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• Background to the 1 year view of reserve risk
• Characteristics of the “actuary-in-the-box” approach 
• Emergence pattern methods as an alternative 
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• Characteristics of two emergence pattern approaches 
• Benchmarking emergence patterns from industry data
• Data Analysis
• Final Considerations
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A Projected Balance Sheet View

• From Article 101, the SCR is calculated from 
a distribution of net assets over a 1 year 
time horizon

• When projecting Balance Sheets for 
solvency, we have an opening balance sheet 
with expected outstanding liabilities

• The bulk of those liabilities are the 
“reserves” (provisions) set aside to pay 
unsettled claims that have arisen on policies 
sold in the past

• We then project one year forwards, 
simulating the payments that emerge in the 
year, and require a closing balance sheet, 
with (simulated) expected outstanding 
liabilities conditional on the payments in the 
year, together with the market value of 
assets at the end of the year

Opening 
Balance Sheet

Year 1 Balance 
Sheet

A L
t=0

A L

t=1

Simulations
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Reserve Risk under Solvency II…
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It’s all about the CDR*…

* a.k.a. the Run-off Result



The one-year run-off result (undiscounted)
(The view of profit or loss on reserves after one year)

• For a particular origin year, let:
– The opening reserve estimate be
– The expected reserve estimate after one year be
– The payments in the year be
– The run-off result (claims development result) be

• Then

– Where the opening estimate of ultimate claims and the expected ultimate after 
one year are
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The One-year view of Reserve Risk
Why do we want it? A view from the industry

• Fit in with theoretical Solvency II requirements
• Avoid excessive capital requirements
• May want to reflect ultimo view in ORSA, but don’t want to 

contaminate regulatory capital
• More IMAP requirements if we don’t!
• Potentially adds value to validation: actual versus expected
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The One-year view of Reserve Risk
How do we measure it?

• Don’t bother?
– Just use “perfect foresight” (the traditional actuarial “lifetime” view)

• Use analytic (formula based) approaches
– Based only on data, eg QIS 5 USP Method 1
– Based on a model and data, eg Merz-Wuthrich formula (used in QIS 5 

USP Methods 2 & 3)
• Use simulation based approaches

– Actuary-in-the-box
– Emergence patterns

• Use Hindsight re-estimation



The One-year view of Reserve Risk
(The view of profit or loss on reserves after one year)

• Merz & Wuthrich (2008) derived analytic formulae for the standard deviation of the 
claims development result after one year assuming:
– The opening reserves were set using the pure chain ladder model (no tail)
– Claims develop in the year according to the assumptions underlying Mack’s 

model
– Reserves are set after one year using the pure chain ladder model (no tail)
– The mathematics is quite challenging.

• The M&W method is gaining popularity, but has limitations.  What if:
– We need a tail factor to extrapolate into the future?
– Mack’s model is not used – other assumptions are used instead?
– We want another risk measure, not just a standard deviation (eg VaR @ 99.5%)?
– We want a distribution of the CDR?

8



Merz & Wuthrich (2008)
Data Triangle

Accident 
Year 12m 24m 36m 48m 60m 72m 84m 96m 108m

0 2,202,584 3,210,449 3,468,122 3,545,070 3,621,627 3,644,636 3,669,012 3,674,511 3,678,633
1 2,350,650 3,553,023 3,783,846 3,840,067 3,865,187 3,878,744 3,898,281 3,902,425
2 2,321,885 3,424,190 3,700,876 3,798,198 3,854,755 3,878,993 3,898,825
3 2,171,487 3,165,274 3,395,841 3,466,453 3,515,703 3,548,422
4 2,140,328 3,157,079 3,399,262 3,500,520 3,585,812
5 2,290,664 3,338,197 3,550,332 3,641,036
6 2,148,216 3,219,775 3,428,335
7 2,143,728 3,158,581
8 2,144,738

9



Merz & Wuthrich (2008)
Prediction errors

Accident 
Year

1 Year 
Ahead CDR

Mack 
Ultimate

0 0 0
1 567 567
2 1,488 1,566
3 3,923 4,157
4 9,723 10,536
5 28,443 30,319
6 20,954 35,967
7 28,119 45,090
8 53,320 69,552

