PREDICTIVE MODELLING FOR COMMERCIAL INSURANCE

General Insurance Pricing Seminar
13 June 2008
London

James Guszcza, FCAS, MAAA
jguszcza@deloitte.com
General Themes
Predictive modelling: 3 Levels of Discussion

- **Strategy**
 - Profitable Growth
 - Right-pricing
 - Improved retention ...

- **Methodology**
 - Model design (actuarial)
 - Modelling process (modern machine learning POV)

- **Technique**
 - GLM vs classification trees vs neural networks ...
Methodology vs Technique

- Technique is only one facet of overall methodology.

- It’s not enough to be statisticians – we must be *actuarial* statisticians.

- **How does predictive modelling need actuarial science?**
 - Variable creation
 - Model design
 - Model validation

- **How does actuarial science need predictive modelling?**
 - Advances in computing, modelling techniques
 - Ideas from other fields can be applied to insurance problems
Semantics: Data Mining vs Predictive Modelling

- **Data Mining**: “knowledge discovery”, often in large industrial databases – “KDD”
 - Data exploration techniques (some brute force)
 - Data visualization
 - e.g. discover strength of credit variables

- **Predictive Modelling**: Application statistical techniques (like GLM) after knowledge discovery phase is completed.
 - Quantify & synthesize relationships found during KDD phase
 - e.g. build a credit model
Aside:
A Famous Example of KDD in Insurance

- Mid-90’s: insurers discovered a strikingly powerful relationship between personal credit score and personal motor / homeowners claim propensity.

- The reason “why” was (is?) mysterious.

- The discovery – and the business benefit – did not hinge on particularly advanced statistical techniques.

- A dramatic illustration of the business value of the data mining / KDD paradigm.

- KDD is “fact-finding”.

Copyright © 2008 Deloitte Development LLC. All rights reserved.
Commercial Insurance vs Personal Insurance

- Personal insurance modelling is a “nice” statistical problem.
 - Many data points
 - Straightforward exposure base (car-year)
 - Many well understood pricing factors
 - In the UK’s liberal market especially, prices can be determined scientifically
 - GLM-based loss cost modelling
 - Elasticity modelling, price optimisation
 - Controlled pricing experiments
Commercial Insurance vs Personal Insurance

- Commercial insurance modelling is a “messy” statistical problem.
 - Fewer data points – especially for new business
 - Often lower frequency / higher severity
 - Heterogeneous risks
 - The corner bakery vs the suburban über-market
 - Complex exposure bases (sales, payroll, feet2)
 - Messy data
 - Risk selection/pricing often a “free for all”
 - *Underwriter Subjectivity*
Strategy:
Why Undertake a Modelling Project?
The Parable of Moneyball
(Or: How Underwriting is Like Baseball)

- In 1999 Billy Beane (manager of the Oakland Athletics) found a novel use of data mining.
 - A’s not a wealthy team: ranked 12th (out of 14) in payroll
 - How could the A’s compete with the rich teams?

- Beane hired a junior statistician (Paul dePodesta) to analyze statistics advocated by baseball guru Bill James.

- Using predictive analytics, Beane was able to hire excellent players undervalued by the market.
 - A year after Beane took over, the A’s ranked 2nd!
The Implication

- Beane *quantified* how well a player would do.
 - Not perfectly, just better than his peers
 - *He realized that statistical regularities are more reliable than baseball scouts’ subjective, expert judgments.*

- Implication:
 - Be on the lookout for fields where an expert is required to reach a decision based on judgmentally synthesizing quantifiable information across many dimensions.
 - *(Does this sound like commercial insurance underwriting?)*
 - *Maybe a predictive model can beat the human expert.*
Mental Accounting

- Take a guess: which is a worse EL risk?... and by how much?

<table>
<thead>
<tr>
<th>Flower shop</th>
<th>Pub</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 employees</td>
<td>10 employees</td>
</tr>
<tr>
<td>5 year-old business</td>
<td>15 year-old business</td>
</tr>
<tr>
<td>2 EL claims in past 5 years</td>
<td>Most recent EL claim: 4 years ago</td>
</tr>
<tr>
<td>Credit: 70th %ile</td>
<td>Credit: 90th %ile</td>
</tr>
</tbody>
</table>

- Unlike a human decision-maker, a predictive algorithm “knows” how much weight to give each consideration.
 - Just as the A’s used models to select players, commercial insurers use models to select and price risks.
 - Humans are “predictably irrational” …
 … but models don’t engage in “creative mental accounting”.

