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The first article in Volume 2 of this Manual by B Zehnwirth has shown the close
connection between the intuitive Chain Ladder technique and the more formal two
way analysis of variance model based on the log-incremental payments.

Models initiated by this more formal definition of the basic chain ladder have recently
started to gain acceptance in loss reserving work and a number of papers on the
subject have now been published. These models differ from the traditional techniques
by a more formal definition of both the model assumptions and the parameter
estimation and testing. With the formal models statistical estimates of reserves, that is
both mean estimates and the associated model standard errors, can be calculated. The
basic chain ladder is deterministic and produces point estimates of reserves.

The purpose of this paper is to serve as a basic introduction to these methods for the
practitioner. To facilitate this a PC spreadsheet package is used to show how run-off
models of the log-incremental payments can be identified and fitted in practice using
multiple regression.

The approach adopted considers the basic chain ladder technique first and shows how
the intuitive chain ladder model can be made more formal. The parameters of this
model are then estimated and the implied underlying payment pattern compared with
the chain ladder derived pattern. Both models are used to “fill in the square” and the
results compared. In the case of the formal model it is also shown how the regression
results are used to derive estimates of the individual future payments and their
standard errors and how accident year and overall standard errors can be calculated.

The simple example makes it easier to follow the calculations and is intended to allow
the reader to focus on the more interesting modelling aspects of the later sections.

A more realistic example is then analysed. The data is first viewed graphically to
identify an appropriate run-off model to fit. The identified model is fitted and tested.
The model is then redefined with fewer parameters and refitted. The results, both
future payments and their standard errors, from these models are calculated and

compared.

The data is then adjusted for inflation and for claim volume and a series of models are
identified and tested. Three of these are used to obtain estimates which are then

compared.

A degree of theory is assumed. The model parameters are estimated using multiple
regression and matrix operations are used to calculate the variance-covariance
matrices. All the computations and graphs are done in a PC spreadsheet package,
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Supercalc 5 in this case although Lotus 123 could have been used equally effectively.
The wide availability, ease of use and power of these packages makes these methods
accessible to all. Alternatively any programming language with matrix manipulation
capabilities, such as APL or SAS, could be used for this work. Programs have also
been written in GLIM (see A Renshaw, 2).

A. Introduction

Almost all actuarial methods for estimating claims reserves have an underlying
statistical model. Obtaining estimates of the parameters is not always carried out in a
formal statistical framework and this can lead to estimates which are not statistically
optimal. These traditional methods generally produce only point estimates.

The models, such as the basic chain ladder, are often overparameterised and adhere
too closely to the actual observed data. This process can lead to a high degree of
instability in values predicted from the model as the close adherence to the observed
values results in parameter estimates which are very sensitive to small changes in the
observed values. A small change in an observed value, particularly in the south-west
or north-east regions of the data triangle, can result in a large change in the predicted
values. In practice attempts may be made to achieve some stability in the results by
using benchmark patterns, by selection of development factors and a number of other
such techniques.

Formal statistical models are used extensively in data analysis elsewhere to obtain a
better understanding of the data, for smoothing and for prediction. Explicit
assumptions are made and the parameters estimated via rigorous mathematics.
Various tests can then be applied to test the goodness of fit of the model and, once a
satisfactory fit has been obtained, the results can be used for prediction purposes.

This process allows us to focus on the model being fitted and should also highlight
any inadequacies in the model. The estimates of the parameters, on the basis of the
model, can be made statistically optimal. Peculiarities in the data may be identified
and often investigation of these can yield useful additional information to the
modeller.

All modelling, whether based on the traditional actuarial techniques such as the chain
ladder or on more formal statistical models, requires a fair amount of skill and
experience on the part of the modeller. All these models are attempting to describe
the very complex claims process in relatively simple terms and often with very little
data. The advantage of the more formal approach is that the appropriateness of the
model can be tested and its shortcomings, if any, identified before any results are
obtained.
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B. The basic chain ladder technique and the underlying stochastic model

The following simple example considers a 4 by 4 triangle of cumulative payments:

CUMULATIVE PAID CLAIMS
DEVELOPMENT YEAR
ACCYR 0 1 2 3
0 11073 17500 19339 20105
1 14799 24156 26500
2 15636 26159
3 16913

The usual (weighted) basic chain ladder development factors are (see Vol 1 Section
ES8):

Otol 1to 2 2t03
1.633781 1.100418 1.039609
where 1.633781 = (17500 + 24156 +26159)/(11073 + 14799 + 15636) etc.

Using these factors the square can be completed in the usual way:

CUMULATIVE PAID CLAIMS
DEVELOPMENT YEAR
ACCYR 0 1 2 3
0 11073 17500 19339 20105
1 14799 24156 26500 27550
2 15636 26159 28786 29926

3 16913 I 27632 30407 31611

The actual and fitted portions of the square have been separated for illustration. Itis
assumed in this example that there are no payments beyond the 3rd development
period so that the first (zero’th) accident year is complete.

The chain ladder produces successive cumulative losses from which the future
incremental payments can be derived by subtraction. It is therefore possible to split
the overall chain ladder derived reserve estimate for an accident year into its
incremental or payment year values.
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The underlying model is better illustrated by these incremental payments which are
shown in the table below.

INCREMENTAL PAID CLAIMS
DEVELOPMENT YEAR
ACC YR 0 1 2 3 0/S

0 11073 6427 1839 766 —
1 14799 9357 2344 1050 1050
2 15636 10523 2627 1140 3767
3 16913 10719 2775 1204 14698

Total 19515

The accident year projected future payments and the overall estimate are shown in the
last column. The chain ladder estimate of future payments to development period 3
for all accident years is 19515.

Dividing each of these incremental amounts by the final, or ultimate, accident year
value gives the following:

PERCENTAGE PAID CLAIMS
DEVELOPMENT YEAR
ACCYR Ultimate 0 1 2 3
0 20105 55.08 31.97 9.15 3.81
1 27550 53.72 33.96 8.51 3.81
2 29926 52.25 35.16 8.78 3.81

3 31611 53.50 ' 33.91 8.78 3.81

The basic chain ladder has produced the following underlying incremental payment
pattern:

Development year 0 1 2 3
Incremental paid % 53.50 33.91 8.78 3.81

Note that this underlying pattern can be calculated directly from the development
factors.

The basic chain ladder assumptions can be restated as follows:
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a: Each accident year has its own unique level.

b: Development factors for each period are independent of accident year or,
equivalently, there is a constant payment pattern.

These assumptions can now be used to define the model more formally.
Let:
A, be the ultimate (cumulative) payments for the i-th accident year.

B, be the percentage of ultimate claims paid during the j-th development
period.

P, be the incremental paid claims for accident year i paid during development
period j

The chain ladder model can thus be described by the following equations
P;=A;xB; forijfromO0to3

and the condition
Y. B;=1  wherej is sunmed from 0 to 3

The next section considers how these equations may be solved and estimates of the
parameters obtained.

C. Estimating the parameters of the formal chain ladder model

As the main set of relations involves products the usual approach is first to make these
linear by taking logarithms and then use multiple regression to obtain estimates of the
parameters in log-space. It will eventually be necessary to reverse this transformation
to get back to the original data space.

Dealing with the main set of equations is relatively easy. Taking logarithms (natural
logarithms will be assumed throughout and denoted by In) gives

In(Py) =In A; +In B,

Unfortunately taking logarithms of the second condition does not produce a linear
equation as

In(}B)) # ¥, (In B))

It is possible to obtain estimates of these parameters using iterative procedures but this
is not pursued here. It is more convenient to drop the condition and concentrate
initially on obtaining the parameter estimates from the remaining, now linear, set of
equations.
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Dropping the condition gives rise to a singularity and so it is necessary to introduce a
new condition in order to obtain the parameter estimates. This does not affect the
eventual results but it does change the interpretation of the parameters.

For ease of reference the parameters are now redefined (In A, = a, etc) and an error
term introduced.

In(Py) =Y;=a,+b;+e
where ¢; is some error term.
As indicated above without some restriction these equations are singular. Note for
example that a, appears only in one equation which involes b, and an error term. An

infinite number of combinations of a; and b, are possible as long as they sum to the
same view.

For convenience in this example b, is set to zero. Another approach is to set both a,
and b, equal to zero and introduce a constant, k, into the model. The chain ladder
assumes each accident year has a unique level so the model to be fitted below will

follow the former description. The alternative definition is considered later in Section
H and the advantages of this choice outlined.

The predictions obtained by either approach will be the same so the restriction can be
chosen at the convenience of the modeller.

The model to be fitted is described by:
where i and j go from O to 3 and by =0

The model has seven parameters to be estimated, the same number as the basic chain
ladder model.
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The following table is in the form most convenient for the regression facility of any of
the popular spreadsheet packages.

Y-variate — Design Matrix X —
i P; Yj; a 3 a a b b, b
0 0 11073 931226 1 0 0 O 0 0 O
0 1 6427 8.76826 1 0 0 O 1 0 o0
0 2 1839 7.51698 1 0 0 O 0 1 O
0 3 766 6.64118 1 0 0 O o0 o0 1
1 0 14799 9.60231 o 1. 0 0 O O O
1 1 9357 9.14388 0 1 0 o0 1 0 O
1 2 2344 7.75961 0 1 O 0 0 1 0
2 0 15636 9.65733 0 0 1 0 0O 0 O
2 1 10523 9.26132 0 0 1 0 1 0 0
3 0 0 0 O 1 0 0 O

16913  9.73584

Each row corresponds to a data value and its representation by the model parameters.
The last but one row, for example, describes the accident year 2, development year 1,
value in log-space as the sum of the a, and b, parameters. The coefficients of the
other parameters are zero for this data value.

The resulting matrix of parameter coefficients, made up of ones and zeros in this case,
will be referred to as the model design matrix X. It is governed by the model chosen.

Within the class of log-linear models changing the model just involves changing
the design matrix.

The regression takes the In(P;) or Y; values as the dependent variable and each of the
columns of the matrix X as the independent variables.

The spreadsheet regression command, which requires a columm for the dependent
values and a range for the independent values (i.e. the design matrix) is then used to
carry out the regression and output the result. It is necessary to specify that the fit is
without a constant and to define a results or output range. This is quite
straightforward in practice and the results are produced almost instantly.