Total 81,080 108,401

Prediction Errors
Analytic

Expressed as a percentage of the opening reserves, this forms a basis of the reserve 
risk parameter under Solvency II (QIS 5 Technical Specification)
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The one-year run-off result in a simulation model

• For a particular origin year, let:
– The opening reserve estimate be
– The expected reserve estimate after one year be
– The payments in the year be
– The run-off result (claims development result) be

• Then

– Where the opening estimate of ultimate claims and the expected ultimate 
after one year are

– for each simulation i
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ResQ Example
Bootstrap Results Summary – “Ultimo” perspective



ResQ Example
1 Year ahead – Simulation 1



ResQ Example
1 Year ahead – Simulation 2



ResQ Example
1 Year ahead – Simulation 3



ResQ Example
Bootstrap Run-off Results Summary – 1 year perspective



Merz & Wuthrich (2008)
Analytic vs Simulated: Summary

Accident 
Year

1 Year 
Ahead 
CDR

Mack 
Ultimate

1 Year 
Ahead 
CDR

Mack 
Ultimate

0 0 0 0 0
1 567 567 567 567
2 1,488 1,566 1,483 1,559
3 3,923 4,157 3,925 4,168
4 9,723 10,536 9,718 10,499
5 28,443 30,319 28,451 30,365
6 20,954 35,967 20,966 36,048
7 28,119 45,090 28,010 45,154
8 53,320 69,552 53,291 69,198

Total 81,080 108,401 81,069 108,269

Prediction Errors Prediction Errors
Analytic Simulated
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We can develop simulation based models that are 
analogous to their analytic counterparts



ResQ Example
Cascading Bootstrap Run-off Results

The input to a Bootstrap Run-off Result can be another Bootstrap Run-off Result. This can be 
used to give the CDR between the 1st and 2nd years ahead, and so on



ResQ Example
Cascading Bootstrap Run-off Results



Multiple 1 yr ahead CDRs
An interesting result

– Creating cascading CDRs over all years gives the following results:

– The sum of the variances of the repeated 1 yr ahead CDRs (over all years) equals the 
variance over the lifetime of the liabilities

– This means that we expect the risk under the 1 year view to be lower than the standard 
“ultimo” perspective

Accident Sqrt(Sum of Mack
Year 1 Yr 2 Yrs 3 Yrs 4 Yrs 5 Yrs 6 Yrs 7 Yrs 8 Yrs Squares) Ultimate

1 0 0 0 0 0 0 0 0 -               0
2 567 0 0 0 0 0 0 0 567              567
3 1,483 486 0 0 0 0 0 0 1,561           1,559
4 3,925 1,310 433 0 0 0 0 0 4,160           4,168
5 9,718 3,830 1,285 425 0 0 0 0 10,533         10,499
6 28,451 9,685 3,824 1,276 425 0 0 0 30,327         30,365
7 20,966 27,506 9,364 3,683 1,223 410 0 0 36,042         36,048
8 28,010 20,486 27,001 9,237 3,619 1,211 404 0 45,093         45,154
9 53,291 27,731 20,146 26,593 9,101 3,609 1,200 400 69,422         69,198

Total 81,069 52,199 38,463 28,972 10,107 3,887 1,282 400 108,327        108,269

56.01% 79.23% 91.83% 98.99% 99.86% 99.98% 100.00% 100.00%

Number of years ahead

Cumulative Risk 
Emergence (Variance)
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Actuary-in-the-box issues

• The “Actuary-in-the-box” method is not without its difficulties:
– What if you’ve applied a lot of judgement?
– What if the claims triangle is sparse, or very volatile?
– What if you have no claims triangle?
– What if you used a parametric model?

• In addition, actuary-in-the-box is fairly computationally expensive in 
simulation models

• It may be harder than ultimo bootstrapping to produce sensible results for 
some triangles

• So we need simpler alternatives:
– Simply allow the “ultimo” variability to emerge steadily over time?



• What do we do when bootstrapping is not appropriate (and hence the “actuary-in-the-
box” cannot be used), or the “actuary-in-the-box” fails?

