The Marginal Value of Individual Rating Factors in Pricing

11-14 October 2011

Agenda

• Introduction
• Previous analysis
• Modelling options
• Further thoughts and game theory
• Conclusion

The opinions expressed in this presentation are solely the opinions of the author and do not necessarily represent the opinions of firms affiliated with the author.
Agenda

• Introduction
• Previous analysis
• Modelling options
• Further thoughts and game theory
• Conclusion

The opinions expressed in this presentation are solely the opinions of the author and do not necessarily represent the opinions of firms affiliated with the author.

Introduction

• There may soon be more restriction on factors that can be used in pricing
 – Gender Directive
 – Postcode discrimination – Jack Straw’s bill
 – Age?
 – Credit score?
• How will one single factor affect pricing model?
• Any solutions to reduce the impact?
Agenda

- Introduction
- Previous analysis
- Modelling options
- Further thoughts and game theory
- Conclusion

The opinions expressed in this presentation are solely the opinions of the author and do not necessarily represent the opinions of firms affiliated with the author.

Previous Analysis

- There are several papers thoroughly analyse the impact of excluding one single factor, from view of
 - Consumer
 - Insurer/shareholder
 - Whole society
- ABI report
- CEA report
- Also study from USA where similar restriction is applied in some states
Previous Analysis

- First order impact
 - Redistribution
 - Low-risk overpays to subsidise high-risk
 - GLM
- Second order impact
 - Market wide
 - High-risk tend to buy more insurance
 - Mixture of risk will change overall
 - Company wide
 - Similar change, but depends on company strategy
- A single factor could have significant impact on rating structure

Focus of this workshop

- How to build a better rating structure when a single factor is excluded from model?
- Focus on modelling technique

- There are other considerations to this issue
 - Other source of information/data
 - On-going
 - Expense
 - Interpretation of rules
 - Renewal
 - Indirect discrimination
Focus of this workshop

- Other considerations
 - Telematics
 - Technique
 - Practice
 - Privacy
 - Strategy

Agenda

- Introduction
- Previous analysis
- Modelling options
- Further thoughts and game theory
- Conclusion

The opinions expressed in this presentation are solely the opinions of the author and do not necessarily represent the opinions of firms affiliated with the author.
Option 1: Drop the single factor out of rate table

• Method
 – Drop the single factor out of all rating tables without refreshing model.
 – Need to make assumption on mixture when drop it from multi-way tables
 – The assumption could be made from historical data as well as judgement
 – Example: Gender & Age
 – Assumption of gender distribution by age

Option 1: Drop the single factor out of rate table

• Advantage
 – Simple to implement

• Issue
 – Parameters of other factors in the model might change
 – The assumption of distribution of the single factor in multi-way table might be difficult to make
 – Table is more than two ways
 • Smoothing
 – Distribution might change before and after excluding the single factor
Option 2: Refresh GLM

- Method
 - Exclude the single factor from the model setting
 - Train a GLM on historical available data
- Advantage
 - GLM is a standard practice in industry
 - Simple to explain/implement
 - Parameters of other factors in the model will adjust automatically.

Option 2: Refresh GLM - Issue

- It assumes that the correlation between factors won’t change in the future
 - Might not be true when rating structure is changing significantly
 - Age & Car age
 - Age & Car Value
- Output of GLM depends on the mixture of book/correlation between factors if the true model structure underlying the data is not linear.
Option 2: Refresh GLM - Issue

• If the true model structure underlying the data is linear, GLM result is independent of mixture of book.
• Example 1: true structure is multiplicatively linear

<table>
<thead>
<tr>
<th>Relativity</th>
<th>Factor 1 - A</th>
<th>Factor 1 - B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 2 - 1</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Factor 2 - 2</td>
<td>1.7</td>
<td>2.04 (=1.2*1.7)</td>
</tr>
</tbody>
</table>

Option 2: Refresh GLM - Issue

• Standardized mixture of book

<table>
<thead>
<tr>
<th>Standardized Exposure</th>
<th>Factor 1 - A</th>
<th>Factor 1 - B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 2 - 1</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>Factor 2 - 2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

• Log link and Gamma distribution

<table>
<thead>
<tr>
<th></th>
<th>Parameter Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.7129</td>
</tr>
<tr>
<td>Factor 1 - A</td>
<td>- 0.1823</td>
</tr>
<tr>
<td>Factor 2 - 1</td>
<td>- 0.5306</td>
</tr>
</tbody>
</table>
Option 2: Refresh GLM - Issue

- Different standardised mixture of book

<table>
<thead>
<tr>
<th>Standardized Exposure</th>
<th>Factor 1 - A</th>
<th>Factor 1 - B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 2 - 1</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>Factor 2 - 2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

- no matter what mixture of book is assumed, the output will be exactly same!

