

### Fractals and self-similarity

- · Fractal behaviour in financial markets
- Fitting fractals Hausdorff Dimension
- Fractional Brownian motion
- Lévy stable processes
- Conclusions

### What is a fractal?

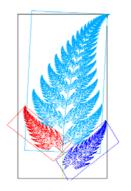
- A shape or pattern...
- ...that can be broken down into components...
- · ...each of which resemble the whole
- Key property is self-similarity

## **Self-similarity**

- Self similarity can be near-exact
  - e.g. for a fern...
- ...or more approximate
  - e.g. for a coastline...





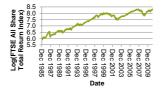


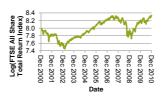
Fractals and self-similarity

### Fractal behaviour in financial markets

- Fitting fractals Hausdorff Dimension
- Fractional Brownian motion
- Lévy stable processes
- Conclusions

## How are financial returns self-similar?







- · Consider the log of equity
- · By considering charts using different timescales...
- ...we see that they look interchangeable...
- ...but how are they affected by scale?

### **Power Laws for Self-Similarity**

- Consider the risk (of a change in equities or interest rates)
   measured over a time interval t
- Traditionally assume the dispersion of the change is proportional to  $t^{2}$ , based on Brownian motion
- More generally, can consider power law processes where the dispersion grows like  $\ell^{2-d}$  for some d.

© 2010 The Actuarial Profession • www.actuaries.org.uk

## **Agenda**

- Fractals and self-similarity
- Fractal behaviour in financial markets

### Fitting fractals – Hausdorff Dimension

- Fractional Brownian motion
- Levy stable processes
- Conclusions

## **Measuring the fractional dimension**

- The Hausdorff dimension measures the rate at which a measurement increases...
- · ...as the scale of measurement reduces



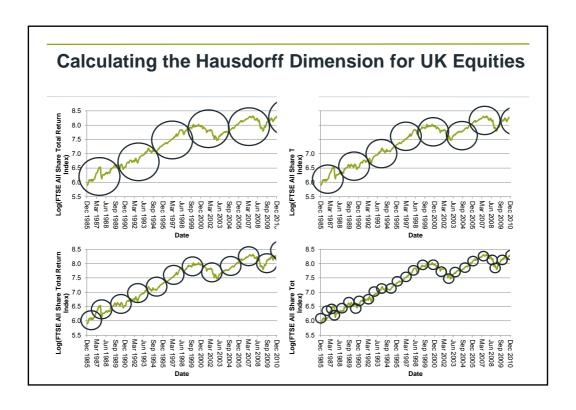
Given by d in N= c/r<sup>d</sup>

## Hausdorff dimension for some common shapes

Straight line: 1



- Curve: >1
- West coast of England: 1.25
- · Financial time series?



- Fractals and self-similarity
- Fractal behaviour in financial markets
- Fitting fractals Hausdorff Dimension

### Fractional Brownian motion

- Lévy stable processes
- Conclusions

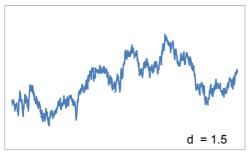
### Fractional Brownian Motion Mandelbrot & van Ness (1968)

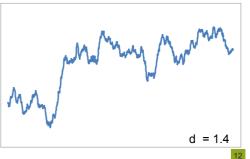
#### **Standard Brownian Motion**

- Zero mean Gaussian process
- $Var(X_t-X_s) = |t-s|$
- Independent increments

### **Fractional Brownian Motion**

- Zero mean Gaussian process
- $Var(X_t-X_s) = |t-s|^{4-2d}$
- Long-range positive autocorrelation





© 2010 The Actuarial Profession • www.actuaries.org.uk

## Fractional Brownian Motion Practical Issues

- Permits arbitrage (if you know the dimension d)
- Not a Markov process
  - Need to know the entire history of the process to project it
- Retains Gaussian assumption no fat tails or jumps
- Has not seen much application in serious financial models

© 2010 The Actuarial Profession • www.actuaries.org.ul

- Fractals and self-similarity
- · Fractal behaviour in financial markets
- Fitting fractals Hausdorff Dimension
- Fractional Brownian motion

### Lévy stable processes

Conclusions

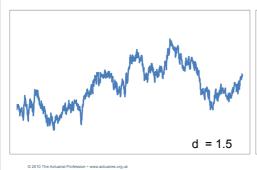
## Lévy Stable Processes (Mandelbrot, 1964) Infinite Variance Central Limit Theorem

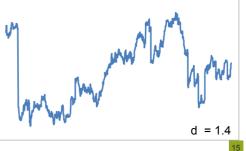
### **Standard Brownian Motion**

- Independent Gaussian Increments
- Continuous paths

### **Lévy Stable Process**

- Independent non-Gaussian increments
- Has jumps





### Lévy Stable Processes Practical Issues

- · Four parameters: location, scale, asymmetry and tail exponent
- · Parameter estimation is difficult
  - Likelihood function not known on closed form
  - Second and higher moments do not exist (apart from Normal)
  - Methods using characteristic functions are notoriously unstable
- Infinitely many jumps on any finite interval
- Generally imply the depressing conclusion that extreme events are more probable than previously thought

© 2010 The Actuarial Profession • www.actuaries.org.uk

### 16

### **Agenda**

- Fractals and self-similarity
- Fractal behaviour in financial markets
- Fitting fractals Hausdorff Dimension
- Fractional Brownian motion
- Lévy stable processes

Conclusions

# Hausdorff Dimension Measures and Value-at-Risk Time Scaling

| Hausdorff<br>Dimension                         | Brownian motion<br>d = 1.5 | Empirical in range<br>1.3 to 15. In this<br>table we use d =<br>1.4 |
|------------------------------------------------|----------------------------|---------------------------------------------------------------------|
| Gross-up for<br>annual VaR from<br>monthly VaR | Sqrt(12) = 3.46            | 4.44                                                                |
| Gross-up for<br>annual VaR from<br>weekly VaR  | Sqrt(52) = 7.21            | 10.71                                                               |

© 2010 The Actuarial Profession • www.actuaries.org.ul

# Mandelbrot's Solutions to Dimension d < 1.5 A Summary

|                  | Independent<br>Increments | Correlated increments         |
|------------------|---------------------------|-------------------------------|
| Continuous paths | Brownian motion           | Fractional<br>Brownian motion |
| Jump processes   | Lévy Stable processes     |                               |

Since the 1960's, many other possible explanations have emerged to account for scaling properties not being exactly 1.5. These include alternative time series models (time varying drift or volatility) as well as sampling biases in the estimation of the Hausdorff dimension.

© 2010 The Actuarial Profession • www.actuaries.org.s

## Recent Developments Tempering the Tails of Lévy Processes

- Recent surge in empirical work
- Invention of versions without the fat tails
  - KoBoL processes (Koponen, 1995, extended by Boyarchenko & Levendorskii, 2000)
  - Independently constructed by Carr, Madan, Géman & Yor, (2002) and also known as the CGMY model.
- Retains fractional dimension but a change of measure is needed to construct the scaling property.
- Extension to stochastic volatility models (Barndorff-Nielsen & Shephard, 2006)

© 2010 The Actuarial Profession • www.actuaries.org.uk

### 20

## Using fractals for risk management

- Applying fractals to one financial series is straightforward...
- ...but most investment risk relates to portfolios of assets
- Two approaches could be used
  - Fit a fractal to the historical performance of the portfolio
  - Fit a fractal to independent factors of the returns using factor analysis