• Well, we know that we expect the “ultimo” (lifetime) volatility to emerge over time, so if 
we have an estimate of the “ultimo” volatility, then we can create approaches that 
allow it to emerge using an “emergence pattern”

Alternatives to the “actuary-in-the-box”:
Emergence patterns
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Alternatives to the “actuary-in-the-box”:
Emergence patterns based on Ultimates

• If, for a particular origin period:
– We have a distribution of the ultimate cost of claims      at time zero 
– Then let
– and where 
– The CDR then becomes a function of α and the SD of the CDR can be controlled 

using α
– Note: each origin period has a different value of α
– We call α an “emergence factor”, and the set of alphas an “emergence pattern”
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• The method relies on having a distribution of the ultimate cost of claims under the 
“lifetime” view

• Each origin period has a different value of α, depending on how developed it is
• The pattern is expressed by development period, since a tail may be required. Each 

origin period is associated with only one development period
• If α =1, the SDs of the CDRs will be maximised and will match the “lifetime” view
• If α =0, the SD of the CDRs will be zero
• The calibration problem is finding appropriate values of α

Alternatives to the “actuary-in-the-box”:
Emergence patterns: Notes
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Calibrating the emergence pattern
Where the “actuary-in-the-box” approach is possible

• Given the SDs of the 1 year ahead CDR by origin period using the “actuary-in-the-
box” approach, find α such that the SDs of the CDR using the emergence pattern 
approach are the same

• For a single origin period, it is straightforward to show that 

• But the dependencies between origin periods are different using the emergence 
pattern approach relative to the “actuary-in-the-box”

– If α is calibrated to the origin period SDs, the SD of the total CDR will be different
– An alternative is to adjust the αs until the SD of the total CDR matches

• (Calibration alternatives based on a sequence of 1 year ahead views are possible)
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Taylor & Ashe Data
Prediction errors
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Prediction Errors

Accident Year 1 Year Ahead CDR Mack Ultimate

1 0 0

2 76,210 76,210

3 106,164 122,494

4 80,585 133,428

5 231,538 257,706

6 318,598 409,466

7 360,036 554,675

8 627,638 878,730

9 586,187 963,470

10 1,030,989 1,357,727

Total 1,776,119 2,444,130



Taylor & Ashe Data
“Actuary-in-the-box” vs Emergence patterns based on Ultimates
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SDs of 1 Yr ahead CDRs
Emergence Patterns

Accident Year Actuary-in-the-box 100% 0%
Calibrated 

(unadjusted)
Calibrated 
(adjusted)

1 0 0 0 0 0

2 76,210 76,210 0 76,210 76,210

3 106,164 122,494 0 106,164 106,836

4 80,585 133,428 0 80,585 82,759

5 231,538 257,706 0 231,538 232,614

6 318,598 409,466 0 318,598 322,337

7 360,036 554,675 0 360,036 368,044

8 627,638 878,730 0 627,638 637,968

9 586,187 963,470 0 586,187 601,710

10 1,030,989 1,357,727 0 1,030,989 1,044,432

Total 1,776,119 2,444,130 0 1,747,742 1,776,119



Taylor & Ashe Data
“Actuary-in-the-box” vs Emergence patterns based on Ultimates
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Note: In a standard analysis, we only have data to calibrate from development period 2. The value of 
100% at development period 1 was chosen arbitrarily. This can be discussed further.

Emergence Pattern

Development Period Unadjusted Adjusted
1 100.0 100.0
2 75.9 76.9
3 60.8 62.5
4 71.4 72.6
5 64.9 66.4
6 77.8 78.7
7 89.8 90.3
8 60.4 62.0
9 86.7 87.2
10 100.0 100.0

Emergence Fac tors  by  Development  Period
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Emergence Patterns based on Ultimates
Pros and Cons

• Pro: Very easy to calibrate
• Con: Can result in negative expected reserves one year ahead for some simulations, 

for example

29

Expected Opening Ultimate 100

Simulation n
Perfect Foresight Opening Ultimate 180
Cumulative Claims at end of Year 170