<table>
<thead>
<tr>
<th>Parameter Estimation</th>
<th>Factor 1 - A</th>
<th>Factor 1 - B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.7129</td>
<td></td>
</tr>
<tr>
<td>Factor 1 - A</td>
<td>-0.1823</td>
<td></td>
</tr>
<tr>
<td>Factor 2 - 1</td>
<td>-0.5306</td>
<td></td>
</tr>
</tbody>
</table>

Option 2: Refresh GLM - Issue

- Example 2: true structure is *not* multiplicatively linear

<table>
<thead>
<tr>
<th>Relativity</th>
<th>Factor 1 - A</th>
<th>Factor 1 - B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 2 - 1</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Factor 2 - 2</td>
<td>1.7</td>
<td>2.55 (=1.5*1.7)</td>
</tr>
</tbody>
</table>

- Same Log link and Gamma distribution
- Apply the different assumption on the mixture of book
Option 2: Refresh GLM - Issue

Standardized Exposure

<table>
<thead>
<tr>
<th>Standardized Exposure</th>
<th>Factor 1 - A</th>
<th>Factor 1 - B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 2 - 1</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>Factor 2 - 2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Parameter Estimation

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1 - A</td>
<td>-0.1936</td>
</tr>
<tr>
<td>Factor 2 - 1</td>
<td>-0.6136</td>
</tr>
</tbody>
</table>

Standardized Exposure

<table>
<thead>
<tr>
<th>Standardized Exposure</th>
<th>Factor 1 - A</th>
<th>Factor 1 - B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 2 - 1</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>Factor 2 - 2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Parameter Estimation

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1 - A</td>
<td>0.8379</td>
</tr>
<tr>
<td>Factor 2 - 1</td>
<td>0.6498</td>
</tr>
</tbody>
</table>

Standardized Exposure

<table>
<thead>
<tr>
<th>Standardized Exposure</th>
<th>Factor 1 - A</th>
<th>Factor 1 - B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 2 - 1</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>Factor 2 - 2</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Parameter Estimation

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1 - A</td>
<td>0.8729</td>
</tr>
<tr>
<td>Factor 2 - 1</td>
<td>0.6833</td>
</tr>
</tbody>
</table>

Option 2: Refresh GLM - Issue

- High exposure segment have very limited impact
- Low exposure segment could change as much as 7%
Option 2: Refresh GLM - Issue

- This shows that for data with a non-linear underlying structure, the GLM estimation depends on the mixture of book
- A practical solution to this is to add interactive term into GLM to make it linear
- However, it is hard to check all factors to make sure the model is linear
- Need to be careful in using this approach

Option 3: Non-linear models

- When there is no evidence that the underlying data structure is linear, non-linear models could be used
- General benefit
 - Non-standard: competitive edge
 - Understand the risk better
 - Develop new rating factors
 - Identify profitable niche segment
- More software is available and become more standard
 - R
 - SAS
Option 3: Non-linear models: Decision tree

• Advantage
 – Simpler than other types of non-linear model
 – Much easier to understand
 – No assumption to make on distribution or function between response and explanatory variables
 – Model interactive term naturally
• Disadvantage
 – Result is normally worse than other non-linear models

Option 3: Non-linear models: GAM/GAMLSS

• Generalized additive model (1986)
 – Nonlinear/non-parametric estimation
 – But more parameters/method to choose when setting up the model than GLM
 – Difficult to model interactive term
 – The additive structure is less intuitive in insurance rating structure
 – Much less used than GLM
• Generalized additive model for Location, Scale and Shape GAM (2001)
 – Limited research on how it is compared to GLM
Option 3: Non-linear models : Neural Network

- Advantage
 - ‘Generalised’ GLM
 - Non-linear
 - Usually gives better result than GLM when set up properly

- Issue
 - Over-fit
 - Lack of statistical testing theory
 - Black-box
 - Lack of understand and difficult for communication

Option 4: Better model of other existing factors

- Other existing factors will become more important
 - More complicated structure

- NCD system
 - Markov chain
 - But treated as a normal rating factor within GLM.
- Claim history
- Conviction history
What if one company find another predictive factor?

- Consider a very simple scenario
 - Market consists of high-risk and low-risk only; High-risk need £600 to achieve required ROE and low-risk need £400
 - Company A – one rating factor, with premium £400 and £600, respectively
 - Company B – no rating factor, flat premium £500
- B will be selected against – write all high-risk and make loss
- A will write all low-risk and break even
What if one company find another predictive factor?

- However, B will realize its loss and, based on the claim experience, increase premium to £600
- B will write half of the high-risk, make even
- A will write all low-risk plus half of the high-risk, make even
- This state is stable…
- until A realise its advantage and increase premium for low-risk
 - A will then make profit

What if one company find another predictive factor?

- The advantage of extra rating factor need to be combined with acute market awareness to get real benefit
 - Mixture of book
 - Conversion
- Company with less rating factor can still run business in the high-risk segment
 - Volume will be limited
 - But not a problem for small/niche market player
- Pricing strategy and game theory
Agenda

- Introduction
- Previous analysis
- Modelling options
- Further thoughts and game theory
- Conclusion

The opinions expressed in this presentation are solely the opinions of the author and do not necessarily represent the opinions of firms affiliated with the author.

Conclusion

- Single factor could have a significant factor in pricing
- GLM might not work proper when the mixture of book change significantly;
- There are other options to improve model:
 - Non-linear models
 - Existing rating factor/system, such as NCD
- Strategic pricing become more important: game theory could be used in analysis.
Questions or comments?

Expressions of individual views by members of The Actuarial Profession and its staff are encouraged.

The views expressed in this presentation are those of the presenter.