The spreadsheet output in this case will be:

Regression Output:
Constant 0
Std Err of Y Est .0524
R Squared(Adj,Raw) 9976 .9992
No. of Observations 10
Degrees of Freedom 3
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Coefficient(s) 9.288 9.591 9.692 9.736 -.4661 -1.801 -2.647
Std Err of Coef. .0400 .0400 .0428 .0524 .04277 .05015 .06591

A brief description of this fairly standard spreadsheet regression output will be found
in Appendix 2.

The results can also be obtained by matrix manipulation. An indication of how this
can be done is given in Section D.

The coefficients are the parameter estimates and are in the same order as the columns
of the design matrix.

So the model estimate for a, is 9.288, for a, it is 9.591 and so on until b; which is
estimated as -2.647.

The payment pattern can be derived from this output. This is done by exponentiating
the development year parameters b;’s, remembering to bring in the b, which was set to
0, and scaling so that the exponentiated values add up to the required 100%.

A formal proof of this is beyond the scope of this paper and the interested reader is
referred to Verrall’s paper (5) “Chain Ladder and Maximum Likelihood”. The table
below, and the comparison with the basic chain ladder result, may be sufficient to
satisfy the majority of practitioners.

The following table shows these basic calculations

Parameter by b, b, b,

Coefficient 0 -4662 -1.8015 -2.6472 sum
exp (b) 1 0.6274 0.1651 0.0709 1.8634
Payment % 53.67 33.67 8.86 3.80 100

This is very close to the basic chain ladder derived pattern.

BCL Payment % 53.50 3391 878 3.81

The slight differences arise from the way the parameter estimates are derived. The
same underlying model is assumed in both cases. Unfortunately however a fair
amount of further manipulation is necessary to obtain estimates of ultimate values for
each accident year. These cannot be derived simply from the accident year regression
coefficients.

In order to progress further it is now necessary to go back and consider what
assumptions were made by the spreadsheet in deriving the parameter estimates. This
requires a more detailed consideration of the formal model and in particular the
structure of the assumed error term.
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These aspects are considered in the following section.
D. Fitting assumptions and error terms

The spreadsheet regression is fitted by least squares. That is by minimizing the sum
of the squares of the error terms e;.

It is usual and convenient to assume that the error values ¢; are identically and
independently distributed with a normal distribution whose mean is zero and variance
some fixed a2

ie. e;=IIDN(O, 0%

In matrix form it can be shown that, under these assumptions, the parameter estimates
are given by

X™X)"! XTY

where X is the design matrix and X" its transpose and Y is the data vector. The
standard errors can also be calculated in matrix form.

These assumptions can be tested by analysis of the residual (error) terms, by plots and
other diagnostic tests. Residual plots are shown and discussed later.

Recalling that the original payments were transformed by taking logarithms the error
normality assumption in log-space implies that the data in the original space are log-
normally distributed.

The IID assumption estimates are also the maximum likelihood estimates in this case
and it can be shown that the parameter estimates so obtained are unbiased. Since
maximum likelihood estimates are invariant under transformation Verrall (5) shows in
“Chain Ladder and Maximum Likelihood” how maximum likelihood estimates of
development factors can be obtained by direct substitution.

As the log-normal distribution is skewed with a tail to the right some extreme high
values are to be expected. This is sometimes a feature of incremental claims payment
triangles. The cause is usually a large claim payment in later development periods,
the settlement perhaps of a particularly large claim, when the overall level of
payments is low.

These assumptions are not claimed to be theoretically justified for log-incremental
claims payments. They have an intuitive appeal and are chosen primarily for
convenience. Alternative assumptions, which may well be more generally applicable
to claim payments, can be made and results obtained. These tend to require more
complex computations or iterative procedures which generally necessitate the use of
specially written software.
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Further comments on the error terms are to be found in the final section of this paper
which also includes some suggestions for dealing with negative incremental
payments.

E. Predicting future payments and their standard errors

In order to derive estimates of the model parameters it was convenient to take
logarithms and work in log-space. To obtain results in the original space it is
necessary to reverse this transformation.

Obtaining the parameter estimates in log-space is relatively straightforward. To revert
back to the original space is not so simple and it is necessary to use the relationships
between the parameters of the log-normal distribution and the underlying normal
distribution.

Again for simplicity the easiest approach is adopted here. This approach is also used
by Zehnwirth and by Renshaw and again the justification can be found in their papers.
These estimates, in the original space, are not necessarily unbiased especially where a
small number of data points are being fitted. Verrall (6) shows how it is possible to
obtain unbiased estimates but the calculations are more complicated.

The estimates to be used here are given by the following

The future values Pij ’s are calculated from the estimates obtained in the log-space Y i

as follows
a) B =exp(¥; +0.5 var(¥,))
Their standard errors are given by
b) se(P,)=2, sqrt(exp(var(¥ ;) ™)
So the first step is to derive the predicted values and their standard errors in log-space.

The predicted values in log-space are obtained from the estimates of the parameters
produced by the regression.

For example the first future value to be predicted is for accident year 1 development
year 3 and this is given by

Y,=a+b
=9.591 - 2.647
= 6.944

To obtain the variance of this, and the other estimates, it is necessary to calculate the
variance-covariance matrix.
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This matrix is given by
o’ X, X'X)"' X"
where 0 is the model variance (scalar) and depends on the data

X is the design matrix of the future values and
X{! is its transpose and

(X™X)"! is the model information matrix

with X the design matrix and X7 its transpose.

In a spreadsheet a small macro can be written to carry out this calculation. The results
of each stage of this calculation for the simple example above are to be found in

Appendix 1.

Note that changing data values in the original triangle only affects the scalar factor o2
and so the lengthy matrix calculation only need be done once for a given size model.

The usual practice therefore is to calculate the matrix product
X, X™X) 1 X7
and multiply by the specific data 02 as necessary.

A library of these matrices could be built up for the models to be used, to cater for
different sizes of triangles for instance, and stored for future use.

The design matrix of future values X, following the same format as the original
design matrix, is as follows:

+~—  Future Design Matrix X —

ot v

a a a b b, b

L W W NN =
W N = W N W | —.
coocooco|p
OO OO O =
QOO M m O
—_———0 0o
OO = O OO
O = OO == O
—— OO e O
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The matrix
X, XX)" X

in this case is (see Appendix 1)

1.66667  .00000  1.33333 .00000 .00000  1.33333
.00000 1.25000 .75000 .00000 .75000 25000
1.33333 75000 1.91667 .00000 25000 1.41667
.00000  .00000 .00000 1.66667  1.33333  1.33333
.00000  .75000 25000  1.33333 1.91667 1.41667
1.33333 25000 1.41667 133333 1.41667 2.58333

The variance-covariance matrix of future values is calculated from the above by just
multiplying through by the model 0 which in this case is

.0524% = 002744

The variance-covariance matrix is then

.00457  .00000 .00366 .00000 .00000  .00366
.00000  .00343 .00206 .00000 .00206  .00069
00366  .00206 .00526 .00000 .00069  .00389
.00000  .00000 .00000 .00457 .00366  .00366
.00000  .00206 .00069 .00366 .00526  .00389
.00366  .00069 .00389 .00366 .00389  .00709

Note that these matrices are square and symmetric with each side equal to the number
of future values to be projected. The diagonal elements contain the variances of each
of these values and are in the same order as the future design matrix elements.

To obtain the variances to be used for projecting future values we will follow common
practice and add the model variance (0?) to the variances calculated above. These two
sources of error are the estimation and statistical errors. These variances recognise
that the parameter coefficients are estimates (and subject to error) as well as the
inherent noise in the process or data. We do not attempt to correct or estimate any
specification or selection errors which may well be equally significant contributors to
a total overall error term. Our final example gives some indications of how projected
values can be affected by the choice of model parameters. For a more detailed
explanation of these types of error the reader is referred to the paper by Taylor (3).

The variances for the future values in log-space are the sum of the variance-
covariance matrix values obtained above and the model variance 02

So the variance for the first projected value which was estimated above, Y3, is

1.66667 x 0.052382 + 0.052382 = .007317
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The following table shows the various values and their variances and standard errors

i ] ¥, Var(Y,) P, var(B;)  se(B;)

6.94395  .007317 1041 7953 89
7.89094  .006174 2681 44520 211
7.04521  .008003 1152 10662 103
9.26969  .007317 10650 833010 913
7.93438  .008003 2803 63122 251
7.08865  .009832 1204 14328 120

W W W NN —
W N = W W

We note here that the sum of the variances is 973595 which is a value that will be
used later.

F.  Accident year and overall standard errors

Calculating the variances or standard errors across accident years and in total requires
one further step involving the covariances. The information needed is in the last

matrix above together with the values calculated for f’ij ’s and their variances.

The variance of the sum of two values A and B is given by
Var(A+B) = Var(A) + Var(B) + 2Cov(A,B)

and this extends to sums of more than two values by including all pairs of
covariances. Note that Cov(A,B) = Cov(B,A).

A justification is given in Renshaw’s paper that in the case of log-linear models the
covariances can be calculated in the original space by the following convenient
formula

Cov(B, , P,,)=E(Y,) E(Y¥,) (exp(Cov(¥, , ¥, ) -1)

ij ij ij ?

In practice this can be set up fairly easily in the spreadsheet once the individual values
have been estimated and the variance-covariance matrix computed. It does
nevertheless involve a fair amount of computation. To illustrate the calculation
consider the standard error for the second accident year.

Two values are involved 13'22 and P 23 which were estimated as 2681 and 1152.
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Their standard errors obtained above were 211 and 103 respectively. The covariance,
in log-space, for these estimates can be found in the variance-covariance matrix and is
0.00206. So the covariance in the original space is

Cov(P,,, P,,) = 2681 x 1152 (exp(.00206) -1)

= 6363

227

The required variance of the sum is then given by
Var(P,, + P,; ) =2112+ 1032 +2 x 6363 = 67868

So the estimated standard error of the total assumed outstanding claims for this year is
261 or just under 7% of the estimated value of 3833 (2681 + 1152).