Emergence Factor (alpha) 0.75
Closing Booked Ultimate 160  = 0.75 x 180 + 0.25 x 100
Claims Development Result -60  = 100 - 160
Closing Booked Reserve -10  = 160 - 170



• For example, if for a particular origin period:
– We have a distribution of the outstanding liabilities      at time zero 
– with payments in each future year 
– Then let
– and 
– The CDR then becomes a function of β and the SD of the CDR can be controlled 

using β
– Note: each origin period has a different value of β
– We call β an “emergence factor”, and the set of alphas an “emergence pattern”

Alternatives to the “actuary-in-the-box”:
Emergence patterns based on Reserves
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Calibrating the emergence pattern
Where the “actuary-in-the-box” approach is possible

• Given the SDs of the 1 year ahead CDR by origin period using the “actuary-in-the-
box” approach, find β such that the SDs of the CDR using the emergence pattern 
approach are the same

• This is not as straightforward as finding α for the method based on Ultimates

• The dependencies between origin periods are different using the emergence pattern 
approach relative to the “actuary-in-the-box”

– If β is calibrated to the origin period SDs, the SD of the total CDR will be different
– An alternative is to adjust the βs until the SD of the total CDR matches

• (Calibration alternatives based on a sequence of 1 year ahead views are possible)
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Taylor & Ashe Data
“Actuary-in-the-box” vs Emergence patterns based on Reserves
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SDs of 1 Yr ahead CDRs
Emergence Patterns

Accident Year
Actuary-in-the-

box 100% 0%
Calibrated 

(unadjusted)
Calibrated 
(adjusted)

1 0 0 0 0 0

2 76,210 76,210 76,210 76,210 76,210

3 106,164 122,494 94,487 106,164 107,712

4 80,585 133,428 53,001 80,585 85,910

5 231,538 257,706 195,521 231,538 234,236

6 318,598 409,466 247,200 318,598 327,732

7 360,036 554,675 250,906 360,036 379,593

8 627,638 878,730 376,752 627,638 654,312

9 586,187 963,470 240,217 586,187 627,309

10 1,030,989 1,357,727 246,658 1,030,989 1,067,405

Total 1,776,119 2,444,130 660,304 1,694,736 1,776,119



Taylor & Ashe Data
“Actuary-in-the-box” vs Emergence patterns based on Reserves
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Note: In a standard analysis, we only have data to calibrate from development period 2. The value of 
100% at development period 1 was chosen arbitrarily. This can be discussed further.

Emergence Pattern

Development 
Period Unadjusted Adjusted

1 100.0 100.0

2 72.1 75.2

3 53.3 58.5

4 57.6 62.3

5 47.6 53.5

6 55.7 60.6

7 67.6 71.3

8 48.6 54.3

9 60.7 65.1

10 100.0 100.0

Emergence Fac tors  by  Development  Period
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Calibrating the emergence pattern
Where the “actuary-in-the-box” approach is NOT possible

• When bootstrapping has not been used, or the “actuary-in-the-box” method fails, 
what emergence pattern should be used?

• This is difficult in the absence of an alternative method.
• In practice, either use 100% (ie go straight to ultimate), or use an appropriate 

benchmark
• Using benchmarks:

– Find a suitable benchmark triangle where the “actuary-in-the-box” approach can be used
– Calibrate an emergence pattern to the SDs of the CDRs given by the “actuary-in-the-box” 

approach
– Apply the benchmark emergence pattern
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Using Benchmarks

• The obvious question when using benchmarks is “Which benchmark is 
appropriate?”

