Extending the Asset Share Model

Recognizing the Value of Options in P&C Insurance Rates

Greg McNulty, FCAS
SCOR Reinsurance

1	Background and Motivation
2	The Extended Asset Share Model
3	Simple Example – Importance of Variables
4	Complex Example – "Accident Forgiveness" and Value of Options
5	Further Considerations
Background and Motivation

- Well known that renewal business has lower loss costs than new business

- Asset share model calculates premium required to produce desired expected profit over the lifetime of a policy incepting today
 - Company may take a loss during the initial terms, then make it up with profitable renewal terms

- Formula:
 \[
 EPV[P] = \frac{F + EPV[L]}{1 - U - V}
 \]
 - Extra parameters needed: premium and loss trend, discount rate, renewal probability

Background and Motivation

- What is the shortcoming of the asset share model? It assumes constant inflation of premium and loss, ignoring risk class transition

- Example 1:
 - 2 risk classes, Low and High
 - Low can have an accident and be reclassified as High

- Premium and loss trend include the effect of Low risks being reclassified and having higher premium and loss
 - E.g. 10% chance of transition * 40% higher premium = 4% trend
 - If we change High risk rate, Low risk trend assumptions no longer valid
Background and Motivation

- Example 2:
 - Experienced vs Inexperienced Drivers

- Inexperienced drivers charged more, asset share model assumes higher premium will keep trending into the future
 - Premium must drop to experienced rate eventually, leading to less renewal term profit than anticipated

- Is there a way to adapt the asset share model to recognize interactions between the risk classes over time and remedy these problems?

Background and Motivation

- Accident forgiveness, price lock, rate guarantees are common policy features in personal auto
 - Economics depend on transition between risk classifications

- Common theme is the right but not obligation to purchase an asset (insurance policy) in the future at a price set today
 - That’s a call option

- Will our new model be able to price these products?
Extending the Asset Share Model

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Background and Motivation</td>
</tr>
<tr>
<td>2</td>
<td>The Extended Asset Share Model</td>
</tr>
<tr>
<td>3</td>
<td>Simple Example – Importance of Variables</td>
</tr>
<tr>
<td>4</td>
<td>Complex Example – “Accident Forgiveness” and Value of Options</td>
</tr>
<tr>
<td>5</td>
<td>Further Considerations</td>
</tr>
</tbody>
</table>

The Extended Asset Share Model

- The solution is to use linear algebra to calculate the asset share price for all risks at the same time and explicitly account for risk class transition.

- Instead of separate series of parameters for each class used independently, use series of vectors for premium, loss and expense in a unified analysis:
 - Each dimension represents one risk class.

- Also need a series of transition matrices $A(n)$ which describe how each risk class renews and moves into the others at the n-th renewal.
The Extended Asset Share Model

- The Extended Asset Share Model Formula:
 \[\sum_{n=0}^{\infty} P(n) \cdot v_n \cdot A_n(R) = \frac{1}{1-U-V} \left[F + \sum_{n=0}^{\infty} v_n \cdot A_n(L_n) \right] \]

- Simple linear equation of form \(Ax = b \)

- LHS is the lifetime present value of premium, RHS is the loaded fixed expense and lifetime present value of loss
 - Transition matrix tracks policies as they renew into different classes or fail to renew

We can apply the inverse of the left hand side matrix to get the current premium vector (relativity times base rate) alone:

\[P(0) \cdot R = \frac{1}{1-U-V} \left(\sum_{n=0}^{\infty} P(0) \cdot v_n \cdot A_n \right)^{-1} \left[F + \sum_{n=0}^{\infty} v_n \cdot A_n(L_n) \right] \]

- \(\frac{P(n)}{P(0)} \) is the rate of overall premium inflation excluding effect of risk class transition, i.e. base rate increases

- Closed form solution for premium and relativities
Simple Example – Importance of Variables

Consider the following simple example:

- Annual policies with two risk classes: Low and High
- Losses $L_{\text{low}} = 50$ and $L_{\text{high}} = 70$ for the first term
- Fixed expense 10 at time 0; 20% variable expense every term
- Low risk renewal probability 90% every term; High 70%
- Loss trend 1% Low risk, 3% High risk
- Premium trend 4% per year
- 5% discounting; 5% profit
- Every term 10% chance Low risk reclassified as High; High risk not reclassified
- Low risk class policies renew with 70% probability when reclassified as High
Simple Example – Importance of Variables

- Given that the retention rate interacts with risk class transition and premium trend depends on the resulting rates this would be difficult to do with standard methods

- The extended model can calculate the required premiums with just a few lines of programming code:
 - \(P_{low} = 56.22 \)
 - \(P_{high} = 90.92 \)

- More interesting: what is the impact of the High risk class variables on indicated Low risk class premium, e.g. loss trend?

 - Look at derivative of \(P_{low} \) with respect to input variables:
 - \(\frac{\partial \ln(P_{low})}{\partial \ln(L_{low})} = 0.99 \)
 - \(\frac{\partial \ln(P_{low})}{\partial \ln(r_0)} = 3.91 \)
 - \(\frac{\partial \ln(P_{low})}{\partial \ln(r_1)} = 1.73 \)
 - \(r_0 \) = Low risk loss trend factor
 - \(E.g. \ 1.01 \)
 - \(r_1 \) = High risk loss trend factor
 - \(E.g. \ 1.03 \)

- Changing the High risk loss trend by +/- 1% has about 2x the impact on \(P_{low} \) as changing \(L_{low} \) by +/- 1% (multiplicatively), and 0.5x the impact of changing Low risk trend

- Surprising since transition probability is only 10%; result will vary under different assumptions
Extending the Asset Share Model

1 Background and Motivation
2 The Extended Asset Share Model
3 Simple Example – Importance of Variables
4 Complex Example – “Accident Forgiveness” and Value of Options
5 Further Considerations

Complex Example – “Accident Forgiveness” and Value of Options

- Consider the following additions to the simple example:
 - Third risk class, Medium
 - \(L_{med} = 55 \); loss trend 2%
 - Low risks transition only to Medium risk with 10% probability each renewal
 - Medium risk renewal probability 95%
 - Medium risks transition only to High risk with 25% probability each renewal
 - \(P_{med} = P_{low} \), i.e. higher expected loss is “forgiven”

- What should we charge Low/Medium risks? Where’s the option and what’s it worth?
 - Again, difficult for standard methods to solve but easy using Extended Asset Share model
Complex Example – “Accident Forgiveness” and Value of Options

- Extended Asset Share model formula gives three equations in three unknowns: P_{low}, P_{med}, P_{high}

- Normally we set each premium equal to lifetime EPV of loss and expense, but with forgiveness we set $P_{med} = P_{low}$ and solve for the other two

- Indicated premiums:
 - P_{low} (no forgiveness) = $54.98
 - P_{med} (no forgiveness) = $64.25
 - P_{low} (with forgiveness) = P_{med} (with forgiveness) = $57.65
 - P_{high} = $90.92

Complex Example – “Accident Forgiveness” and Value of Options

- Low risk policy with forgiveness is given the right but not obligation to buy renewal policy at the Low risk price, even if reclassified as Medium

- Call option on insurance policy costs Low/Medium risks $2.67 per term
 - Single term value is less for Low risk policies; more for Medium risk policies when option is “in the money”

- Extended Model adds amortized value of the lifetime EPV of option costs to the price
Extending the Asset Share Model

1 Background and Motivation
2 The Extended Asset Share Model
3 Simple Example – Importance of Variables
4 Complex Example – "Accident Forgiveness" and Value of Options
5 Further Considerations

Further Considerations

- Price elasticity of demand
 - Transition matrices will have demand functions as entries
 - Computationally more complex

- More sophisticated premium formulas
 - IRR, RORAC, etc.

- Regulatory constraints
 - Is higher cost of options a valid reason to charge higher rates for otherwise identical risks?