This process can be applied to obtain the standard errors for any combination of
values, for instance for each accident year or each payment year and more
interestingly for the overall total reserve estimate.

The total reserve estimate is the sum of all the projected values and so its variance
calculation will include all possible combinations of covariances (of pairs) of values
involved in the calculation. This, surprisingly, makes the spreadsheet calculation
easier as there is no need to exclude or select any values. One simply sums a range.

The calculations are as in the previous example and can be tabulated fairly easily to
produce the following matrix of covariances.

(i) (1L,3) 22 (2,3) @3,1) (3,2) (3,3)
1,3) —_— 0 4394 0 0 4593
2,2) 0 — 6363 0 15481 2216
2,3) 4394 6363 — 0 2216 5403
G,D 0 0 0 — 109410 47006
3,2) 0 15481 2216 109410 — 13145
(3,3) 4593 2216 5403 47006 13145 —_—
Total = 420452

Note that the diagonal elements are left blank as the values here should be the
variances which were estimated previously. The matrix is symmetric, as is to be
expected, and so summing the range produces the sum of covariances of all possible
pairs of values. This sum of all pairs of covariances is 420452.

The sum of the variances of the projected values obtained earlier was 973595 and so
the overall variance, which is the sum of these two values, is 1394047.

The overall standard error, which is the square root of this value, is therefore
estimated as 1181 or just 6% of the overall reserve estimate of 19531. The overall
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error is relatively small in this simple example. In practice, with real data involving
more accident and development years, the percentage errors tend to be higher. The
table below summarizes the results.

Project values and their standard errors:

Development Period

Acc Yr 0 1 2 3 Tot Acc Yr

1 Amount 1041 1041

S error 89 89

2 Amount 2681 1152 3833

S error 211 103 261

3 Amount 10650 2803 1204 14657

S error 913 251 120 1118

Overall Total 19531

Standard Error 1181

The chain ladder overall estimate was 19515. The individual values obtained by the
two methods are also close but the chain ladder estimates are point estimates whereas
the regression based estimates are statistical estimates with both a mean and a
standard error estimate.

All the usual information that can be produced from the traditional chain ladder can be
derived from the regression chain ladder including estimates of development factors.
The stochastic approach as shown above can produce additional information, based on
the model assumptions, such as standard errors of parameters and reserve estimates,
that the traditional approach does not. The statistical estimates obtained by the
regression approach also facilitate stability comparisons across companies and classes.

This completes our consideration of the regression chain ladder. The technique does
not require that we have a complete triangle of data and can work with almost any
shape data as long as there are sufficient points from which to obtain estimates of the
parameters.

In the next section a log-linear regression model is fitted which is motivated by the
run-off shape of the data. This model has fewer parameters as the development
parameters are subject to some curve fitting. This is used to project values outside the
original triangle shape, that is a tail is projected. The computation approach 1s
identical to the above. The only differences are that there are now more data points to
be fitted and the design, and future design matrices are different.
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G. Identifying and fitting a regression model
1. Preliminary analysis: Identifying the model.

We will now consider a new data set and attempt to identify and fit an appropriate
log-linear model to this data.

The first stage is a visual examination of the data. As a spreadsheet is being used it is
very easy to plot the values and look at the resulting line charts rather than attempt to
visualize these by looking at the data triangles.

The cumulative claims payments, which are from a UK Motor Non-Comprehensive
account, are as follows:

Development Year

Acc Yr 0 1 2 3 4 5 6

0 3511 6726 8992 10704 11763 12350 12690
1 4001 7703 9981 11161 12117 12746

2 4355 8287 10233 11755 12993

3 4295 7750 9773 11093

4 4150 7897 10217

5 5102 9650

6 6283

The graph below shows these figures as line charts.

15000 CUMULATIVE PAYMENTS CHART 1

13000
11000

HZcoX»

7000
5000
3000

O =~>»%

ACCIDENT YEAR ‘
W0 D1 -2 03 *4 b5

This is a useful presentation but it is hard to identify from this alone an appropriate
model to use. Part of the problem arises from the fact that cumulative payments are
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clearly not independent. The incremental payments are expected to eventually decline
but it is not easy to see any pattern or trend from this cumulative plot alone.

For these reasons the incremental data are now considered.

The incremental payments are

Acc Yr 0
0 3511
1 4001
2 4355
3 4295
4 4150
5 5102
6 6283

1

3215
3702
3932
3455
3747
4548

Development Year

2

2266
2278
1946
2023
2320

3

1712
1180
1522
1320

4

1059
956
1238

5 6
587 340
629

Even before these values are plotted a more promising trend can be detected across
the development direction. Plotting these values we have:

HZcoX >

o~»%x

ACCIDENT ¥YEAR
®0 O] -2 O3 g4 &5
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Finally taking logarithms (base €) of these values and plotting as before produces the
following line chart:

LOG-INCREMENTAL PAYMENTS CHART 3

ACCIDENT YEAR
Qo O] ~¢2 O3 ~»+4 &5

Looking at the accident year lines the first four or five look fairly bunched together
and the last two (the last one is only a single point) appear to be at a higher level.
From development year one the lines look reasonably straight and to have the same
slope. These observations indicate that incremental payments from development year
1 on are decaying exponentially, as their logarithms appear to lie approximately on a
straight line.

The first model to be fitted is based on these observations and will assume that each
accident year has its own parameter or level. Development year zero will be assumed
to have its own parameter and in line with the observation above the development
parameters from d, on will be assumed to be linearly related or to lie along a straight
line with some slope to be determined.

This is a start to the modelling process for this data set. The model is not expected to
be the final or best for the data but is being used to illustrate various aspects of the
modelling process. Note in particular that the plotted log-incremental data has been
used to identify an appropriate model to start the process.

The techniques here can be applied in exactly the same way to more complex
situations. As an example a different decay rate can be assumed for each accident
year if the plot indicates that there is support for such a hypothesis. The model will
then be very similar to the one described by Ajne in the second article of this volume.
The only difference, apart from the decay rates, is that he fits the first two
development periods before curve fitting whereas the example here curve fits from
development one as this appears to be supported by the data.

The use of spreadsheets with their comprehensive graphics capabilities enables the
modeller to carry out the initial stages of the data analysis phase very quickly as the

09/97 D5.18



REGRESSION MODELS BASED ON LOG-INCREMENTAL PAYMENTS

above charts illustrate. Graphical presentation can also enhance reserving reports to
management who may be less actuarially inclined than the writers of such reports.

H. Defining the model
The first model as identified above will now be defined more formally. There is a
unique level for each accident year and a unique value for the zero development
period. The parameters for development periods 1 to 6 are assumed to follow some
linear relationship (straight line) with the same slope or parameter s.
Using the terminology developed earlier we have

Y;=a+d+e; fori,j fromOto 6

whered,=d, d=sxj forj>0

and e; is the error term assumed iid normal with zero mean.
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Following the previous example, the spreadsheet table and design matrix are as shown
below.

Table 1: Regression Table for the Full Parameter Model

— design matrix —
i j Py Y; a3, a a a; a a a d s
0 0 3511 8.164 1 0 0 0 0 0 0 1 O
0 1 3215 8.076 1 0 0 0 0 0 0 0 1
0 2 2266 7.726 1 0 0 0 0 O 0 o0 2
0 3 1712 7.445 1 0 0 0 0 O O O 3
0 4 1059 6.965 1 0 0 O O 0 o0 0 4
0 5 587 6.375 1 0 0 O O O O 0 5
0 6 340 5.829 1 0 0 0 0 0 0 0 6
1 0 4001 8.294 o 1. 0 0 0 0 O 1 O
1 1 3702 8.217 0O 1 0 0 0 O O o0 1
1 2 2278 17.731 o 1 0 0 O O O o0 2
1 3 1180 7.073 0O 1.0 O O O o0 O 3
1 4 956 6.863 0O 1. 0 0 O O O O 4
1 5 629 6.444 o 1T 0 O O O O O 5
2 0 4355 8.379 O 0 1 0 0 O O 1 O
2 1 3932 8.227 0O 0 1 0 0 0 0 O 1
2 2 1946 7574 o 0 1 0 O O O 0 2
2 3 1522 7.328 0O 0 1 0 0 0 O O 3
2 4 1238 7.121 0o 0 1 o0 O 0 0 o0 4
3 0 4295 8.365 0O 0 0 1 0 0 0 1 O
3 1 3455 8.148 0O 0 0 1 0 0 o0 o0 1
3 2 2023 7.612 0O o0 0 1 0 O O o0 2
3 3 1320 7.185 O 0 0 1 0 O o0 O0 3
4 0 4150 8.331 o 0 0 0 1 O 0 1 O
4 1 3747 8.229 O 0 0 0 1 0 0 0 1
4 2 2320 7.749 O 0 0o O 1 O 0 o0 2
5 0 5102 8.537 O 0 0 0 0 1 o0 1 o0
5 1 4548 8.422 O 0 0 O 0 1 0 0 1
6 0 6238 8.746 o 0 0 0 0 0o 1 1 O

The regression output for this model is given below. For ease of reference two extra
lines have been inserted in this output. Firstly the parameter labels are shown above
the parameter coefficient estimates and secondly the T-Ratios are shown.

Regression output:
Constant 0
Std Err of Y Est .1139
R squared(Adj,Raw) 9762  .9832
No. of Observations 28
Degrees of Freedom 19
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) a & a3 a, as 4 d s

Coefficient(s) 8.573 8.574 8.665 8.554 8.637 8.846 9.042 -.296 -.435
Std Err of Coef. .076 .072 .069 .070 .076 .091 .134 .070 .018
T-ratios 1133 1199 1249 121.8 113.8 97.6 676 -42 -23.5

The development parameters, d and s are significantly different from zero as their T-
Ratios (parameter estimate divided by its standard error estimate) are -4.2 and -23.5
respectively which are well outside the usual 95% confidence interval (critical) range
of -2to 2.

The accident year parameters are also all significantly different from zero, as they
surely have to be with this model's assumptions (all accident year levels are
significantly above zero), but they do look close to one another. In order to test
whether these are distinct it is necessary to redefine the model by dropping the a,
parameter and replacing it with a constant. The only change to the design matrix is
that the first column is now made up of ones.

