Price Optimisation
Issues & Challenges

Sima Ruparelia - Ernst and Young LLP
Sergio Pezzulli - Ernst and Young LLP
Marcus Looft - Earnix LTD.
Agenda

- Introduction to Price Optimization
- Lifetime Customer Value (LTCV)
- A Theoretical Comparison
- LTCV vs Short-Term Optimisation
- Conclusions
- Questions
Basic modelling for Price Optimisation allows for the fact that different customers have different losses and react differently to price variations.

- **Loss model**
 - Ultimate loss by customer

- **Demand model**
 - Probability to buy
Potential profit and demand have opposite effects on the price so that the optimal price is a compromise between the two.
Optimal pricing is in fact a constrained optimization. We often want to:

- retain at least a fixed share of the market;
- target special segments of customers;
- limit the increase in price in per cent of last year’s price;
- assure an adequate level of commissions;
- …

Challenges

How do we define our ideally best share of the market, segment of customers, level of commissions etc.?
Price Elasticity of the Demand is the sensitivity of the customer demand to price variation.

- Technically, it is the percentage change in demand corresponding to a percentage change in price:

\[
E(P) = \left| \frac{\Delta D}{\Delta P} \right| \\
= \left| \frac{\Delta D}{\Delta P} \right| \times \frac{P}{D}
\]

- Elasticity will be implicitly evaluated from our Demand Model.

- Why is E(P) so important?
Profit is maximized when

\[E(P) = \frac{1}{1 - \frac{L}{P}} \]

- **Inelastic demand**: \(E < 1 \)
 \[\rightarrow \text{Optimisation will raise prices for such customers} \]

- **Elastic demand**: \(E > 1 \)
 \[\rightarrow \text{Optimisation will lower prices for such customers (mostly!)} \]

- Many markets are well below 1 (customers rather loyal) . Optimisation will naturally increase prices.

- For other markets (web based, aggregators) demand is very elastic instead!
Summary

Elasticity estimation is crucial and extremely difficult because:

- Elasticity varies with
 - customer and policy characteristics,
 - competitors’ prices,
 - macroeconomic variables.

- Unstable in time

- Estimating the derivative of the demand is more difficult than estimating the demand function only!
Introduction
Other Challenges

Technical
- Mixed models,
- Splines and GAM,
- Bayesian models.

From Price Optimization to Business Optimization
- Lifetime value of the customer,
- business growth and cross selling,
- discount policy,
- choice of limit, excess, coverage,
- channel
- ...

The Actuarial Profession
making financial sense of the future
Lifetime Customer Value
What is Customer Value?

- Customer value measures the value that customers, or particular customer segments, have added to the business and could add in the future.

- Measurement, whether implicit or explicit, of customer value, whether by the company, its management or the broker, forms part of most decision making processes within insurance. This process is dynamic and always changing.

- Measuring customer value and implementing a strategy based on customer value can allow companies to optimise the profit generated by policyholders.

- The table summarises the different components that can be included for the measurement of customer value. The list is not exhaustive.

<table>
<thead>
<tr>
<th>The present value of future profits and/or historic profits</th>
<th>Gross premium Net premium</th>
<th>The number and amounts of claims past and projected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention rate (absolute or relative to the market)</td>
<td>Expenses</td>
<td>Marketing spend</td>
</tr>
<tr>
<td>Cover type/extent of policy</td>
<td>Volatility of cashflows</td>
<td>Number of products held</td>
</tr>
<tr>
<td>Cross-sell</td>
<td>True risk premium</td>
<td>Competitiveness</td>
</tr>
<tr>
<td>Distribution channel</td>
<td>Broker</td>
<td>Reinsurance requirements</td>
</tr>
<tr>
<td>Cost of capital</td>
<td>Investment income</td>
<td>Underwriting cycle</td>
</tr>
</tbody>
</table>
Lifetime Customer Value
A Simple Model

Example

- Time T = 1 (next renewal)
 - GWP at last renewal x inflation factor
 - GRP at last renewal x inflation factor
 - Expenses (per policy x inflation factor)
 + Investment Income
 - Cost of Capital
 - Net Reinsurance cost

- Time T = 2
 - GWP at last renewal x inflation factor^2
 - GRP at last renewal x inflation factor^2
 - Expenses (per policy x inflation factor^2)
 + Investment Income
 - Cost of Capital
 - Net Reinsurance cost

$X \times (1 - \text{Lapse Rate})$

Aggregation

The sum of these values over 5 years time will then be discounted back to the next renewal date allowing for survival (MTC and lapses) between and allowing for the time value of money.

