Smoothing and Forecasting
Mortality Rates with P-splines

Iain Currie
Heriot Watt University

London, April 2007
Manchester, May 2007

Data and problem
- Data: CMI assured lives
 - Age: 20 to 90
 - Year: 1947 to 2002
- Problem: forecast table to 2046

Plan of talk
- P-splines in 1-dimension
- P-splines in 2-dimensions
 - Lee-Carter model
 - Age-Period-Cohort model
 - 2-d P-splines

Gompertz model

Year 2002
Gompertz: \(\log m = -11.73 + 0.109 \text{ Age} \)
Simple Gompertz

Log(mortality) vs Age 70

Log(mortality)

Age 70

log m = 26.9 − 0.0154 Year

Quadratic Gompertz

Log(mortality) vs Age 70

Log(mortality)

Age 70

log m = −1100 + 1.127 Year − 0.000289 Year^2

Quadratic forecast

Log(mortality) vs Age 70

Log(mortality)

Age 70

Quadratic fit: linear & quadratic forecasts

Log(mortality) vs Age 70

Log(mortality)

Age 70

Linear forecast

Quadratic forecast
Regression basis

In ordinary regression we use basis like

- **Linear basis:** \{1, x\}
- **Quadratic basis:** \{1, x, x^2\}
- **Polynomial basis:** \{1, x, x^2, \ldots, x^p\}.

Means and fitted values are linear combinations of the basis functions

\[
\log \mu = a + bx; \quad \log \hat{\mu} = \hat{a} + \hat{b}x \\
\log \mu = a + bx + cx^2; \quad \log \hat{\mu} = \hat{a} + \hat{b}x + \hat{c}x^2 \\
\log \mu = a + b_1 x + \ldots + b_p x^p; \quad \log \hat{\mu} = \hat{a} + \hat{b}_1 x + \ldots + \hat{b}_p x^p
\]

Generalised linear models

Model fitting uses the Generalised Linear Model framework.

\[
d_x \sim P(E^c_x \mu_x) \\
\text{and} \quad \log E^c_x \mu_x = \log E^c_x + a + bx \\
\text{or} \quad \log E^c_x \mu_x = \log E^c_x + a + bx + cx^2.
\]

B-spline basis

A B-spline regression basis uses local basis functions.

- **B-spline basis:** \{B_1(x), B_2(x), \ldots, B_p(x)\}

where \(B_1(x), B_2(x), \ldots, B_p(x)\) are B-splines.

Means and fitted values work the same way

\[
\log \mu = \sum_{j=1}^p \theta_j B_j(x); \quad \log \hat{\mu} = \sum_{j=1}^p \hat{\theta}_j B_j(x)
\]

A single cubic B-spline
Penalties

Eilers & Marx (1996) imposed penalties on differences between adjacent coefficients.

\[P_2(\theta) = (\theta_1 - 2\theta_2 + \theta_3)^2 + \ldots + (\theta_{p-2} - 2\theta_{p-1} + \theta_p)^2 \]
\[= \theta' D_2^T D_2 \theta \]

where \(D_2 \) is a difference matrix.

\(P_2(\theta) \) is a roughness penalty.

Estimation is via penalised likelihood

\[PL(\theta) = L(\theta) - \frac{1}{2} \lambda \theta' D_2^T D_2 \theta \]

where \(\lambda \) is the smoothing parameter which balances fit and smoothness.

- \(B \)-spline regression (\(\lambda = 0 \))
- Linear regression (\(\lambda = \infty \))
P-spline regression

Age 70
Number of B-splines: 23
Quadratic penalty

Forecasting to 2046

Age 70
Forecast to 2046
Quadratic penalty: linear forecast

Lee-Carter model

Lee & Carter (1992)

\[
\log \mu_{ij} = \alpha_i + \beta_i \kappa_j, \quad 20 \leq i \leq 90, \ 1947 \leq j \leq 2002
\]
Discrete Lee-Carter model

\[
\log \mu_{ij} = \alpha_i + \beta_j \kappa_j, \quad 20 \leq i \leq 90, \ 1947 \leq j \leq 2002
\]

or in table form

\[
\log M = \alpha' \mathbf{1} + \beta' \mathbf{\kappa}
\]

Smooth Lee-Carter

\[
\alpha \rightarrow B_a \mathbf{a}, \quad \beta \rightarrow B_b \mathbf{b}, \quad \kappa \rightarrow B_k \mathbf{k}
\]
Age-Period-Cohort model

\[\log \mu_{ij} = \alpha_i + \beta_j + \gamma_{i-j}, \quad 20 \leq i \leq 90, \quad 1947 \leq j \leq 2002 \]

Parameter redundancy

- \(2n_a + 2n_y - 1 = 253\) parameters
- \(2n_a + 2n_y - 4 = 250\) free parameters
Discrete Age-Period-Cohort model

\[\log \mu_{ij} = \alpha_i + \beta_j + \gamma_{i-j}, \quad 20 \leq i \leq 90, \ 1947 \leq j \leq 2002 \]

Smooth Age-Period-Cohort model

\[\alpha \rightarrow B_a, \quad \beta \rightarrow B_y, \quad \gamma \rightarrow B_c \]

2-d modelling of mortality tables

- Let \(B_a \), \(71 \times 13 \), be a 1-d B-spline basis for modelling a single age.
- Let \(B_y \), \(56 \times 10 \), be a 1-d B-spline basis for modelling a single year.

Can we combine the marginal bases \(B_a \) and \(B_y \) to make a 2-d basis?
2-d modelling of mortality tables

Regression matrix

The Kronecker product organises the multiplication of the marginal bases to give the regression matrix

\[B = B_y \otimes B_a, \quad 3976 \times 130. \]

Penalties in 2-d

- Each regression coefficient is associated with the summit of one of the hills.
- Smoothness is ensured by penalizing the coefficients in rows and columns.
Summary of results

<table>
<thead>
<tr>
<th></th>
<th>DEV</th>
<th>TR</th>
<th>BIC</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-d</td>
<td>6832</td>
<td>63</td>
<td>7357</td>
<td>1</td>
</tr>
<tr>
<td>APC smooth</td>
<td>7884</td>
<td>30</td>
<td>8129</td>
<td>2</td>
</tr>
<tr>
<td>LC smooth</td>
<td>8568</td>
<td>30</td>
<td>8815</td>
<td>3</td>
</tr>
<tr>
<td>APC</td>
<td>7002</td>
<td>248</td>
<td>9057</td>
<td>4</td>
</tr>
<tr>
<td>LC</td>
<td>8004</td>
<td>196</td>
<td>9629</td>
<td>5</td>
</tr>
</tbody>
</table>
Conclusions

Forecasting a mortality table depends on

- Model choice
- Forecasting method
- Parameter uncertainty
- Stochastic uncertainty
References

Lee-Carter models

Age-Period-Cohort models
Clayton & Schliffers (1987) Statistics in Medicine, 6, 469-481.

Penalized spline models