GENERAL INSURANCE PRICING SEMINAR

13 JUNE 2008, LONDON

Application of predictive modelling in commercial lines
Ryan Warren
Watson Wyatt Limited

Agenda

- The rating process
- Generalised linear models
- A predictive modelling case study
- Investigating uncertainty
The rating process

Integrated business processes

- Rate monitoring
- Allocating cost of capital
 - Line of business
 - Policy
- Communication
 - Reserving
 - Underwriting
 - Capital modelling
Processes and controls

- Managing operational risk is increasingly seen as an important aspect of the business
- Rigorous controls are the norm for claims
- Pricing has had less attention but arguably more important to the profitability of the business
- How do you protect your business against:
 - Loss of key staff
 - Accusations of unfairness in pricing
 - Errors in key calculations

Processes and controls

- Key is to have:
 - Clear and persistent records of analysis
 - Documentation of decisions
 - Standard methods to allow task sharing
- To be effective these should be:
 - Automatic and embedded within systems
 - Universal: Actuaries, Underwriters, Claims Managers
 - Regularly reviewed to check compliance
 - Not too onerous
Agenda

- The rating process
- Generalised linear models
- A predictive modelling case study
- Investigating uncertainty

Modelling in non-traditional areas

- Predictive modelling widely used:
 - Excel, @Risk, ...
- GLMs:
 - Commercial property
 - Commercial motor and Fleet
 - Marine
 - Mortality/Morbidity
 - Accident and Health
 - Aviation
 - D&O
- Used for:
 - Underwriting
 - Fraud detection
 - Marketing
Modelling in non-traditional areas

- Types of models used:
 - GLM
 - Clustering (eg CHAID)
 - Simulation and Bayesian models (MCMC)
- Complex models can be blended with simpler models where appropriate

Generalised linear models

\[E[Y] = \mu = g^{-1}(X.\beta + \xi) \]
\[\text{Var}[Y] = \phi.V(\mu) / \omega \]

- Consider all factors simultaneously
- Allow for nature of random process
- Robust and transparent
- EU industry standard for personal lines
Applying GLMs in commercial lines

- Market databases vs own claims experience
- Standard rates for risk considered
- Adjust using typical experience rating methods
- Combine with / consider alongside other "traditional" methods
Agenda

- The rating process
- Generalised linear models
- A predictive modelling case study
- Investigating uncertainty

Marine liability example - objective

Model

- Age
- Flag
- Vessel
- Tonnage
- Excess
- NCD

Expected cost of claims
Modelling the cost of claims

Car: \(\text{Freq} \times \text{Amt} = \text{Cost 1} \)
Col: \(\text{Freq} \times \text{Amt} = \text{Cost 2} \)
Pax: \(\text{Freq} \times \text{Amt} = \text{Cost 3} \)
Pol: \(\text{Freq} \times \text{Amt} = \text{Cost 4} \)
Oth: \(\text{Freq} \times \text{Amt} = \text{Cost 5} \)

Some marine examples

Marine Cargo numbers model

Vessel age

P \(\text{value} = 0.0\% \)
Rank 43

Exposure (years)

The Actuarial Profession
making financial sense of the future
Some marine examples

Marine
Cargo numbers model

-5 1%
5%
-10%
-16%
28% 25%
10%
-19%
0%
-12%
7% 6%
20% 41% 28%

Flag state

Log of multiplier

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Japan Sweden Greece England Norway Cuba Denmark Germany Others China Liberia Panama Cyprus Bahamas Korea

Approx 95% confidence interval Unsmoothed estimate Smoothed estimate P value = 0.0% Rank 2/2

The Actuarial Profession
making financial sense of the future

Some marine examples

Marine
Pollution numbers model

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 2

Vessel type

Bulker Chemical (clean) Chemical (dirty) Comballiners Container carriers Container carriag Carriage General cargo Passenger Reefer Supply Support Supply (clean) Trawler (dirty)

P value < 0.1%
Rank 2/2

The Actuarial Profession
making financial sense of the future
Some marine examples