* Lapse Rate
Variates by Product / Tenure / Age / Distribution Channel / Location etc.
Lifetime Customer Value Benefits

Customer value impacts marketing, underwriting, pricing and functions. Main benefits are:

- **Consistency**
 - Helps businesses develop consistent customer value models.
 - Supports definition of a consistent customer data system specification.
 - Customer value is the main driver for consistent tactical decisions.

- **Efficiency**
 - Focus on value creating customers.
 - Enables models and development effort to be shared between the business.
 - Improved management information.

- **Insight**
 - Provides tools for evaluating strategic options and segment value.
 - Provides real value outputs to support delivery of differentiated customer treatments.
 - Supports segment prioritisations.
Lifetime Customer Value Examples

Adverse Selection

Graph shows the customer value (future value, yellow bar), the customer value assuming 100% retention (future value 100%, grey bar) and the first year retention probability (green line - values measured on left axis).

- Note the inverse relationship between retention and customer value, showing some extent of adverse selection.
Lifetime Customer Value Examples

Growth and Cross Sell

The plots show the customer value distributions for two different products offered by the same insurer.

It is possible to break down customer value by the different components modelled. Here we look at how much cross-selling and internal product growth contribute to the customer value.
Customer value can also be split by channel or intermediary. This can tell us what segments contribute more to the business than others.
A Theoretical Comparison
A Demand Model

- What if there is no-data to fit our models?
 - New company start-up
 - New market: new region, new segment of customers etc.

- How can we price our products?
 - Expert judgment only!

- It turns out that expert judgment –and some additional assumptions- implicitly determines a demand model!
A theoretical result

- Assume that for a given segment of customers, an expert gives us the expected loss, the optimal (1yr) price and the corresponding propensity to buy.
- Assume that the demand follows a logistic model and the best price is obtained by ordinary PO.

Then, there exists only one regular demand function that corresponds to the given benchmarks.

- This means that given these 3 numbers, we can draw the entire demand function!
A Theoretical Comparison
A Demand Model

- For example:

<table>
<thead>
<tr>
<th>Optimized Premium</th>
<th>Propensity Loss Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>70%</td>
</tr>
<tr>
<td>90%</td>
<td></td>
</tr>
</tbody>
</table>

For example:
Multi-year optimisation: mimics executives’ business planning by optimising a moving window of N years into the foreseeable future.

This results in a set of optimal prices for the next N years that consider the long term implications of current pricing on future earnings.

The net present value (NPV) of earnings is used as a profit indicator.

A Theoretical Comparison

LTCV simplified

<table>
<thead>
<tr>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>…</th>
<th>Year N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life time</td>
<td>Origination</td>
<td>Renewal 1</td>
<td>Renewal 2</td>
<td>…</td>
</tr>
</tbody>
</table>

\[
\text{LTCV (NPV)} = D_0 \cdot M_0 + D_0 \cdot D_1 \cdot M_1 / (1+i) + D_0 \cdot D_1 \cdot D_2 \cdot M_2 / (1+i)^2 + \cdots
\]

\[D_n = \text{Demand in year } n, \ M_n = \text{Margin in year } n, \ i = \text{Interest rate}\]
A Theoretical Comparison
LTCV simplified

<table>
<thead>
<tr>
<th>Life time</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>...</th>
<th>Year N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Origination</td>
<td>Renewal 1</td>
<td>Renewal 2</td>
<td>...</td>
<td>Renewal N</td>
</tr>
<tr>
<td>LTCV</td>
<td>(D_0 \cdot M_0) + (D_0 \cdot D_1 \cdot M_1/(1+i)) + (D_0 \cdot D_1 \cdot D_2 \cdot M_2/(1+i)^2)</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTCV*</td>
<td>(D_0 \cdot M_0) + (D_0 \cdot D_0 \cdot M_0) + (D_0 \cdot D_0 \cdot D_0 \cdot M_0)</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assumptions

- Demand model remains the same.
- Price inflation and claim inflation balance out with Profit inflation.
A Theoretical Comparison
Long term PO vs short term PO

- We have a model for a single segment of customers that is easy to calculate and therefore handy for comparisons.

- Let's compare the previous example with another segment having the same optimal price, the same LR but a different demand curve.

- Example 1:

<table>
<thead>
<tr>
<th>Optimized Premium</th>
<th>Propensity</th>
<th>Loss Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>70%</td>
<td>90%</td>
</tr>
<tr>
<td>100</td>
<td>60%</td>
<td>90%</td>
</tr>
</tbody>
</table>
A Theoretical Comparison
Long term PO vs short term PO

- (... Ex.1) Comparing two segments of customers having identical optimal price and expected loss, but different demand.

