr, Zu – Zt) ≥ 0 for all r<s<t<u.   
Indeterminate Cov(Zs – Zr, Zu – Zt) > 0 for some r, s, t, u  

but Cov(Zs – Zr, Zu – Zt) < 0 for other r, s, t, u  
 

It so happens that we can calculate the covariances given only the variance 
function v(h). This is because of the following identities: 

 
v(t-s) Var(Zt – Zs)  
v(t-r) Var(Zt – Zr) Var(Zs – Zr) + Var(Zt – Zs) 

+ 2Cov(Zs – Zr, Zt – Zs) 
v(u-s) Var(Zu – Zs) Var(Zt – Zs) + Var(Zu – Zt) 

+ 2 Cov(Zt – Zs, Zu – Zt) 
 

v(u-r) Var(Zu – Zr) Var(Zs – Zr) + Var(Zt – Zs) 
+ Var(Zu – Zt)  
+ 2Cov(Zs – Zr, Zt – Zs) 
+ 2Cov(Zs – Zr, Zu – Zt) 
+ 2Cov(Zt – Zs, Zu – Zt) 

v(u-r) + v(t-s) 
- v(t-r) - v(u-s) 

 2Cov(Zs – Zr, Zu – Zt) 

 
Concave and convex functions f are defined as follows: 

f(x) convex  f[λx + (1-λ)y] ≤ λf(x) + (1-λ)f(y) 
f(x) concave f[λx + (1-λ)y] ≥ λf(x) + (1-λ)f(y) 

all x, y and 0 ≤ λ ≤ 1 

 
We now claim that: 
 
An integrated process is averting if and only if the function v(h) is convex 
An integrated process is reverting if and only if the function v(h) is concave 

 
7.12 We demonstrate the mean reverting case; the mean averting case is similar.  

Firstly, let us demonstrate that a concave v implies a mean reverting Z. The 
convex condition implies that 

)()()(

)()()(

ruv
rstu

tustv
rstu

rssuv

ruv
rstu

rsstv
rstu

turtv

−
−+−

−
+−

−+−
−

≥−

−
−+−

−
+−

−+−
−

≥−
 

 
Adding these two equations gives the negative covariance as claimed. 

 
7.13 The converse is harder. By taking s = t = (u+r)/2 we can demonstrate the 

concave condition for λ = ½. Other values follow by a more complicated 
continuity argument. 

 



 23

8. AN EXAMPLE OF A MEAN REVERTING MODEL 
 

Background and Definition of Model  
  

8.1 In Exley, Mehta & Smth (1996) we set out a mean reverting equity model that 
was consistent with efficient markets, based on a model for risk aversion that 
resulted in risk premia rising sharply after markets have fallen.  In this section 
we propose what is arguably an even simpler model, to the extent that it is 
based on a simple linear market price of risk, similar to CAPM.   

 
8.2 Our approach follows Duan (1996) by defining the following GARCH process 

for stock prices: 
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where Zt is a standard normal variate in the real world measure and β0 >0, 
0, 21 ≥ββ .  Here λ is of course the standard “market price of risk” so this 

model can be seen to be entirely consistent with a very simple efficient market 
model. 

 
 Continuous Time 
 
8.3 It can be shown, by expanding the quadratic term in the second equation, 

noting that 0),( 2 =tt ZZCov , and applying the continuous limit results of 
Foster & Nelson (1994), that this process reduces to the continuous time 
system: 
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 where )1(1 2

21 γββθ +−−= and tt dZdZ 21 , are independent standard 
Brownian motions.   

 
8.4 This GARCH process therefore turns out, in the continuous time limit, to be 

remarkably similar to the standard process introduced in section 4.  In 
particular note that  

2
3

2
2 2))ln(,( ttt SddCov γσβσ −=  

 
 However, the processes are not identical.  Importantly, the “risk premium” is 

2
tt σλλσ = and not 2

tλσ .  Nevertheless, although this complicates the 
distributional properties, it does not affect the basic similarity in the structure.  
In particular, note that if the innovation to the process is positive, so 

2
tσ increases, then so does its square root tσ and if the innovation is negative 
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then both 2
tσ  and its square root tσ decrease.  We are however limited to 

positive is premiums in this model, which is actually an enhancement to the 
earlier process. 

 
8.5 There is quite strong empirical evidence to support this form of model for 

stock prices.  For example, Duan (1996) successfully fits the process to actual 
stock price data and then uses the parameters in a risk neutral version of the 
model (see below) to give a reasonable (but not exact) fit to option prices.  