The regression output of the redefined model is almost identical:

Regression Output:
Constant 0
Std Err of Y Est 1139
R Squared (Adj,Raw) .9762  .9832
No. Of Observations 28
Degrees of Freedom 19

k a, a, a, a, as ag d s

Coefficient(s) 8.573 .001 .092 -.019 .064 .273 .469 -296 -.435
Std Err of Coef.  .076 .064 .069 .075 .084 .098 .132 .070 .018
T-ratios 113.3 0 13 -2 8 28 36 -42 -235

The output clearly shows a much better definition of the same model as it identifies
that the accident years 1,2,3 and 4 parameters are not significantly different from zero
or, in comparison to the previous definition, significantly different from the zero’th
accident year parameter which has now become the constant level value k. Based on
this definition the model parameters for accident years 0,1,2,3 and 4 can be set to zero
and be effectively estimated by a new common value k. This new constant of the
reduced parameter model should now be an average value for the five accident years
whose individual parameters have been dropped from the model.

A theoretically more appealing approach for inducing a partition in the accident year
parameters, based on the multicomparison t-criterion test, can be found in Renshaw

@)

Setting a, to a, to zero reduces the model parameters to just the five parameters k, as,
aq, d and s which we expect to be significant.
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The design matrix is now simpler as can be seen from Table 2 below.

Table 2: Regression Table for the Reduced Parameter Model

~—  design matrix —
1] P Y;; k a, a d s
0 O 3511 8.164 1 0 0 1 0
0 1 3215 8.076 1 0 0 0 1
0 2 2266 17.726 1 0 o0 0o 2
0 3 1712 7.445 1 0 0 0 3
0 4 1059 6.965 1 0 0 0 4
0 5 587 6.375 1 0 0 0 5
0 6 340 5.829 1 0 o0 0 6
1 0 4001 8.294 1 0 0 1 0
1 1 3702 8.217 1 0 O 0 1
1 2 2278 17.731 1 0 o0 0 2
1 3 1180 7.073 1 0 0 0 3
1 4 956 6.863 1 0 0 0 4
1 5 629 6.444 1 0 0 0o 5
2 0 4355 8.379 1 0 O 1 0
2 1 3932 8.277 1 0 0 0 1
2 2 1946 7.574 1 0 0 0o 2
2 3 1522 7.328 1 0 0 0 3
2 4 1238 7.121 1 0 0 0 4
3 0 4295 8.365 1 0 o0 1 0
3 1 3455 8.148 1 0 0 0 1
3 2 2023 17.612 1 0 0 0 2
3 3 1320 7.185 1 0 0 0 3
4 0 4150 8.331 1 0 o 1 0
4 1 3747 8.229 1 0 o0 0 1
4 2 2320 7.749 1 0 0 0 2
5 0 5102 8.537 1 1 0 1 0
5 1 4548 8.422 1 1 0 0 1
6 0 6283 8.746 1 0 1 1 0

The regression output for this reduced parameter model is

09/97

Regression Output:
Constant 0
Std Err of Y Est 1119
R Squared(Ajd,Raw) .9770  .9804
No. of Observations 28
Degrees of Freedom 23
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k as a d s

Coefficient(s) 8.608 244 441 -.303 -.440
Std Err of Coef. 052 .085 122 .068 .017
T-ratio 167.1 2.9 3.6 -4.5 -26.4

As expected the constant has now changed as it is an average value for the first five
accident years. The other parameters have also changed slightly.

All the parameters are now significantly different from zero, with t-ratios exceeding
absolute 2, as expected. The quality of fit is still good and the number of parameters
has been reduced from nine to five. The model looks reasonable enough to warrant
further investigation.

The next section considers some basic testing using residual analysis plots of the first
(all parameter) model and this reduced parameter model.

Projections from both these models will be calculated and compared after this
analysis.

I. Testing the models by residual analysis plots

The parameter estimates from the regressions can now be used to calculate the model
estimates, in log-space, which can then be compared with the observed values in log-
space. It is usual to use standardized residuals, defined as the difference between
observed and fitted values divided by the model standard error, and considering these
in graphical form. Under the IID assumptions used to derive the model estimates
these residuals should exhibit a fair degree of randomness.

Testing now turns to the analysis of these standardized residuals. In practice these are
plotted against development, accident and payment year and also against the fitted
values. Working in a spreadsheet makes this process very easy as each chart can be
defined as an X-Y chart with Y the standardized residuals and X the other variable in
turn.

Table 3 below shows the actual values, their logarithms and the model fitted values in
log-space for the full parameter model as defined in Table 1. The residuals are just
the differences between the observed and fitted values in log-space and the
standardized residuals are the residuals divided by the model standard error, which
was .1139 for this model.
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Table 3: Residuals Table for the Full Parameter Model.

Acc Dev Pay Stand
i ] it P Y ' Resid Resid
i}

0 0 0 3511 8.164 8277 -.113 -.991
0 1 1 3215 8.076  8.138  -.062 -.547
0 2 2 2266 7.726  7.703 .023 201
0 3 3 1712 7.445  7.268 177 1.557
0 4 4 1059 6.965  6.833 132 1.159
0 5 5 587 6.375 6.398  -.023 -.202
0 6 6 340 5829  5.963 -134  -1.177
1 0 1 4001 8.294  8.278 017 .147
1 1 2 3702 8.217  8.139 078 .683
1 2 3 2278 7.731 7.704 027 239
1 3 4 1180 7.073 7269 -196 -1.717
1 4 5 956 6.863 6.834 029 253
1 5 6 629 6.444  6.399 045 396
2 0 2 4355 8.379  8.369 010 .091
2 1 3 3932 8277  8.230 047 412
2 2 4 1946 7.574  7.795 -221  -1.943
2 3 5 1522 7.328 7360  -.032 -.283
2 4 6 1238 7.121 6.925 196 1.722
3 0 3 4295 8365  8.258 107 .942
3 1 4 3455 8.148 8.119 028 249
3 2 5 2023 7612  7.684 -.072 -.631
3 3 6 1320 7.185 7249  -.064 -.560
4 0 4 4150 8.331 8340 -.010 -.084
4 1 5 3747 8.229  8.202 027 237
4 2 6 2320 7.749  7.767 -.017 -.153
5 0 5 5102 8.537 8549  -.012 -.104
5 1 6 4548 8.422 8.411 012 .104
6 0 6 6283 8.746 8.746 .000 .000

To produce the residual plots in X-Y chart form the standardized residuals column is
defined as the Y-variate and the first three columns in turn as the X-variate for the
accident year, development year and payment year plots. For the final plot the fitted
values column is picked instead.

The various residual plots from this model are shown below in Charts 4 to 7.
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The residuals for the Reduced Parameter Model, which is defined in Table 2 (common
level value for the first five accident years), are shown in Table 4 below.

Table 4: Residuals Table for the Reduced Parameter Model.

Acc Dev Pay Stand
i j i+j Pi' YlJ ? ReSid Resid

y .
3

3511 8.164 8.304 -.141 -1.259
3215 8.076 8.168 -.093 -.828
2266 7.726 7.729 -.003 -.025
1712 7.445 7.289 156 1.398
1059 6.965 6.849 116 1.035

587 6.375 6.410 -.035 -.309

340 5.829 5.970 -.141  -1.260
4001 8.294 8.304 -.010 -.091

3702 8.217 8.168 .048 432
2278 7.731 7.729 .002 022
1180 7.073 7.289 -216  -1.927
956 6.863 6.849 .013 121
629 6.444 6.410 .035 309
4355 8.379 8.304 .075 667

3932 8.277 8.168 .109 971
1946 7.574 1.729 -.155 -1.386
1522 7.328 7.289 .039 347
1238 7.121 6.849 272 2431
4295 8.365 8.304 .061 543
3455 8.148 8.168 -.021 -.185
2023 7.612 7.729 -.116  -1.039
1320 7.185 7.289 -.104 -.925
4150 8.331 8.304 026 236
3747 8.229 8.168 .060 540

NV UPEAPRRALWWLWWWLWNNNNONN RS E_-_-O OO OO0 O
O ONMFOWNHRORWNFHRFOWVMAWNROOAWVMBPBWND—-O
ANV NP UNBEBLANBEBLVWNOOVMPLNNDN,AAOVIDRLND—=,O

2320 7.749 7.729 021 185
5102 8.537 8.548 -.011 -.095
4548 8.422 8.412 011 095
6283 8.746 8.746 .000 .000
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The various residual plots from this model are shown below in Charts 8 to 11.
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RESIDUAL ANALYSIS CHART 11
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This reduced parameter model has a standardized residual for accident year 2,
development period 4, of 2.431 as the maximum (absolute) standardized residual
value. The full parameter model had a lowest standardized residual of -1.943 (i=2,
j=2). The second model has a slightly smaller standard error of .1119 compared to the
.1139 of the full parameter model. There is however little difference overall between
these models detectable from the above tables. Both seem to fit the data fairly well.

The next stage is to consider these residuals in graphic form to examine whether any
unmodelled trends are detectable.

In all these residual plots, according to the model error assumptions, we expect a set
of fairly random points bounded in about 95% of cases within the -2 to 2 range.

As Table 3 and Table 4 above indicate, all the standardized residuals for the full
parameter model are just in this range (Table 3) with just one value outside the range
in the case of the reduced parameter model (Table 4). Values outside this range will
sometimes occur and often identify outliers that may warrant further investigation.

The development year plots (Charts 4 and 8) will generally be the most interesting
and particularly where, as in these cases, it has been assumed that there is some
relationship connecting the development parameters. A particular feature worth
looking out for in these plots is any tendency for the residuals to spread or fan out
with development. This is not too noticeable in these examples. Note however that
the residuals for development periods 4 to 6 in both cases do not appear very random.
There are however only a few values involved and these may well be impacted by the
outlier identified earlier (i=2, j=4). We have used a very simple shape to describe the
run-off from development period 1 and these residual plots are quite reasonable in the
circumstances.