![Graph showing demand vs premium for two segments](image)
A Theoretical Comparison
Long term PO vs short term PO

- (...) Note: consumer 2 is more elastic (locally)
A Theoretical Comparison
Long term PO vs short term PO

(... Ex.1) Lifetime Optimal Price
- decreases when LR < 100% (obvious)
- decreases more for more (locally) elastic consumers
- … but the difference is small in this example.
A Theoretical Comparison
Long term PO vs short term PO

- Example 2. Lower LR

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>Optimized Premium</th>
<th>Propensity</th>
<th>Loss Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>70%</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>60%</td>
<td>70%</td>
<td></td>
</tr>
</tbody>
</table>

![Demand Graph](image1.png)

![One Year Profit Graph](image2.png)
A Theoretical Comparison
Long term PO vs short term PO

- (… Ex.2) Bigger profit margins
 - => lifetime discounts are more relevant.
 - => segments more differentiated.

Two Year Profit

Ten Year Profit

Premium

Segment 1
Segment 2
A Theoretical Comparison
Long term PO vs short term PO

- Summary on four examples

1. **Benchmarks**
 - Optimized Premium: 100, 100
 - Propensity: 70%, 60%
 - Loss Ratio: 90%

2. **Benchmarks**
 - Optimized Premium: 100, 100
 - Propensity: 70%, 60%
 - Loss Ratio: 70%

3. **Benchmarks**
 - Optimized Premium: 100, 100
 - Propensity: 90%, 80%
 - Loss Ratio: 90%

4. **Benchmarks**
 - Optimized Premium: 100, 100
 - Propensity: 90%, 80%
 - Loss Ratio: 70%

increase in profit
increase in demand
A Theoretical Comparison
Long term PO vs short term PO

- more profit → more discount & more segmentation
- more demand → less discount & more segmentation

increase in profit

increase in demand
A theoretical model for demand has been used to compare optimal prices on 1yr vs lifetime horizons.

Lifetime pricing recommends for relatively small discounts in highly competitive and high risk markets, with very little differences between customers.

For increasing demand, discounts are even smaller but customers are more differentiated.

Finally, on more profitable segments both discounts amount and customers differentiation increase.
A Theoretical Comparison
Summary

- **Summary**
 - Results resemble the activity that underwriters do in practical deals.
 - Assessing customer propensity
 - Assessing expected loss
 - Fixing a “standard” price on a 1yr profit basis
 - Assessing lifetime customer value
 - Determining the proposition

- Lifetime pricing may be useful to define standard guidelines for discount policies on a quantitative basis.
Practical Optimisation
Main Elements

<table>
<thead>
<tr>
<th>Life time (policy)</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>...</th>
<th>Year N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Origination</td>
<td>Renewal 1</td>
<td>Renewal 2</td>
<td>...</td>
<td>Renewal N</td>
</tr>
<tr>
<td>Profit (NPV) =</td>
<td>$D_0 \cdot M_0$ + $D_0 \cdot D_1 \cdot M_1 / (1+i)$ + $D_0 \cdot D_1 \cdot D_2 \cdot M_2 / (1+i)^2$</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local constraints:</td>
<td>Range(P_0)</td>
<td>Range(P_1)</td>
<td>Range(P_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global constraints:</td>
<td>$\frac{\sum_{n=1}^{#Offers} D_0(P_n)}{#Offers}$</td>
<td>$\frac{\sum_{n=1}^{#Policies} D_0 \cdot D_1(P_n)}{#Policies}$</td>
<td>(e.g. Renewal Rates)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trends:</td>
<td>Claims$_0$</td>
<td>Claims$_1$</td>
<td>Claims$_2$</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Trends:</td>
<td>Market$_0$</td>
<td>Market$_1$</td>
<td>Market$_2$ (e.g. Competitor rates)</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Trends:</td>
<td>Demand$_0$</td>
<td>Demand$_1$</td>
<td>Demand$_2$ (change in elasticity!)</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

$P_n = $ Premium in year n, $D_n = $ Demand in year n, $M_n = $ Margin in year n, $i = $ Interest rate

Huge extra complexity that can come in:
- Prices might follow a certain rating structure instead of being individual for each client!
Practical Optimisation
Main Elements

- **Main elements of Long-Term optimisation:**

<table>
<thead>
<tr>
<th>Life time (policy)</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>...</th>
<th>Year N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewal 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewal N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Profit (NPV) =

\[
D_0 \cdot M_0 + D_0 \cdot D_1 \cdot M_1 / (1+i) + D_0 \cdot D_1 \cdot D_2 \cdot M_2 / (1+i)^2 + \cdots
\]

Local constraints:

- Range(P_0)
- Range(P_1)
- Range(P_2)
- ...