 
 

Implications from Earlier Results  
 

8.6 However, the similarity of the model with our earlier work gives us the  
immediate insight that despite the apparent “pull to parity” effect of the 
negative covariance between the risk premium and the stock price process, it 
does not follow that the model necessarily describes a mean reverting process 
as we defined in Section 5.   

 
8.7 Thus we have a model with some empirical support that for some parameter 

settings will be mean reverting, and for others it will actually be mean 
averting.   This is particularly relevant in actuarial applications that tend to 
push the limits of models in terms of asymptotic behaviour (actuaries may be 
interested in the volatility of equities thirty or even fifty years hence).  Quite 
small parameter changes can often flip the asymptotic behaviour of these 
models from the well behaved to the pathological. 

 
8.8 In many ways this encapsulates our views on mean reversion.  As with our 

1996 paper, we stress that it is perfectly possible to construct a model that is 
consistent with efficient markets and displays mean reversion (or mean 
aversion).  The problem is not with the principle of building such models but 
with the strength of the evidence actually in favour of mean reversion (rather 
than mean aversion or random walks) as an intrinsic, natural feature of equity 
market returns.   Mean reversion does not appear to be “hard coded” into the 
structure of plausible market models. 

 
Market Consistent Applications – Costs of Guarantees 

 
8.9 However, even if equity markets did display strong mean reversion under this 

model, there may be a rather awkward implication associated with adopting 
this model in a market consistent valuation framework.  Not only does the 
model not display mean reversion in the risk neutral world, but the model 
tends to suggest “fat tailed” distributions of equity returns that will typically 
increase the costs of guarantees measured on a market consistent basis.  This is 
because the risk neutral version of the model is as follows; 
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8.10 The negative correlation between the risk premium and the stock process has 

disappeared in the risk neutral world – and all we are left with is the 
possibility of fat tails which will probably actually increase the cost and value 
of guarantees on a market basis.  This is another important general observation 
– a process that is mean reverting in the real world may not mean revert in the 
risk neutral world and vice versa. 
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9. CONCLUSIONS AND IMPLICATIONS 
 

Conclusions 
 

9.1 There is strong evidence for mean reversion in interest rates and volatilities 
but rather weak evidence for mean reversion (and possibly mean aversion) in 
equity markets.  The supposed mean reversion in equity dividend yields is in 
our opinion very likely to be a red herring, created by various biases in the 
regressions used.   

 
9.2 The existence of various types of mean reverting features in asset yields or 

returns does not in any way contradict the assumption that markets are 
efficient.  We discussed this in our earlier paper on market efficiency with 
reference to varying risk aversion.  In this paper we have discussed various 
other forms of mean reversion, and proposed a mean reverting (or possibly 
mean averting) equity model that is again perfectly consistent with a very 
simple “market price of risk” approach.   

 
Pension Funds 

 
9.3 In the case of pension fund applications of these models, the issue of mean 

reversion is of course largely irrelevant in any event.  This is because standard 
practice involves steering Trustees towards an asset allocation that is strongly 
conditioned on a consensus allocation to equities (60% or 70% for example).  
Changing a model to introduce mean reversion or aversion in this environment 
would be likely to be offset by focusing on more or less risk averse objectives 
– who is to say for example whether Trustees should focus on a 10% 
probability tail or the 0.1% tail.    

 
9.4 However, even in pensions it is relevant in as much as there is an obvious need 

to show the amount of risk being borne and using a mean reverting model will 
often appear to show less risk. 

 
 

Insurance Companies  
 
9.5 Insurance companies are managed much more prudently than pension funds in 

the UK and need to set aside capital to meet risk, not just reserves to meet 
expected costs.  

 
9.6 Typically a mean reverting model is used to suggest that an unhedged long 

equity position needs less capital than implied in a non-mean reverting model. 
This result is communicated to the regulator and so the difference can be as 
stark as the company being allowed to trade or not. 
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9.7 In the UK particularly, the ‘statutory’ valuation rate of interest and resilience 
tests used by with-profits life offices when establishing reserves depend in a 
complex way on the levels of dividend and earnings yields. In turn, unless the 
alternative ‘realistic’ valuation bites, the process used for projecting dividend 
and earnings yields make a large difference to any assessment of fair value of 
liabilities and of risk, because changes in these parameters can drive 
substantial shifts in investment policy.   

 
9.8 One of the most important attributes of an investment model used in a UK 

with-profits context is therefore to properly project dividend and earnings 
yields. A constant dividend yield assumption (i.e. 100%pa mean reversion) 
will likely have very different results from using a model with say 5%pa mean 
reversion in dividend yields towards a market forward dividend yield.  Our 
conclusion that there is something distinctly fishy about the alleged mean 
reversion in dividend (and similarly earnings) yields is therefore particularly 
relevant here.  However, this is old ground. 