The accident year residual plots are shown in Chart 5 for the full parameter model and
in Chart 9 for the reduced model. Considering the former first, as each accident year
has its own parameter in this model, the plot should be boringly predictable with the
residuals balanced about the zero horizontal. Chart 5 shows this quite clearly.
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The reduced model accident year residuals, Chart 9, look very similar although here
the first five accident years have effectively been fitted by a single parameter. The
only visible differences are the accident 4 residuals which are all greater than zero. In
a fuller analysis this parameter should be added back to the reduced model and tested
for significance. It is possible that it may become more significant if measured
against the average for accident years 0 to 3 although this turns out not to be the case
in this instance.

In both cases the accident year residuals appear to get closer to the zero horizontal
line, with increasing accident year, resulting in the left half of both charts diverging
from this line. This is due, at least in part, to over-parameterisation. In the extreme
right, for example, as only one point is fitted and with its own parameter a perfect fit
is obtained and the residual has to be zero. For accident year 5 two points are fitted
and so the accident year parameter is again effective in ensuring a close fit. The
values in these late accident years are also relatively large, as they are from earlier
development periods when payments tend to be higher, and they may be relatively
more stable. This is considered later.

The payment year residuals (Charts 6 and 10) can be interesting but more difficult to
interpret. Inflationary forces are expected to operate along this direction but as
accident year levels have been assumed independent this may mask any such
influences. The plots for both models look very similar, which is not very surprising,
as neither model considers this direction in its definition. Both these charts appear to
show a definite non-random shape for the early payment years and this would warrant
further investigation. Changes in claims inflation rates during the period concerned,
which are not incorporated in the model, may well be the cause. This is not pursued
here. The regression analysis at least identifies areas that would warrant further
investigation in practice.

It was indicated earlier that higher values, generally in earlier development periods,
may be relatively more stable than later, generally lower, values. This can be tested
by plotting residuals against fitted values as is shown in Charts 7 and 11. In both
these charts the last few residuals on the extreme right look close to the horizontal
zero line but these points are the same points identified earlier as the last two or three
accident year values. The residuals show a tendency to increase (in absolute terms) as
values decrease. This effect, generally known as heteroscedasticity, is also detectable
from the development year plots as incremental payments eventually decrease with
development. No attempt is made here to overcome any heteroscedasticity.

The error term normality assumption can also be tested more formally within the
spreadsheet if required. It is possible for instance to use the Data Distribution
command to calculate and tabulate a frequency distribution of the residuals and
compare values in this table with preset values calculated from the standard normal

distribution.
The residual analysis indicates that these models have some weakness along the

payment year direction and there are sufficient reasons to doubt some of the model
assumptions. A full analysis would follow these up. In particular some inflation
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adjustment should be made to the data and the modelling process repeated to see
whether this adjustment removes the non-random look of these residuals along the
payment year direction. However for the time being it will be assumed that both these
models are satisfactory and the regression results will be used in the next section to
project the future payments and their standard errors from these two models.

A later section will consider a model with inflation and claim volume adjustment to
see if a better model can be found.

J. Using the models to project future payments and standard errors

When the basic chain ladder model with independent development parameters is fitted
it is not possible to extend the projections beyond the latest development contained in
the triangle without resorting to some form of external curve fitting of development
factors such as the Sherman inverse power curve for example.

In these examples as a curve (straight line) has been fitted to the development
parameters it is possible to extend the model projections to development periods
beyond those contained in the data triangle.

The model has a natural stop as the payments are decaying exponentially and so
become small relatively quickly. So we could simply sum the implied geometric
series or take the values to some development period beyond which we would expect
no more payments in practice.

In what follows it is assumed that there are no payments beyond development 12, as
this is sufficient for purposes of illustration and cuts down the values to be projected.
In practice this will need to be decided on the merits of each case and knowledge of
the likely run-off period of the particular class being investigated.

The data triangle contained 28 values and our completed rectangle has a total of 91
data points (7x13). There are therefore 63 individual payments and their standard
errors to calculate.

The design and future design matrices are first produced and these are used to produce
the variance-covariance matrix of the future values. This is now a 63 x 63 matrix and
should be within the capability of a reasonable spreadsheet. Both Lotus 123 Version
2.2 and SuperCalc5 Version 5.0 can handle square matrices of around 89 x 89.

For producing the future values and their associated (individual) standard errors only
the diagonal elements of this matrix are needed. The calculations from here are fairly
simple and are shown in the Tables 5 and 7 below. These tables are set in the way one
would normally produce them in a spreadsheet. The values are arranged by accident
year first, as this is how the future design matrix was set out. The accident year order
was adopted here as this order facilitates the computation of the accident year standard
eITOrS.
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The second table in each set (Tables 6 and 8) show the projected values and standard
errors in a more traditional format and also include accident year and overall totals for
both values and standard errors. These calculations are also set out in the spreadsheet
as explained in Section F. In view of the size of the matrices involved they have not
been shown here.

The various matrix products needed to calculate the variance-covariance matrix (as set
out in Appendix 1 for the earlier chain ladder example) took under two minutes on a
12MHz PC fitted with a maths co-processor.
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Table 5: Projection for the Full Parameter Model: Part a

o

i 5 5 5 a % error
J Y, vary, P, se P,

7 5.528 .0195 254 36 14.0%
8 5.093 .0223 165 25  15.0%
9 4.658 .0258 107 17 16.2%

10 4223 .0301 69 12 17.5%
11 3.788  .0350 45 8 18.9%
12 3353 .0405 29 6 20.3%

6 5964 .0185 393 54  13.7%
7 5.529 .0210 255 37  14.6%
8 5.094 .0241 165 26 15.6%
9 4.659 .0280 107 18 16.8%

10 4224 .0325 69 13 182%
11 3.789 .0377 45 9 19.6%
12 3354 .0436 29 6 21.1%

5 6490 .0179 664 89 13.4%
6 6.055 .0199 431 61 14.2%
7 5.620 .0227 279 42  152%
8 5.185 .0261 181 29  16.3%
9 4750 .0302 117 21 17.5%

10 4315 .0350 76 14  18.9%
11  3.880 .0405 49 10 20.3%
12 3.445 .0467 32 7 21.9%

6.814 .0177 919 123 13.3%
6.379 .0193 595 83 14.0%
5944 .0216 386 57 14.8%
5.509 .0246 250 39 15.8%
5.074 .0283 162 27  17.0%
4.639 .0327 105 19  18.2%

1 4205 .0378 68 13 19.6%
1 3.770  .0435 44 9 21.1%
1 3.335 .0499 29 7  22.6%

7332  .0181 1542 209 13.5%
6.897 .0193 999 139 14.0%
6.462 .0212 647 95  14.6%
6.027 .0237 419 65 15.5%
5592  .0269 272 45 16.5%
5.157 .0308 176 31 17.7%
4.722 .0354 114 22 19.0%

1 4287 .0407 74 15 20.4%
1 3.852 .0466 48 11 21.8%
1 3.417 .0532 31 7  234%

7.976  .0202 2939 420 14.3%
7.541  .0208 1903 276  14.5%
7.106 .0220 1232 184 14.9%
6.671 .0240 798 124 15.6%
6.236 .0266 518 8 16.4%
5.801  .0298 336 58 17.4%
5.366 .0338 218 40 18.5%
4931 .0385 141 28  19.8%

NNV BA R RRPRRRPRRRAULLWWWWWUWWWRNNNRNNN R Rt ES—m—m,—_, OO0 OO0

N=OVONAANMAWNNFROOVONANEWNHOVRIAWL S

1 4496 .0438 92 19 21.2%
1 4.061 .0498 59 13 22.6%
1 3.626  .0565 39 9 24.1%
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Table 5: Projection for the Full Parameter Model: Part b

i j 5 5 5 % error
J g vary, P, seP, 7°

6 1 8.607 .0296 5550 962 17.3%

6 2 8172 .0290 3592 616 17.1%

6 3 7737 .0290 2325 399 17.2%

6 4 7302 .0298 1506 262 17.4%

6 5 6.867 .0313 975 174 17.8%

6 6 6432 .0334 632 116 18.4%

6 7 5997 .0362 410 79 19.2%

6 8 5562 .0397 266 53 20.1%

6 9 5127 .0439 172 36 21.2%

6 10 4692 .0487 112 25 22.4%

6 11 4257 .0543 73 17  23.6%

6 12 3.822 .0605 47 12 25.0%

TOTAL = 34377
Table 6: Projected values and Standard Errors.
Full Parameter Model.
Development Year

Yr 1 2 3 4 5 6 7 8 9 10 11 12 Total
0 £ 254 165 107 69 45 29 669
se 36 25 17 12 8 6 79
1 £ 393 255 165 107 69 45 29 1063
se 54 37 26 18 13 9 6 119
2 £ 664 431 279 181 117 76 49 32 1830
se 89 61 42 29 21 14 10 7 196
3 £ 919 595 386 250 162 105 68 44 29 2559
se 123 8 57 39 27 19 13 9 7 265
4 £ 1542 999 647 419 272 176 114 74 48 31 4324
se 209 139 95 65 45 31 22 15 11 7 443
5 £ 2939 1903 1232 798 518 336 218 141 92 59 39 8274
se 420 276 184 124 85 58 40 28 19 13 9 890
6 £ 5550 3592 2325 1506 975 632 410 266 172 112 73 47 15659
se 962 616 399 262 174 116 79 53 36 25 17 12 2158
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Table 7: Projection for the Reduced Parameter Model: Part a

Y, var¥,

ot

e
>
>

X
3
o
-t

7 5530 .0182 255 35 13.6%
8§ 5.091 .0209 164 24 14.5%
9 4.651 .0241 106 17 15.6%
10 4211  .0279 68 11 16.8%
11 3772 .0322 44 8 18.1%
12 3332 .0371 29 6 19.4%
6 5970 .0161 395 50 12.8%
7 5530 .0182 255 35 13.6%
8§ 5091 .0209 164 24 14.5%
9 4.651 .0241 106 17 15.6%
10 4211  .0279 68 11 16.8%
11 3772 .0322 44 8 18.1%
12 3332 .0371 29 6 19.4%
6.410 .0146 612 74 12.1%
5970 .0161 395 50 12.8%
5.530 .0182 255 35 13.6%
5.091  .0209 164 24 14.5%
4.651  .0241 106 17 15.6%