Copyright © 2008 Deloitte Development LLC. All rights reserved.
Keeping Score

<table>
<thead>
<tr>
<th>Billy Beane</th>
<th>CEO who wants to run the next Progressive Insurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beane’s Scouts</td>
<td>Commercial Insurance Underwriters</td>
</tr>
<tr>
<td>Potential Team Member</td>
<td>Potential Policyholder</td>
</tr>
<tr>
<td>Bill James’ stats</td>
<td>Innovative collection of predictive variables</td>
</tr>
<tr>
<td>Billy Bean’s Super Cruncher</td>
<td>You and me</td>
</tr>
</tbody>
</table>
The Moral of Our Parable

- Billy Beane has arguably transformed US professional sports by introducing the strategic use of predictive analytics to baseball.
 - The way Beane crunched his numbers was determined by his business strategy:
 - Exploit an inefficient and subjective market for baseball players.

- Similarly in the commercial insurance domain:
 - Start off by trying to understand the business/strategic context.
 - *Allow the modelling strategy to conform to the business strategy, not vice versa.*
Competing on Analytics

- In “Competing on Analytics”, Tom Davenport defines:
 - “An analytic competitor [is] an organization that uses analytics extensively and systematically to outthink and out-execute the competition.”
 - Think of predictive modelling as a strategic capacity… not just another actuarial tool.

- The most valuable modelling projects are an integral part of a company’s core strategy.
More Business Considerations

- Davenport: truly analytic competitors promulgate an “analytic” and “fact-based” culture from the top down.
 - A related point: culture change is often a critical part of implementing a predictive model.
 - A model can be worse than nothing if it is implemented improperly and/or if critical users do not buy into it.

- Building models is only a one phase of a “predictive modelling” project.
 - Planning, data scrubbing, project management, IT implementation, business implementation often dwarf the modelling part of the project.
 - Modelling is the fun part, not the hard part!
 - Highly multi-disciplinary process.
Methodology:
Integrating Concepts from Statistics, Actuarial Science, Machine Learning
Concepts from Modern Statistics

- Generalized Linear Models
- Goodness-of-fit measures – R^2, AIC, BIC, …
- Nested models, analysis of deviance, F-tests, …
- Graphical analysis of model fit
- Graphical residual analysis
- Variance estimators
- Bayesian credibility
- Bootstrapping, simulation

(...you know the drill)

- But these doesn’t exhaust modern “predictive modelling”
Concepts from Modern Machine Learning

- Data Mining and KDD
 - Brute-force search techniques

- Scoring engines
 - A “predictive model” by any other name

- Lift Curves
 - *Operationally meaningful* measure of “predictive power”

- Out-of-sample model tests, cross-validation
 - Ideally yield unbiased estimates of “predictive power”
 - Alternative to AIC, BIC
Scoring Engines

- Scoring engine: (non)linear function of multiple predictors:
 \[
 \text{score} = f(X_1, X_2, \ldots, X_N)
 \]
- Used for segmentation.
- The \(X_1, X_2, \ldots, X_N \) are as important as the \(f() \)
 - Major reason why actuarial expertise is necessary.
- A large part of the modelling process consists of variable creation and selection
 - Often possible to generate 100’s of variables
 - Steepest part of the learning curve
 - Data scrubbing / variable creation is time-consuming
Model Evaluation – the Lift Curve

- Sort data by model score
- Break the dataset into 10 equal pieces
 - Best “decile”: lowest score → lowest LR
 - Worst “decile”: highest score → highest LR
 - Difference: “Lift”
- Lift = segmentation power
- Lift → ROI of the modelling project
Out-of-Sample Model Validation

- Randomly divide data into 3 pieces
 - Training data, Test data, Validation data