 
9.9 Of more relevance today in the context of life insurance is the issue is the 

issue of cherry picking of models to minimise capital requirements trailed in 
our introduction to this paper.  Our example model is particularly interesting 
in this regard, for two reasons: 

 
(1) The basic structure of the model has strong empirical and theoretical 

support, but mean reversion is not hard-coded into the model structure.  
It might show mean reversion or aversion.  Nailing one’s colours to a 
model that displays mean reversion under current parameter settings 
could lead to unintended consequences if a year down the road a re-
parameterisation suggests strong mean aversion.   

(2) Mean reversion (or aversion) in the real world does not translate into 
mean reversion (or aversion) in the risk neutral world.  Thus there is 
not compression (or expansion) of long term volatility in the pricing of 
guarantees relative to a random walk model arsing from this particular 
effect.  However , the quid pro quo for introducing the possibility of 
mean reversion (aversion) into a plausible economic model is the 
possible introduction of fat tailed returns and these will typically 
increase the cost of guarantees, often quite substantially, if the same 
capital adequacy model is used for market consistent valuation.   

 
So you pay your money for a model and you make your choice.  It would 
appear however, that if regulators insisted on economic consistency in mean 
reverting models – in the form of a plausible economic rationale for mean 
reversion, then such models may become somewhat less popular. 
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APPENDIX 1  PROOF OF RESULT (EQUATION 5.2) 
 
 We are seeking the condition for the process described in equation (5.1) to be 
indistinguishable from a random walk. 
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Now we can work out the covariance: 
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This is: 
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We can sum the geometric progressions analytically: 
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Putting these together, we find: 
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Hence the condition for the process to be indistinguishable from a random walk: 
 

vXX + (1+A)vXW = 0 
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APPENDIX 2: INFORMATION STRUCTURES  
 
With a rich information structure, initial start volatilities will be low, because 
information common to all simulations will play a large part in explaining the 
variability of the first year’s returns. With a sparse information structure, initial start 
volatilities will be close to their forward-start cousins, indicating that the first year 
returns have little additional predictability. 
 
Information structures are of a fundamentally different nature to the parameters 
already discussed. Our defined parameters can be estimated, in principle, either from 
simulations or from a sufficiently long data series. 
 
Information structures define how much information is known, at a point in time, 
regarding future outcomes, based not only on a series itself but other possible 
underlying drivers in a model. We could have two models with different information 
structures but for which the time series properties of a particular series, viewed on its 
own, are indistinguishable. We will develop a methodology to extract these statistics 
from simulated data. 
 
Extraction from historic data is much more problematic, to say the least. This is 
because historic data on a time series itself does not necessarily encapsulate all that is 
known about future prices. Extra information might also come from other series. For 
example, an interest rate series might be predictive of movements in equity or 
currency markets. A specified finite list of possible predictors can give an estimate of 
how much the base series can be predicted, but this estimate will be a lower bound 
because we might have omitted a particularly predictive series from our analysis. 
Unfortunately, we cannot overcome this problem by throwing in more and more 
potential predictors, because sampling error takes over and any list of possible 
predictors will appear strongly predictive as the number of series approaches the 
number of time points in the data set.  
 
Lee and Wilkie (2001) draw an analogy between information structures and the select 
period in a mortality table. Population mortality alone can tell us nothing about the 
effect of selection. The select period effect depends critically on the underwriting 
criteria adopted by a life office, and how those correlate to an individual’s mortality. 
 
Thus, we regard information structures as a property of a simulation data set, but not a 
readily measurable property of historic data. This measurement difficulty should not 
surprise us. Information structure is about the extent to which future share price can 
be predicted, not only from its own history, but also from other available data. In 
other words, it is a test of semi-strong market efficiency (see Fama and French, 1971).  
 
The historical efficiency of particular markets is hotly debated – and much of that 
debate depends on the unanswerable question of whether, at a market extreme, 
analysts could have known whether a reversal was imminent. On the other hand, there 
is no dispute about whether particular models describe an efficient market. For 
example, it is accepted that Wilkie’s (1986) model describes an inefficient market 
while Smith’s (1996) Jump Equilibrium model describes an efficient market. 
 
We can thus add a fourth possible basis for the predictor: 
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 All information in the model’s history 

 
The more information that is included, the greater is the variance of the predictor and 
the lower is the residual variance. The first three of these predictors could all in 
principle be extracted from historic time series, while the last requires simulation data. 