1 4211  .0279 68 11 16.8%
1 3.772  .0322 44 8 18.1%
1 3332  .0371 29 6 19.4%

6.849  .0136 950 111 11.7%
6410 .0146 612 74 12.1%
5970  .0161 395 50 12.8%
5530 .0182 255 35 13.6%
5091  .0209 164 24 14.5%
4.651  .0241 106 17 15.6%

1 4211  .0279 68 11 16.8%
1 3.772 .0322 44 8 18.1%
1 3.332 .0371 29 6 19.4%

7.289  .0132 1474 170 11.5%
6.849  .0136 950 111 11.7%
6.410 .0146 612 74 12.1%
6.970  .0161 395 50 12.8%
5530 .0182 255 35 13.6%
5.091  .0209 164 24 14.5%
4.651 .0241 106 17 15.6%

LVULUNULUNLUULUOUUVBAEDRBRBRRPRRRAVWLLLWLWLWWWUWLWRNNNNNNNFREE—EPEEREEEOO OO
VXN NPAWLWNFOORRNANLRNOOVOOIRWN

10 4211  .0279 68 11 16.8%
11 3.772  .0322 44 8 18.1%
12 3332 .0371 29 6 19.4%
2 7972 0195 2927 411 14.0%
3 7532 0199 1886 267 14.2%
4 7.093 .0208 1216 176 14.5%
5 6.653 .0224 784 118 15.0%
6 6213 .0244 506 79 15.7%
7 5774  .0270 326 54 16.6%
8 5334 .0302 210 37 17.5%
9 4894 .0340 136 25 18.6%
10 4455  .0382 88 17 19.7%
11 4.015 .0431 37 12 21.0%
12 3,575  .0485 37 8 22.3%
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Table 7: Projection for the Reduced Parameter Model: Part b

1 j > 5 5 % error
J . vary P, se P, °

6 1 8.609 .0285 5562 946 17.0%

6 2 8.170 .0279 3582 603 16.8%

6 3 7.730 .0279 2308 388 16.8%

6 4 7290 .0284 1487 252 17.0%

6 5 6.851 .0295 959 166 17.3%

6 6 6.411 .0311 618 110 17.8%

6 7 5971 .0333 399 73 18.4%

6 8 5.532 .0361 257 49 19.2%

6 9 5.092 .0394 166 33  20.0%

6 10 4.652 .0432 107 23 21.0%

6 11 4213 .0476 69 15 22.1%

6 12 3.773 .0526 45 10 23.2%

TOTAL = 33847
Table 8: Projected values and Standard Errors
Reduced Parameter Model.
Development Year

Yr 1 2 3 4 5 6 7 8 9 10 11 12 Total
0 £ 255 164 106 68 44 29 666
se 35 24 17 11 8 6 75
1 £ 395 255 164 106 68 44 29 1060
se 50 35 24 17 11 8 6 106
2 £ 612 395 255 164 106 68 44 29 1672
se 74 50 35 24 17 11 8 6 146
3 £ 950 612 395 255 164 106 68 44 29 2622
se 111 74 50 35 24 17 11 8 6 200
4 £ 1474 950 612 395 255 164 106 68 44 29 4096
se 170 111 74 50 35 24 17 11 8 6 275
5 £ 2927 1886 1216 784 506 326 210 136 88 57 37 8173
se 411 267 176 118 79 54 37 25 17 12 8 851
6 £ 5562 3582 2308 1487 959 618 399 257 166 107 69 45 15558
se 946 603 388 252 166 110 73 49 33 23 15 10 2101
Overall Total 33847
Standard Error 2545
Percent. Error 7.52
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K. Overall standard error and accident year standard errors

The calculations necessary to produce the accident year and overall standard errors
shown in Tables 6 and 8 above are a repeat of those shown in Section G. The only
complication is that in the above cases there are more values to project (63 rather than
6) so there is a lot more to calculate.

The results are very close. The full model produces estimated future payments of
34377 with a standard error of 2742 or 7.98%. The reduced parameter model
produces estimated future payments of 33847 with a standard error of 2545 or 7.52%.
The two estimated values are not significantly different but the second model has a
proportionately smaller standard error. This is purely due to the smaller number of
parameters used in defining this model. The second model may therefore be
considered to have the slight advantage over the first.

The closeness of these results is not particularly surprising as the two models are very
similar. Most of the future payments relate to the last two accident years and here
both models have assumed these years to have independent levels (just like the chain
ladder model) and so any smoothing from the reduced parameter model affects only
the earliest accident years where the projected future payment values are not so large.

In fact assumptions about the most recent accident years are crucial to any reserve
analysis. The base data used in this example is unadjusted for inflation and claim
volume and the levels for the various accident years are not normally expected to be
as close as those of the first five accident years above.

The next section will consider modelling the inflation and volume adjusted data.
L.  Adjusting for inflation and claim volumes

It is possible to reduce the model parameters further by using an inflation index to
bring all payments to current value and a claims volume adjustment or weight for each
accident year so as to normalize these payments.

The claim volume values to be used in this example are based on the number of
claims reported by the end of the first development period. They are scaled for
convenience.

Accident Year 0 1 2 3 4 5 6

Claim Volume 143 145 152 135 129 147 191
An earnings index for the relavant period will be used in this case to bring payment
values to payment year 6 (the latest payment year) values. In practice case is needed

to ensure that the index used is the most appropriate index for the class of claims
under investigation.
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Payment year 0 1 2 3 4 5 6
Index 1.55 141 130 123 113 105 1

The inflation adjusted, volume normalized incremental payments (shown in integer
format but calculated and used to many decimal places) are now as follows:

Development Year
Acc Yr 0 1 2 3 4 5 6
0 3806 3170 2060 1473 837 431 238

1 3891 3319 1932 920 692 434
2 3725 3182 1447 1051 814

3 3913 2892 1573 978

4 3635 3050 1798

5 3644 3094

6 3290

Even before any further analysis is carried out it is clear from this triangle that there is
a fair amount of consistency and stability in the adjusted data.

Plotting the log-incremental adjusted data, as can be seen from Chart 12 below,
appears to confirm this observation. The various lines, each representing an accident
year, look closely grouped together for at least the first couple of development
periods.

LOG-INCREMENTAL PAYMENTS CHART 12
DATA ADJUSTED FOR INFLATION AND CLAIM VOLUME

(B&J; 8 SRRSO SOV SEUTOTOTOTN U
ADJUSTED gl ... .. .. iiiciccdiiieninnennn. . ppvey S ST

AVERAGE : : : : :
) 7N 1> R PR R R RRIRUN: RO Besreetmrannns Peecnenenaannd
N S T R T

0 ; i i | i
0 1 2 3 4 5 6

ACCIDENT YEAR
‘*-0 O] -2 03 =g &5

The chart indicates that accident year effects may have been reduced or eliminated
and the first test will be to confirm whether this is the case. As the shape of these
lines is as before the same assumptions will be made in modelling the shape.

The design matrix is initially exactly as in the previous example which assumed

accident years 1 to 6 as independent variates and had an independent first
development level (d) and then a linear trend with common slope s.
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The regression output using the adjusted values and including the extra two lines as
before is:

Regression Output: Full Parameter Model.

Constant 0
Std Err of Y Est 1153
R Squared(Adj,Raw) 0.9788 .9851
No. of Observations 28
Degrees of Freedom 19
k a, a, a, a, as ag d s

Coefficient(s) 8.627 -.087 -.114 -.175 -.120 -.110 -237 -292 -.505
Std Err of Coef. .077 .065 .070 .076 .085 .099 .133 .071 .019
T-Ratios 1126 -13 -16 -23 -14 -1.1 -18 -41 -270

Accident year 3 turns out to be the only one whose parameter has a T-ratio whose
absolute value exceeds 2 and may be considered significant.

So the next stage is to eliminate all the accident years with T-Ratios less than absolute
2 and refit. There are now four parameters namely

k a d and s

The regression output of this model is:

Regression Output:
Constant 0
Std Err of Y Est 1157

R Squared(Adj,Raw) 9787 .9810
No. Of Observations 28
Degrees of Freedom 24

k ay d s
Coefficient(s) 8.523 -.088 -.296 -.493
Std Err of Coef. .054 .063 .068 .017
T-Ratios 1572 -14 -4.3 -28.7

The parameters of this model can still be reduced as the accident year three parameter
is now not significant. What has happened is that it is now being measured against
the “average” of all the other accident year levels rather than just the first accident
year level and this has been sufficient to make this last accident year parameter close
enough to the average value. Care needs to be taken to ensure that none of the other
parameters have become significant in the new model.
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So this remaining accident year parameter will be dropped, leaving only three
parameters, one for the common level k, and the two shape parameters d and s.

The regression output of this three parameter model is:

Regression Output:

Constant 0

Std Err of Y Est 1179

R Squared(Adj,Raw) .9779 .9795

No. Of Observations 28

Degrees of Freedom 25

k d s

Coefficient(s) 8.501 -.286 -.489
Std Err of Coef. .053 .069 .017
T-Ratios 161.3 -4.1 -28.3

This is an interesting stage. There are now only three parameters and all are
significant. The model has a high R-squared value and appears to describe the data
reasonably well. It is now tempting to use this model to project future payments.

The process is as before with the minor irritation of scaling the estimated values for
claim volumes and using some future inflation index to take the projected payments to
final values. The inflation rate to be used here is 7.5% p.a. which is chosen as it is
close to the average annual historic rate implied by the index used to adjust the
historic payments and will facilitate the comparison of the results. In practice a more
appropriate prospective rate or rates will normally be utilized and a number of these
used to obtain estimates.

Table 10 below shows the results derived from the full parameter model and inflation
at 7.5% p.a.
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PAPERS OF MORE ADVANCED METHODS

Full Parameter Model with inflation at 7.5%

Development Year

Yr 1 2 3 4 5 6 7 8 9 10 11 12 Total
0 £ 253 164 107 70 45 29 669
se 36 25 18 12 9 6 80

1 £ 3890 253 164 107 70 45 29 1058
se 54 37 26 18 13 9 6 120

2 £ 658 427 278 181 117 76 50 32 1820
se 89 61 43 30 21 15 10 7 198

3 £ 911 592 384 250 162 106 69 45 29 2547
se 123 84 58 40 28 19 14 10 7 267

4 £ 1524 990 643 418 271 177 115 75 49 32 4292
se 209 140 95 65 45 32 22 15 11 7 445

5 £ 2910 1889 1226 797 518 336 219 142 93 60 39 8229
se 421 277 185 126 86 59 41 29 20 14 10 896

6 £ 5544 3596 2334 1515 984 639 415 270 176 114 74 48 15709
se 972 624 406 267 177 119 81 55 38 26 18 12 2191
Overall Total 34324

Standard Error 2779

Percent. Error 8.10

The results are very close to those obtained earlier (Table 6) from the almost identical

model without explicit inflation assumptions.