Dealing with large claims
Predictive power of models

Validation on 20% subset - frequency analysis - cargo

Total over factor levels - Where Random number >=0.8

Expected frequency

Exposure

Actual frequency

Agenda

- The rating process
- Generalised linear models
- A predictive modelling case study
- Investigating uncertainty
Investigating uncertainty

- Simulation from GLM possible
- Monte Carlo type simulation using current or desired portfolio
- Allows for stochastic features
- Combine other methods or models

Generalised linear models

<table>
<thead>
<tr>
<th>Linear Models</th>
<th>Generalised Linear Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[Y_i] = \mu_i = \Sigma X_{ij} \beta_j$</td>
<td>$E[Y_i] = \mu_i = g^{-1}(\Sigma X_{ij} \beta_j + \xi_i)$</td>
</tr>
<tr>
<td>$\text{Var}[Y_i] = \sigma^2$</td>
<td>$\text{Var}[Y_i] = \sigma^2 = \phi V(\mu_i)/\omega_i$</td>
</tr>
<tr>
<td>$Y_i \sim N(\mu_i, \sigma^2)$</td>
<td>Y from a distribution from the exponential family</td>
</tr>
</tbody>
</table>
Typical GLM model forms

<table>
<thead>
<tr>
<th></th>
<th>Claim frequency</th>
<th>Claim number</th>
<th>Average claim amount</th>
<th>Probability (eg lapses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>(g(x))</td>
<td>(\ln(x))</td>
<td>(\ln(x))</td>
<td>(\ln(x/(1-x)))</td>
</tr>
<tr>
<td>Error</td>
<td>Poisson</td>
<td>Poisson</td>
<td>Gamma</td>
<td>Binomial</td>
</tr>
<tr>
<td>(\phi)</td>
<td>1</td>
<td>1</td>
<td>estimate</td>
<td>1</td>
</tr>
<tr>
<td>(V(x))</td>
<td>(x)</td>
<td>(x)</td>
<td>(x^2)</td>
<td>(x(1-x))</td>
</tr>
<tr>
<td>(\omega)</td>
<td>exposure</td>
<td>1</td>
<td># claims</td>
<td>1</td>
</tr>
<tr>
<td>(\xi)</td>
<td>0</td>
<td>(\ln(\text{exposure}))</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Interpreting the GLM

[Graph showing expected mean, variation about mean, and quite certain, less certain areas with P-value and rank information]
Simulating from the GLM

- To determine a sample number of claims, for each record first:
 - Calculate η_i as $\sum X_i \beta_j$
 - Calculate σ_i^2 as $\sum \sum X_i \sigma_{jk} X_{ik}$
- Where
 - β_j is the vector of parameter estimates
 - σ_{jk} is the covariance matrix

Simulating from the GLM

- Simulate a value for the linear predictor η_i^s from $N(\eta_i, \sigma_i^2)$
- Convert into Poisson mean $\lambda_i = \exp(\eta_i^s)$
- Sample number of claims from Poisson distribution
Simulating from the GLM

- To determine the sample total cost of claims, for each record:
 - For each record, calculate η_i and σ_i^2 from the amounts model
 - For each sampled claim, simulate a value for the linear predictor η^s_i from $N(\eta_i, \sigma_i^2)$
 - Convert into Gamma mean $\lambda_i = \exp(\eta^s_i)$
 - Sample each claim from Gamma distribution
 - Add all the sampled claims together

Some marine examples

![Projected total large claims cost for cargo claims](chart.png)
Conclusions

- GLMs perform well in non-traditional areas
- Results appear to be very predictive of future experience
- Fits with ideal general pricing process
- Can be combined with other methods
- Robust framework for assessing uncertainty

Contact details

Ryan Warren
Watson Wyatt Limited
Tel: 01737 284898
Email: ryan.warren@watsonwyatt.com
GENERAL INSURANCE PRICING SEMINAR

13 JUNE 2008, LONDON

Application of predictive modelling in commercial lines
Ryan Warren
Watson Wyatt Limited