- Use Training data to fit models

- Score the Test data to create a lift curve
 - Perform the train/test steps iteratively until you have a model you’re happy with
 - Test data is implicitly used in building the final model
 - test lift is overly “optimistic”
 - During this iterative phase, validation data is set aside in a “lock box”

- Once model has been finalized, score the Validation data and produce a lift curve
 - Unbiased estimate of future performance
Credit Scoring is a Classic Example

- All four of our machine learning concepts apply to Credit Scoring.
 - Knowledge discovery in databases (KDD)
 - Scoring engine
 - Lift Curve evaluation \rightarrow translates to LR improvement \rightarrow ROI
 - Blind-test validation

- Credit scoring has been the insurance industry’s segue into the modern synthesis of classical statistics with machine learning concepts.
 - Very useful paradigm in the context of commercial insurance modelling.
Concepts from Actuarial Science

- Overall design of model / analysis
 - What are we trying to predict? At what level?

- Predictive variable creation
 - Calls on subject-matter expertise of insurance

- Target variable creation
 - Loss development and trending
 - Whether/how to use premium
 - Deductibles, claim/claimant level, etc …
 - Considerations of time periods

- Analysis file creation
 - “Level” of the analysis – risk, policy, account, …
 - Inclusions / exclusions
What are we Trying to Predict?

- Pricing: Pure Premium
- Underwriting: Profitability
- Premium audit: Additional / returned premium
- Retention models
- Cross-sell models
- Elasticity models
- Agent/agency profitability
- Target marketing
- Fraud detection

Again… the modelling strategy should follow the business strategy.
 - No one-size-fits-all answer
Variable Creation

- Research possible data sources
- Extract/purchase data
- Check data for quality (QA)
 - Messy! (we are still toiling deep in the data mines)
- Create Predictive and Target Variables
 - Opportunity to quantify tribal wisdom
 - …and come up with new ideas
 - Can be a very big task!
- Steepest part of the learning curve
Types of Predictive Variables

- Behavioral
 - Prior claims, bill-paying, credit ...

- Policyholder
 - Business class, age, # employees ...

- Policy specifics
 - Number of buildings, Construction Type ...

- Territorial
 - Geo-demographic, economic, weather ...
Data Exploration & Variable Transformation

- 1-way analyses of predictive variables
 - Weed out weak / redundant variables

- Correlation study of predictive variables
 - Avoid multicollinearity – further weeding out

- Exploratory Data Analysis (EDA)
 - Advanced techniques can be helpful
 - Data Visualization very helpful here

- Use EDA to cap / transform predictive variables
 - Extreme values, missing values, etc
Modeling Process

1. Finalize set of transformed predictive variables

2. Iterative training / testing of candidate models
 - Build candidate models on “training data”
 - Evaluate on “test data”
 - Many things to tweak
 - Different target variables
 - Different predictive variables
 - Different modelling techniques
 - # NN nodes, hidden layers; tree splitting rules; tuning parameters …

3. Select & validate final model
 - Use as-yet untouched validation data

Copyright © 2008 Deloitte Development LLC. All rights reserved.
Some Pragmatic Considerations

- Do signs / magnitudes of parameters make sense? Statistically significant?

- Is the model biased for/against certain types of policies? Regions? Policy sizes? Business classes? ...
 - If so, is that an appropriate thing, or not?

- Predictive power holds up for larger policies?

- Continuity
 - Are there small changes in input values resulting in large score swings?
 - Could an agent or underwriter “game” the model?
Model Analysis & Implementation

- Perform model analytics
 - Necessary for client to gain comfort with the model

- Calibrate Models
 - Create user-friendly “scale” – client dictates

- Implement models
 - **Technical**: IT skills are critical here
 - **Business**: *Culture change* can be critical

- Monitor performance
 - Distribution of scores over time, predictiveness, usage of model...
 - Plan model maintenance
Technique: Regressions and its Relations

Artificial Neural Networks
MARS
CART
Regression and its Relations

- **GLM**: relaxes some regression assumptions
 - Assume linearity on link function scale
 - Variance is *modeled* as a function of expected value

- **MARS & Neural Networks**
 - Clever ways of *automatically* transforming and *interacting* input variables
 - Why: sometimes the “true” relationships aren’t linear
 - Universal approximators: model any functional form

- **CART is simplified MARS**
Uses of “Advanced” Techniques

- Alternatives to GLM models
- Provide benchmarks for GLM models
- Exploratory data analysis (especially CART)
- Variable selection
- Detection of interaction terms
- Detection of optimal variable transformations
A neural net models Y as a complicated non-linear function of X.