Increasing the inflation rate to 8.5% p.a. increases the overall estimate to 35210 with a

standard error of 2858. So the one percentage change in the assumed future inflation
rate impacts the estimated future payments by 2.6%.

Turning now to the reduced parameter model, that is the three parameter model with
no accident year effects apart from the common level we obtain the following results
assuming future inflation at 7.5% p.a.
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Table 11: Projected values and Standard Errors.

Reduced Parameter Model with inflation at 7.5%.

Development Year

Yr 1 2 3 4 5 6 7 8 9 10 11 12 Total
0 £ 249 165 109 72 47 31 673
se 36 25 18 13 9 6 79
1 £ 412 272 179 118 78 52 34 1145
se 55 39 27 19 14 10 7 120
2 £ 703 464 306 202 134 88 58 39 1994
se 9% 62 44 31 22 16 11 8 184
3 £ 1018 671 443 292 193 127 84 56 37 2921
se 1125 8 59 42 29 21 15 11 7 235
4 £ 1585 1045 690 455 300 198 131 87 57 38 4586
se 192 129 8 61 43 30 21 15 11 8 323
5 £ 2945 1942 1280 845 557 368 243 160 106 70 46 8563
se 358 235 158 108 75 52 37 26 19 13 9 541
6 £ 6241 4114 2712 1788 1180 778 514 339 224 148 98 65 18201

S

777 500 329 220 151 105 73 52 37 26 19 13 1090

Overall Total 38083
Standard Error 1725
Percent. Error 4.53

The results now look, and are, different. The overall estimate is significantly up on
the previous estimates and the standard error is much reduced. The reduction in the
overall standard error is due to the smaller number of parameters left in the reduced
model and reflects the increased degree of smoothing that this parameter reduction has
produced.

The increase in the overall projection, at just under 11%, is however too high to be
explained by the derived standard errors. The main contributor can be clearly
identified from the tables as the last accident year. This is not too surprising with
hindsight. There is only a single data point from which to project. If it is assumed, as
in the first case, that each year has an independent level then this point alone
determines the level of the last accident year. The accident year residual plot for the
latter model (Chart 14) shows the standardized residual for accident year 6 at around
-1. Although this will not generally be considered statistically significant its impact,
in a reserving context, has become significant.
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Assuming a common level (in the adjusted figures) substantially reduces the influence
of this last data point on its accident year estimate of future payments. As the
adjusted triangle figures show, the one and only value for this last accident year is
substantially below the corresponding values of the prior years. Using the same
average value for all accident years gives the last accident year an average value
which is now just under 16% higher than the value estimated from its own single data
point.

Putting the last accident year back into the model will produce results which will
broadly match the full model overall estimate but with a reduced standard error.
These are shown below.

Table 12: Projected values and Standard Errors.

Reduced Parameter Model with Acc Yr 6, inflation at 7.5%.

Development Year

Yr 1 2 3 4 5 6 7 8 9 10 11 12 Total
0 £ 249 165 109 72 47 31 673
se 35 25 18 13 9 6 79

1 £ 412 272 179 118 78 52 34 1145
se 55 39 27 19 14 10 7 120

2 £ 703 464 306 202 134 88 58 39 1994
se 90 62 44 31 22 15 11 8 183

3 £ 1017 671 443 292 193 127 84 56 37 2921
se 125 85 59 42 29 21 15 11 7 234

4 £ 1585 1045 689 455 300 198 131 87 57 38 4585
se 192 128 88 61 43 30 21 15 11 8 322

5 £ 2945 1942 1280 845 557 368 243 160 106 70 46 8562
se 357 235 157 108 75 52 37 26 19 13 9 540

6 £ 5494 3621 2387 1574 1038 685 452 299 197 130 86 57 16021
se 981 639 421 280 188 127 87 60 41 28 20 14 2258
Overall Total 35902

Standard Error 2609

Percent. Error 7.27

09/97 D5.42



REGRESSION MODELS BASED ON LOG-INCREMENTAL PAYMENTS

s RESIDUAL ANALYSIS CHART 13
T as FULL MODEL (INDEPENDENT ACCIDENT YEARS)
AR |ererreeeee S eeereeenes Bereeeneenns T A e T
NE 15 4-ccccmeee _n...........:............l-? ........... E ........... '. ........... Pereseneeee. Peeceseauons
DS  frrerreeee .n ....................... E .......... é. .......... :. ----------- s ........... E ...........
0.5 4--cveemeeiiiiiinieea Becenaanaan Leeermnerces Secnecnianns —ereeenees Sreerciiieeitiitienann.
2 II) n E a 2 H o &
- - . o [-] .
DU -0.5 b ccccvenee E ...................... -? .......... B. .......... E ............ E ........... Pracecnccens
I A e - TRRLALLEEL SLELRIEEERD ? ........... , ........... ,. ........... berecacnanes bececonceass
s L 154 - SRTIPEPEPDI SITDPPIPEPD Pereeennann. R RLOITTTTOET DT PEPORPRIE PRPTPRPRPPR
E ...........,..........g .......... q ........... P esverssrcssmucntatscmatpuottavinatrorerasnnrass
25 - .
D -1 0 1 2 3 4 5 6 7
ACCIDENT YEAR
RESIDUAL ANALYSIS CHART 14
: 25 REDUCED MODEL (NO ACCIDENT YEAR PARAMETERS)
AR freremeere B oo e S T ST S 4
NE 15 f-:ciceeaes oeeeenens Seerrneenan 1 JRARRRELL P LI LTI Seneeieiaens TR
ps |- .:“”"-"“U: ....................... ;............s. ........... :-...........E. ...........
05 J--vvecvccegieiccaccccgieccrassscafforonnccracdferescccnnse feeencsannas Beeesranaess N emuvenavend
Al E g ? [a] o :
R D : o u =] 8] +
DU 05 f---c-ccen-- Freevraresan | - SEELEERRER D ........... besaresncnas eecervoacens heesnonnnand
TR - T ST fecaraenaans [ P hereeaaans = RO
I A 4 4 H
s L LS Jeeeeeeees u ...................... B_, .......................
E I A E ..................... teecccacvesnsmosnnenasssomennassnersmacsesnne vn o
D ‘ -1 0 1 2 3 4 5 6 7
ACCIDENT YEAR

(NOTE HERE THE RESIDUAL FOR ACC YR 6)
(ITRESULTS IN A 7.3% INCREASE IN THE OVERALL ESTIMATE)

Both these models are reasonable. They fit the data well and the standard errors are
quite small. The results are quite different and these differences are clearly not
explained by the standard errors, and are primarily due to the choice of parameters.
As we know little about the underlying account it will be very difficult to choose
between these models. In practice additional information, and informed views, will
need to be sought to assist in this choice. This can then be used directly in deciding
which parameters are to be left in the model.

A theoretically more appealing approach is to use some form of external or prior
distribution and estimate in a Bayesian framework. This is explained in more detail
by Verrall (6). It is possible to carry out the necessary calculations in the spreadsheet
but more computation is necessary. The Bayesian approach combines formal
statistical theory and informed prior estimates (knowledge and expertise!) and would
appear to represent almost an ideal combination of theory and practice for reserving
work. In practice more work is necessary in order to understand how sensitive the
results are to these prior estimates, especially as these are made in log-space which,
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while convenient, are nevertheless somewhat alien from the immediate everyday
experience of practitioners.

M. Final comments

This section will briefly consider some other aspects of these models which were
deliberately avoided in earlier sections as the main emphasis has been a practical
rather than a theoretical one.

a. Standard errors of reserve estimates

In practice, and as an approximation, as long as a sufficiently large number of future
values are being projected it may be assumed that the distribution of the overall
estimate obtained is normal with mean and standard error as calculated above.

That is we can use normal probability tables to establish approximate confidence
intervals around the model reserve estimate. In the last example shown in Table 12
above for instance and under the conditions of the model, we have (approximately) a
95% probability that the required reserve will be less than 40194 ( 35902 + 1.645 x
2609). Recall however that the error estimate may be incomplete and future inflation
is assumed fixed reducing the possible error further.

In practice the specific variability of a particular class reserve estimate may be less
important to management than the variability of the overall company claims reserve
Balance Sheet figure.

The individual class standard errors may be used to obtain estimates of this overall
variability. For example if mutual independence of reserve estimates by class is
assumed the overall variance may be obtained as the sum of the individual variances.
Under these circumstances the percentage error in the overall reserves can drop to low

figures.

Much work remains to be done in this area. At least these methods provide a start
point to such considerations.

There will clearly be other factors, not incorporated into the model, that in practice
will add to the error terms. There was no attempt to explicitly adjust for inflation in
the first examples although the models incorporated an implicit assumption which is
then implicitly projected into the future.

In the later examples values were adjusted for past inflation, using an index that may
or may not have been the most appropriate, and projected values calculated using an
assumed future rate of inflation, or more correctly claims cost escalation. The
examples assumed a future rate which was based on the average past inflation used in
adjusting the data.

Relatively small changes in these assumed future rates can lead to relatively large
changes to the overall projected values. These models can be used to produce a series
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of results, with varying future claims escalation assumptions, from which it may be
possible to derive a measure of the additional variability that may arise from this
source.

These models do not attempt to allow for changes in the speed of settlement of claims.
Payment developments may appear stable due to a combination of accelerating costs
counteracted by a slowdown in settlements. Clearly under such circumstances
estimates from a regression model on log-incremental payments, or a chain ladder
projection based on cumulative payments, are likely to produce estimates which may
be seriously biased.