Global constraints:

- Less relevant the longer the horizon N

Trends:

- Claims_0
- Claims_1
- Claims_2

Trends:

- Market_0
- Market_1
- Market_2 (e.g. Competitor rates)

Trends:

- Demand_0
- Demand_1
- Demand_2 (change in elasticity!)

Trends are very important, but difficult to set right!
Practical Optimisation

Main Elements

- **Main elements of Short-Term optimisation:**

<table>
<thead>
<tr>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>...</th>
<th>Year N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life time (policy)</td>
<td>Origination</td>
<td>Renewal 1</td>
<td>Renewal 2</td>
<td>...</td>
</tr>
<tr>
<td>Profit (NPV) =</td>
<td>$D_0 \cdot M_0 + D_0 \cdot D_1 \cdot M_1 / (1+i) + D_0 \cdot D_1 \cdot D_2 \cdot M_2 / (1+i)^2$</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local constraints:</td>
<td>Range(P_0)</td>
<td>Range(P_1)</td>
<td>Range(P_2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sum_{p=1}^{# Offers} D_0(P_p)$</td>
<td>$\sum_{p=1}^{# Policies_0} D_0 \cdot D_1(P_p)$</td>
<td>(e.g. Renewal Rates)</td>
<td></td>
</tr>
<tr>
<td>Global constraints:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sum_{p=1}^{# Offers} D_0(P_p)$</td>
<td>$\sum_{p=1}^{# Policies_0} D_0 \cdot D_1(P_p)$</td>
<td>(e.g. Renewal Rates)</td>
<td></td>
</tr>
<tr>
<td>Trends:</td>
<td>Claims$_0$</td>
<td>Claims$_1$</td>
<td>Claims$_2$</td>
<td>...</td>
</tr>
<tr>
<td>Trends:</td>
<td>Less relevant the shorter the horizon N</td>
</tr>
<tr>
<td>Trends:</td>
<td>Demand$_0$</td>
<td>Demand$_1$</td>
<td>Demand$_2$ (change in elasticity!)</td>
<td>...</td>
</tr>
</tbody>
</table>

Global constraints very important to reflect future value of customers
Practical Optimisation
LTCV vs Short Term

<table>
<thead>
<tr>
<th>LTCV Optimisation</th>
<th>Short-Term Optimisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros
• Natural, easy to explain
• Theoretically best approach
• Long term business projections as a by product
• Fair!?</td>
<td>Pros
• Results based on most recent information of book (reliability)
• Flexibility in the future (market adjustments, changes in demand, policy development, price politics)
• Less computation, results come faster
• Can run purely deterministically</td>
</tr>
<tr>
<td>Cons
• How to set trends?
 • Individual: claims, additional policies, cover changes, personal changes
 • Global: market, finance, demand
• Still only first year prices are applicable
• More risky to base prices on uncertain future
• Heavy computations</td>
<td>Cons
• “Exit” constraints have to be imposed to value future profits (e.g. volume of book)
• How to set constraints best?
• General criticism of missing LTCV view</td>
</tr>
</tbody>
</table>
LTCV optimisation is only “hypothetical” pricing of the future
It cannot be applied to a real book (“Uncertainty of Claim”) after the first year!
In fact we know of no P&C insurer that determines prices over a Life-Time horizon using LTCV optimisation!
“Short-Term” Optimisation with “exit” constraints is the “de facto” standard of the P&C market
Is LTCV optimisation of no real use?

Answer: It is of use!
- Predominantly to calculate some “LTCV”
- Also maybe there are some key results that can be used for improving Short-Term Optimisation!
Practical Optimisation
Examples: One customer only

- Comparing LTCV & One-Year optimisation for only one customer (or segment):

LTCV optimisation

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>...</th>
<th>Year N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewal 1</td>
<td>Renewal 2</td>
<td>Renewal 3</td>
<td>...</td>
<td>Renewal N</td>
</tr>
</tbody>
</table>

Profit (NPV) = \[D_1 \cdot M_1 + D_1 \cdot D_2 \cdot M_2 / (1+i) + D_1 \cdot D_2 \cdot D_3 \cdot M_3 / (1+i)^2 \ldots \]

No global constraint

1Y optimisation

<table>
<thead>
<tr>
<th>Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewal 1</td>
</tr>
</tbody>
</table>

Profit (NPV) = \[D_1 \cdot M_1 \]

Global constraint: \[D_1 (P_1) = RR_1 (LTCV) \]

Renewal rate of year 1 taken from LTCV optimisation!
Let us make the following mild assumption:

- Demand curve is monotonic!