- **Lingo**
 - Green: “input layer”
 - Red: “hidden layer”
 - Yellow: “output layer”

- The $\{a, b\}$ numbers are “weights” to be estimated.

- The network architecture and the weights constitute the model.
Neural Networks: Functional Form

\[Z_1 = \frac{1}{1 + e^{a_{01} + b_{11}x_1 + b_{21}x_2 + b_{31}x_3}} \]

\[Z_2 = \frac{1}{1 + e^{a_{02} + b_{12}x_1 + b_{22}x_2 + b_{32}x_3}} \]

\[Y = \frac{1}{1 + e^{b_0 + b_1z_1 + b_2z_2}} \]

- These look like logit models.
- NN is thus related to GLM.
MARS

- **Multivariate Adaptive Regression Splines**
- Automatically searches a space of “basis functions” for the right combination to model complex, multi-dimensional, non-linear patterns.
- Basis functions look like “hockey sticks”
- MARS model is a linear model of hockey sticks and interactions of hockey sticks.
- Cross-validation is built into the core MARS algorithm.

Linear model offers a poor fit

MARS considers basis function transformations
MARS Result

- MARS performs a stepwise search and the prunes back.
 - Cross-validation is used to determine optimally complex model.

- The final MARS model is:
 \[y^* = 0.29 + 0.02*x - 0.086\max(0,x-35) + 0.084\max(0,x-65) \]

- This is a GLM model!
 - A more complex example would have multiple variables and interactions.
CART: Recursive Partitioning

- Classification And Regression Trees
- Key idea: recursive partitioning
 - Take all of the data.
 - Consider *all* possible values of *all* variables.
 - Select the variable/value \((X=t_i)\) that produces the greatest “separation” in the target.
 - \((X=t_i)\) is called a “split”.
 - If \(X< t_i\) then send the data to the “left”; otherwise, send data point to the “right”.
 - Now repeat same process on these two “nodes”.

- You get a tree-structured model.
- As with MARS, cross-validation is used to “prune back”.

Commercial Insurance Example

- Suppose you have 3 variables:
 - # vehicles: \{1,2,3...10^+\}
 - Age category: \{1,2,3...6\}
 - Liability-only: \{0,1\}

- At each iteration, CART tests all 15 splits.
 - (#veh<2), (#veh<3),..., (#veh<10)
 - (age<2),..., (age<6)
 - (lia<1)

- Select split resulting in greatest increase in purity.
 - Perfect purity: each split has either all claims or all no-claims.
 - Perfect impurity: each split has same proportion of claims as overall population.

- Then iterate – grow the tree out... then prune back
Example of a Split

- Commercial Auto Dataset
 - 57,000 policies
 - 34% claim frequency

- Predict likelihood of claim
 - Classification Tree using Gini splitting rule

- First split:
 - Policies with ≥5 vehicles have 58% claim frequency
 - Else 20%
 - Big increase in purity
Bringing it All Back Home

- Remember that a **MARS** model is a GLM model fit on basis-function-transformed variables.
 - ... as well as interactions thereof

- A **CART** model is like a **MARS** model in which the “hockey stick” basis functions are replaced with \{0,1\} step functions.
 - “tree-structured regression”

- Thus – like **MARS** and **NNET** models – **CART** models are relatives of regression models.
 - “Only connect.” – E.M. Forster
References

For Beginners:

Data Mining Techniques
--Michael Berry & Gordon Linhoff

For Mavens:

The Elements of Statistical Learning
--Jerome Friedman, Trevor Hastie, Robert Tibshirani
PREDICTIVE MODELLING FOR COMMERCIAL INSURANCE

General Insurance Pricing Seminar
13 June 2008
London

James Guszcza, FCAS, MAAA
jguszcza@deloitte.com