Investment Strategy

Andrew Smith
Martin White

Acknowledgements to:

• Roger Boulton
• Michael Eabry
• Dix Roberts
• Alpesh Shah
• Gary Wells
• Brian White

Workshop Overview

• Current strategies: rationale
• Capital structure to maximise value
• Effect of investment strategy on cost of capital
• Joint optimisation of capital and investment
• Impact of recent tax changes
Rainbow of Modelling Tools

Red tools:
- Deterministic assumptions
- Fixed risk discount rate (aka “cost of capital”)

Amber tools:
- Stochastic assumptions
- Fixed discount rate (“cost of capital set by the board”)

Green tools:
- Stochastic assumptions
- Risk sensitive discount rates (“use financial economics”)

Questions to Answer

- What is the effect of
 - Investment strategy
 - Capital strategy

- On
 - Cost of capital
 - Company value

- Unashamedly shareholder focused

Investment Strategy: Preview

Optimal strategy for amber model: as found by classical ALM
Appraisal Model

Initial net assets: K_0

- Premium income
- less claims
- less expenses (inc tax)
- plus income on tech prov
- less increase in tech prov

\[\{ m \} \]

Income on shareholder funds eK_0

less dividend paid $m + (e-g)K_0$

Retained profit gK_0

Net assets carried forward: $(1+g)K_0$

Illustrative Example

- Profit $m = 50$
 - Statutory, excluding income on locked out assets
- Capital $K_0 = 200$
 - Amount held in excess of regulatory requirements
- Earned rate $e = 3\%$
- Growth $g = 1\%$
- Discount rate $i = 8\%$
- Value Added = 570
- PV dividends = $200 + 570 = 770$

Current Strategies - Rationale

Effect of investment policy on RBC requirement and expected returns

Source: RSA q3 2001 analysts' presentation
Stochastic Model (period #1)

Level of capital

K_0

$(1+g)K_0$

Pay dividend

Raise capital

Company fails: No more dividends ever!

Decisions – Initial Capital

Initial capital

Value added

Impairment effect

Effect of locking-in

Optimal capital: Unconstrained optimum
No arbitrary percentile: This is genuine economic capital

Risk Discount Rates

Risk discount rate

Decreasing marginal capital cost: So green model has higher optimal capital

Red model needs higher discount rate To factor in implicit risk of failure
Investment and Capital Cost

- Equity investment increases expected profits, but in the green model also increases the cost of capital.

Investment Strategy

- Optimal strategy for amber model: as found by classical ALM.

Optimal Capital as f(Risk)

- Even in the absence of pressure from regulators, rating agencies etc., insurers have an incentive to allocate capital resources sensitive to risk.

- Deterministic model: no capital required.
Conclusions

- Increasing use of stochastic models to answer investment and capital questions
 - Our model was simple, but more complex and realistic models fall into the same three-way split

- Broad agreement on capital answers, if not on methodology
- Investment strategy depends mostly on assumptions driving cost of capital
 - And not much on liability structures
 - Economic frameworks (FE / actuarial) vital
Questions for Discussion

- How is your company’s investment strategy articulated? How to justify equity holdings?
- If you’re sceptical about the FE, is it sound to suppose that business risk decisions don’t affect the returns that shareholder’s require?
- Would you like to see more about the model?
- Comments, observations on the relative merits of the approaches we’ve outlined

Investment Strategy

Andrew Smith
Martin White

Appendix: The Model

Andrew Smith
Martin White
Dividend Discount

- Time 1 dividend = \(m + (e - g)K_0 \)
 - Grows at rate \(g \)
 - Discount at rate \(i \) (rdr = risk discount rate)
- Present value = \([m + (e - g)K_0] / (i - g) \)
 - \(= K_0 + \) value added
 - Value added \([m - (i - e)K_0] / (i - g) \)
 call this “A”

“Value Based” Presentation

- Transformation of traditional DCF
- ROC (return on capital)
 - \(= \) profit / net assets at year start
- Cost of capital = risk discount rate
 - \(A = K_0 \ast \frac{(ROC - i)}{(i - g)} \)

Stochastic Toy Model

Initial net assets: \(K_0 \)

\[
\begin{align*}
\text{Premium income} & - \text{less claims} \\
\text{less expenses (inc tax)} & - \text{inc in tech prov} \\
\text{plus income on tech prov} & \\
\text{Income on shareholder funds} & - \text{less dividend paid} \\
\text{Retained profit} & \\
\text{Net assets carried forward:} &
\end{align*}
\]

\[
X \sim N[m, s^2] \\
\frac{eK_0}{gK_0} \\
X + (e - g)K_0 \\
(1 + g)K_0
\]
Revised Value Added
- Allowing for Risk of Failure

\[A = \frac{m - mK(d) + s\phi(d)}{(i - e) + (1 + e)K(d)} \]

\[d = \frac{-1}{s}(1 + e)K - m \]

Note: as \(s \) tends to zero, we recover the deterministic result:

\[A = \frac{m - (i - e)K}{i - g} \]

This is still a discounted cash flow formula, discounting mean dividends at the chosen discount rate – allowing for the probability of corporate failure and the option to default.

Illustrative Example

- Profit \(X \sim N[50, 100] \)
- Capital \(K_0 = 200 \)
- Earned rate \(e = 3\% \)
- Growth \(g = 1\% \)
- Discount rate \(i = 7.63\% \) (was 8\%)

- Smaller because now model failure risk explicitly
- Default option smaller than goodwill loss on failure
- Value Added = 570
- PV dividends = 200 + 570 = 770 (as before)

Capital Market Pricing

Risk neutral valuation:

\[A = \frac{m_{\text{eq}} - m_{\text{eq}}K(d) + s\phi(d)}{i_{\text{eq}} - g + (1 + g)K(d)} \]

\[d = \frac{-1}{s}(1 + e)K - m_{\text{eq}} \]

\[m_{\text{eq}} = m - \gamma \psi s \]

Equivalently, can use unadjusted \(m \) together with discount rate \(i \) adjusted for risk. We do this adjustment by choosing the risk discount rates where our two calculations agree.
Illustrative Example (RN)

- Profit $X \sim N[50, 100]
 - 60% correlation with equity market
- Equity risk premium 4%, volatility 20%
 - Risk neutral mean = $50 - 60\% \times \frac{4}{20} \times 100 = 38$
- Capital $K_0 = 200$
- Earned rate $e = 3\%$
- Growth $g = 1\%$
- Discount rate $i = 5.93\%$
 - i is risk free rate
- Value Added = 570
- PV dividends = $200 + 570 = 770$

Illustrative Example (risk adj)

- Profit $X \sim N[50, 100]$
- Capital $K_0 = 200$
- Earned rate $e = 3\%$
- Growth $g = 1\%$
- Discount rate $i = 7.63\%$
 - Same as for amber model
 - Back solved in this case, but not fixed
- Value Added = 570
- PV dividends = $200 + 570 = 770$

Appendix: The Model

Andrew Smith
Martin White