Then the optimised price P_1 of the first year is identical for both optimisations (LTCV and 1Y with Volume exit constraint= $RR_1(LTCV)$)

Proof: There is only one price P_1 that satisfies $D(P_1)=RR_1(LTCV)$

Conclusion(†): It is sufficient to know the volume of an LTCV optimisation after the 1st year to get the same pricing results with just 1Y optimisation, if the book of business is relatively homogenous (behaving like one customer)!

Some more little assumptions: Each customer is projected identically into the future (like with deterministic projections)
General Settings & Assumptions (Optimisation)

Pricing example: Real Motor Renewal Book (Europe)

- **Settings and Assumptions of Price Optimisation – General**
 - **Type of optimisation:** Prices have been optimised individually
 - **Interest rate:** High & low interest rate (0% & 10%) on future profits assumed
 - **Local constraints:** Premiums can vary from one to the next year (relative to previous premium) by
 - No claims in previous year: Max[-20%, -150] to Min[+16%, +60]
 - With claims in previous year: 0% to Max[+80%, +480]
 - **Future trends:** Age, tenure + year of projection claims, risk, demand model & market situation remain unchanged
 - **Projection:** Deterministic (functional development)

<table>
<thead>
<tr>
<th>LTCV</th>
<th>Short-Term (1Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Optimisation horizon: 1Y-5Y & 8Y</td>
<td>- Optimisation horizon: 1Y</td>
</tr>
<tr>
<td>- No “exit” or inter-year constraints</td>
<td>- “Exit” constraint: Renewal Rate (1Y) of LTCV optimisation</td>
</tr>
</tbody>
</table>
Results with 0% interest rate: Optimal volumes higher than for 10% interest rate

In general the optimal volume is higher with:
- Increasing future profits (improving claims ratios)
- Decreasing interest rates
- Increasing horizon
- Higher elasticity
What are the differences after the first year (price differences, mix of business & profit)?

Results: Difference between 1Y with optimal volume and 8Y Optimisation

“With claims” policies
\(\varnothing = 3.8\% \)

“No claims” policies
\(\varnothing = -0.1\% \)

Differences on the graphs shown as: [1Y with constraint] – [8Y]

“Claims” policies have stronger increases in 1Y scenario
Practical Optimisation
A Real Book

- Results here: After 1Y all policies are assumed to have no claims!
 - Book more homogeneous and thus results of 1Y & 8Y closer together

Results: Difference between 1Y with optimal volume and 8Y Optimisation

- “No claims” policies (1Y)
 \(\bar{\theta} = -0.0\% \)

- “With claims” policies (1Y)
 \(\bar{\theta} = 1.3\% \)

Differences on the graphs shown as: [1Y with constraint] – [8Y]
Practical Optimisation
A Real Book

What are the differences after the first year (price differences, mix of business & profit)?

Results: Difference between 1Y with optimal volume and 8Y Optimisation

8Y scenario wins in total for profit. 1Y scenario makes more profit in 1Y!

Differences on the graphs shown as: [1Y with constraint] – [8Y]
Results: After 1Y all policies are assumed to have no claims!
- Book more homogeneous and thus results of 1Y & 8Y closer together

Results: Difference between 1Y with optimal volume and 8Y Optimisation

Differences on the graphs shown as: [1Y with constraint] – [8Y]
Suggestion for LTCV optimisation from the previous conclusions:

- **Recipe**
 - Take a small sample of the book
 - Calculate LTCV optimisation on sample (simple trends, assumptions)
 - Take from it the first year Renewal Rate RR(1)
 - Plug this rate into 1Y optimisation as a global “exit” constraint
 - Calculate the total book with this 1Y optimisation
Conclusions

- LTCV & 1Y optimisation with “exit” constraint are not that different, if
 - The exit constraint is the first year renewal rate of LTCV
 - The book is sufficiently homogeneous

- Volume of book is more robust than a more uncertain individual LTCV value

- Clever optimisation is the goal, not optimisation for the sake of optimisation!

- What we have not covered here:
 - How reliable is a long term projection in real life?
 - Is the additional effort of setting LTCV up worth the trouble?
 - Prices, politics and market change year by year (even week by week)!
 - Weather forecasts are now reliable for 3 days!
Questions