Finally there will generally be a lot more information available to management than
that used in fitting any statistical model. It is just possible that a combination of
statistical derived estimates with informed estimates based on specific and detailed
knowledge of the particular business, its environment and claims, may produce final
estimates that have reduced variability. This will be however difficult to prove.

b. Negative values in incremental data sets

One particular problem with log-linear models is the occasional negative value in the
original space.

Negative values occur in practice especially in net of reinsurance incremental
payments and in classes of business subject to large subrogation or salvage recoveries.
Various alternative approaches are available to the modeller to deal with negative
values in practice. One approach, adopted in a commercial package (ICRFS), is to
add a sufficiently large constant to all the incremental values, so that they all become
positive, before the logarithmic transformation and an adjustment made in the
projected values.

An alternative approach, that may be acceptable in practice, is to shift payments from
one period to an adjacent one so as to eliminate a negative value. This may be
justified if it is known, or suspected, that the negative value is the result of some serial
correlation, for example when preceded by a relatively large value. Another
possibility, which may be tried where the negative value is small is to ignore the value
totally or to set it to some small positive value such as 1 (log, 1=0).

No particular approach is recommended here as ideal for dealing with negative values.
In practice the reason for such negative values has to be investigated and this process
often helps identify an appropriate approach to deal with the problem. Clearly one
should not ignore a genuine feature of the data for the sake of convenience.

C. Parsimony

The chain ladder model is sometimes considered overparameterised as it involves a
parameter for each accident year and each development period. Too many parameters
can lead to model instability. Increasing the number of explanatory variables
improves the quality of the fitted data but such slavish adherence to the data often
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results in unstable projections. At the extreme one can always obtain a perfect fit by
including enough parameters in the model. Such a model fails to achieve any
smoothing of the data and will be very poor for prediction purposes. Parsimonious
models, that is with fewer parameters are to be preferred for this reason. This is
explained in more detail in the first article in this Volume of the Manual.

d Serial Correlation and Heteroscedasticity

The triangular shaped incremental payments data tend to decrease as the development
years increase and there is usually some serial correlation present in these payments
for a particular accident year. Such correlation may occur when a low payment
period, due to administrative problems for example, is followed by a catching up high
payment period or vice versa. On net paid claims data this may happen when a gross
payment is made in one period with the incoming associated reinsurance processed
during the following period.

The decline in values in the development direction tends to result in the residuals
increasing with development period. This characteristic is an example of
heteroscedasticity. In effect the IID assumption implies that the error terms in the
original space are subject to the same percentage variation irrespective of their
absolute values. Experience with payments triangles indicates that as payments
diminish in the tail the percentage variation of these payments tends to be much
higher than that seen in the first few development periods when a greater volume of
payments is usually being made. This may be more pronounced in net rather than
gross payments.

Methods to overcome this are being developed. One approach followed by Zehnwirth
in the ICRFS package (Interactive Claims Reserving and Forecasting System) is to
use weights. Alternative error assumptions, which may well turn out to be more
appropriate, are being investigated by others. The main disadvantage of these
approaches is the difficulty of obtaining the parameter estimates compared to the
comparatively easy spreadsheet regression approach.

e. The Hoerl run-off curves

A particularly useful family of curves for run-off patterns is the Gamma family
defined by

P;=K;(1 +j)* exp(aj)

Each curve has a level parameter K; and two shape parameters b and a the latter being
an exponential. They have the immediate advantage of becoming linear in log-space
and can be fitted simply by multiple regression using the techniques of this article.
These curves form the start point in the ICRFS package.

As the example above illustrated these curves do not always produce good fits for all

development periods. They can be particularly poor in fitting the first few
development periods which clearly have a significant influence on the reserves
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projected for the most recent accident years where a substantial amount of the overall
reserve is generally to be found.

It is possible to use the simple techniques outlined in this article to fit “mixed” models
where some shape is fitted for later development periods and independent parameters
fitted for the earlier periods. The example above fitted an independent first
development parameter and an exponential decay curve thereafter. Any shape that
can be expressed linearly (in log-space) can be tried even if in practice restrictions in
“allowable” shapes will inevitably be necessary to keep any package to reasonable
size.

f Conclusion

Regression techniques are now beginning to dominate developments in claims
reserving methodology. The formal approach adopted, whether utilizing maximum
likelihood and IID normal errors or any other error model, at least enables the
modeller to test the reasonableness of the assumptions. The model testing phase itself
can often reveal interesting aspects of the data which may not be immediately obvious
from looking at the cumulative payments.

These models can be very useful for inter-company comparisons and for comparing
the stability of run-off triangles. Some results along these lines are to be found in
Section E of the Claims Run-Off Patterns Working Party report presented to the 1989
GISG (General Insurance Study Group) Conference in Brighton.

This article is intended to give a practical introduction to these techniques and does
not claim any original theoretical developments. The writer is particularly grateful to
Arthur Renshaw and Richard Verrall of City University for their invaluable and
patient explanations on this subject. The hope is that other practitioners can now
begin to benefit by experimenting with these techniques.
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Appendix 1

Matrix calculations for the formal chain ladder example

Design matrix X

Design matrix X transposed X”

Product of X™X

D5.49
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.58333  .25000
25000  .58333
16667  .16667
.00000  .00000
33333 -.33333
41667 -.41667
.58333 -.25000
Future design X;

0 1 0

0 0 1

0 0 1

0 0 0

0 0 0

0 0 0

.16667
.16667
.66667
.00000
-.33333
-.16667
-.16667

e (OO O

CO = OO0

.00000
.00000
.00000
1.00000
.00000
.00000
.00000

(==~

Transpose of Future Design Matrix X,

Product of Future Design X; and Inverse of X"X

i.e

09/97

— O 000 O —~O0O

O = O O — OO

— O OO — OO

X, (X™X)!

33333 .33333
25000 -.25000
41667 -.08333
33333 -.33333
41667 -.41667
.58333 -.25000

OO M m OOO

.00000
.50000
.50000
-.33333
-.16667
-.16667

O~ O = OO0

—_0 0O = O OO

.00000
.00000
.00000
1.00000
1.00000
1.00000

D5.50

-.33333
-.33333
-.33333
.00000
.66667
33333
33333

—_— OO = O

.00000
.00000
.00000
66667
33333
.33333

-.41667
-.41667
-.16667
.00000
33333
91667
41667

.00000
.75000
.25000
33333
91667
41667

-.58333
-.25000
-.16667
.00000
.33333
41667
1.58333

1.33333
.25000
1.41667
.33333
41667
1.58333
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Final product (X; (X™X)™! ) and X{"

ie. X, (X™X)'X[T

1.66667  .00000 1.33333  .00000 .00000 1.33333
.00000 1.25000 .75000 .00000 .75000 .25000
1.33333 75000 1.91667 .00000 .25000 1.41667
.00000 .00000 .00000 1.66667 1.33333 1.33333
.00000 .75000 .25000 1.33333 1.91667 1.41667
1.33333  .25000 1.41667 1.33333 1.41667 2.58333

And finally the data specific Var-Cov matrix is derived from the above values by
multiplying by o2

So the first entry is 1.66667 x .0524% = .00457 etc.
The Variance-Covariance matrix in this case is then

ie. a2 X, X"™X)' X7

.00457  .00000 .00366  .00000 .00000 .00366
.00000 .00343 .00206 .00000 .00206 .00069
.00366 .00206 .00526 .00000 .00069 .00389
.00000 .00000 .00000 .00457 .00366 .00366
.00000 .00206 .00069 .00366 .00526 .00389
.00366 .00069 .00389 .00366 .00389  .00709

Appendix 2
Spreadsheet Regression Output tables

The raw spreadsheet regression output table for the first example (4x4 chain

ladder) was

Regression Output:
Constant 0
Std Err of Y Est .05238
R Squared(Ajd,Raw) .99758 .99919
No. of Observations 10
Degrees of Freedom 3

Coefficient(s) 9.2884 9.5911 9.6924 9.7358 -.4662 -1.801 -2.647
Std Err of Coef. .0400 .0400 .0428 .0524 .0428 .0502 .0660

This is very typical of all the spreadsheet regression output.
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A brief description of this output is given below:
a) Constant (=0)

The spreadsheet regression command usually has an option of either fitting
through the origin or calculating a constant. In the case above the model was
fitted through the origin so the constant calculated is zero. In the models
described in the article a parameter is used in place of this constant as this
makes the analysis more convenient. The calculated values will be the same
but in the latter case the regression shows the standard error associated with this
constant.

b) Std Err of Y Est (0.0524)

This is the estimated standard error of the residuals. It is the square root of the
estimated model variance o2,

It is in other words the estimate of the standard deviation of the assumed
underlying normal error term.

This value plays a very significant role in the estimates of future values and
their standard errors.

¢) R Squared (Adj, Raw) (0.9976 0.9992)

This is a statistic ranging from 0 to 1 which indicates how much variation in the
data is explained by the model. The closer to 1, the more variation explained
by the model. The difference in the two values is from a correction for the
degrees of freedom.

In crude terms it indicates that the model explains 99.76% of the values, in the
log-space.

d) No of Observations (10)

The 4 by 4 triangle contained ten values all of which were used in the fitting
process.

€) Degrees of Freedom (3)

The model assumed 7 independent parameters (including the constant) and
used 10 observations to estimate these. The difference, ( 10-7 ), is the number
of degrees of freedom.

Note that in this case there are a lot of parameters in relation to the number of
data values in the triangle. This tends to produce a high quality of fit, i.e. a
high R? but forced adherence to the actual data by incorporating many
parameters in the model can lead to a model with poor predictive qualities.
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f) Coefficient(s) (9.288 9.591 etc.)

These values are the estimates of the model parameter values. They appear in
the order defined by the Design Matrix one for each independent variable.

Least squares are being used to calculate these values and the solution is given
by

(X™X)1XTY where Y is the vector of data values.
g) Std. Err of Coef. (0.0400 0.0400 etc...)

These are the estimated standard errors of the coefficient estimates. They are
the square roots of the diagonal elements of the variance-covariance matrix of
the coefficients

o2 (X™X)!

Changing values in the data triangle does not affect the design matrix X and
only changes the scalar element or 2.

So different data sets result in standard errors of the model coefficients which
differ only by a constant factor which is equal to the ratio of the data specific
model standard errors or o’s.
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