• For emergence patterns, does it matter too much?
– Do short tailed lines etc exhibit similar patterns?
– How stable are the patterns in practice?
– Do emergence patterns for different lines of business display common 

characteristics?
• To assist answer these (and other) questions, we took some publicly 

available data, and calibrated emergence patterns using a simple underlying 
model
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Data Analysis
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We used publically available paid claims triangles:
Schedule P – 2011 loss triangles
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Schedule P data

Duration Volatility Opening Reserves 
in USD bn

HF Homeowner & Farmowners 1.4 5% 23.1                            
PPAL Private Passenger Auto Liability 2.1 1% 76.4                            
SL Special Liability 2.4 11% 4.7                              
RINAP Reinsurance: Nonproportional Assumed Property 2.4 24% 7.6                              
Int International 2.5 55% 0.2                              
RINAF Reinsurance: Nonproportional Assumed Financial 2.6 67% 0.1                              
CMP Commercial Multiple Peril 2.6 5% 33.2                            
CAL Commercial Auto Liability 3.0 2% 21.2                            
WC Workers' Compensation 3.2 3% 49.1                            
MPLCM Medical Professional Liability ‐ Claim Made 3.9 4% 11.1                            
OLO Other Liability: Occurrence 3.9 6% 32.4                            
RINAL Reinsurance: Nonproportional Assumed Liability 4.0 24% 6.8                              
PLCM Product Liability: Claims Made 4.2 22% 0.9                              
OLCM Other Liability: Claims Made 4.2 5% 30.5                            
PLO Product Liability: Occurrence 5.3 9% 6.2                              
MPLO Medical Professional Liability ‐ Occurrence 5.3 13% 4.5                              
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Models used

• For each paid claims triangle we fit four models:
– Bootstrap

– Mack and ODP (with varying scale parameters)
– No curve fit (ie chain ladder model only)

– Actuary-in-the-Box
– With and without Bornhuetter-Ferguson adjustment for all origin years

(where BF priors equal expected Ultimates from the Bootstrap results)

– For each model we calculate the following emergence factors
– Adjusted betas
– Adjusted alphas
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Schedule P – short tail lines – no BF

Beta Emergence Pattern
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Schedule P – short tail lines – no BF

Alpha Emergence Pattern
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Schedule P – long tail lines – no BF

Beta Emergence Pattern
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Schedule P – long tail lines – no BF

Alpha Emergence Pattern
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Schedule P – short tail v long tail – no BF

Beta Emergence Patterns
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Schedule P – short tail v long tail – no BF

Alpha Emergence Patterns
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Rank correlations: duration v emergence factor 
(Mack)

BF no BF BF no BF
2 ‐20% 15% ‐94% ‐38%
3 ‐29% 28% ‐89% ‐39%
4 ‐50% 67% ‐76% 8%
5 ‐62% 60% ‐78% ‐45%
6 ‐58% 75% ‐8% 28%
7 ‐60% ‐32% ‐66% ‐54%
8 ‐80% ‐41% ‐14% 2%
9 ‐70% ‐22% ‐25% ‐17%

Beta AlphaDevelopment 
Period
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Schedule P – short tail – BF v no BF

Beta Emergence Patterns
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Schedule P – long tail – BF v no BF

Beta Emergence Patterns
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Summary of Observations

• Beta patterns are smoother than alpha patterns
• Beta patterns show clearer relationships (see below) than alpha patterns
• Without BF adjustment

– Beta patterns show clear U shape
– Longer tail lines tend to have higher values

• With BF adjustment
– Pattern starts low and increases with the development period
– Longer tail lines tend to have lower values

• Patterns with and without the BF adjustment converge



Industry view: Why would you use emergence 
patterns?

• When AiB doesn’t work
• Data
• Expert judgement
• Dependencies
• Single method
• Other risks
• Consistency
• Transparency and communication
• Model efficiency
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Reserve Risk under Solvency II…
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Actually, it’s not all about the CDR…



 Gross Outstanding Claims Provisions
— Claims;
— Premiums;
— Expenses;
 RI Outstanding Claims Provisions
— Claims;
— Premiums;
— Expenses
 Bad Debt Outstanding Claims Provisions

Other considerations
Reserve setting and re-reserving for technical liabilities

 Gross Premium Provisions
— Claims;
— Premiums;
— Expenses;
 RI Premium Provisions
— Claims;
— Premiums;
— Expenses
 Bad Debt Premium Provisions

51

At each accounting date the following balance / reserves for future 
cashflows are required:



Questions or comments?

Expressions of individual views by members of 
The Actuarial Profession and its staff are 
encouraged.
The views expressed in this presentation are 
those of the presenters.
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