Why you will live to 100 (or not)
The future shape of our population

Estimated and projected age structure of the United Kingdom population, mid-2010 and mid-2035

Source: Office for National Statistics – 2010-based projections
Who are our future centenarians?

Source: Office for National Statistics, 2008-based Population Projections (UK)
Why you will live to 100 (or not)

- Genes
- Behaviours
- Environment
- Societal pressures
- Accidents
- Medical interventions
- Stochastic variation
- Historical trends
 - New England Centenarian study suggested dominant impact of genes in extreme longevity
Tips for healthy ageing
National Institute of Ageing

- Eat a balanced diet.
- Exercise regularly.
- Get check-ups on a regular basis.
- Do not smoke.
- Practice safety habits at home to prevent falls and bone fractures. Wear a seatbelt in the car.
- Stay in contact with family and friends.
- Avoid too much exposure to the sun or cold weather.
- Drink alcohol only in moderation.
- Keep personal and financial records in good order.
- Keep a positive attitude toward life. Do the things that bring happiness.

© 2010 The Actuarial Profession • www.actuaries.org.uk
Relative importance of genes and environment

![Diagram showing the relative importance of genes and environment](image)

- **Genotype**
 - Huntington’s
 - Cystic Fibrosis
 - Schizophrenia
 - Fam. breast cancer
 - Colon cancer syndrome
 - Huntington’s

- **Environment**
 - Non - Genetic
 - Thrombosis
 - Alzheimer
 - Diabetes
 - Asthma
 - Lung cancer
 - Car accident

Spectrum of Disease
Genes associated with increased risk of disease

<table>
<thead>
<tr>
<th>Cancer Site</th>
<th>Relative Risk ≥5.0 Family studies</th>
<th>Relative Risk ≥1.5 and >5.0 Resequencing</th>
<th>Relative Risk ≥1.01 and >1.5 Genome-wide association studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>RB1, TP53</td>
<td></td>
<td>rs1051730, rs8034191 (CHRNA3, CHRNA4, CHRNA5)</td>
</tr>
<tr>
<td>Breast</td>
<td>BRCA1, BRCA2, TP53, PTEN, SK11, CDH1</td>
<td>CHEK2, ATM, PALB2, BRIP1</td>
<td>CASP8, FGR2, MAP3K1, 8q24, 5p, TOX3, 2q, 6q22, LSP1</td>
</tr>
<tr>
<td>Colon and rectum</td>
<td>APC, MLH1, MSH2, MSH6, PMS2</td>
<td>APC (I1307K), BLM</td>
<td>MUTYH, CASP8, 8q24, 8q23 (EIF3H), 10p14, 11q23, CRAC1, SMAD7</td>
</tr>
<tr>
<td>Prostate</td>
<td>BRCA2</td>
<td>8q24</td>
<td>rs6501455, rs721048, NBS1, EHPB1, TCF2, CTBP2, JAZF1, MSMB, LMTK2, KLK3, SLC22A3</td>
</tr>
<tr>
<td>Pancreas</td>
<td>BRCA2, CDKN2A, STK11, TP53, PRSS1, SPINK1</td>
<td>BRCA1, MSH2, MLH1</td>
<td></td>
</tr>
</tbody>
</table>

Different approaches to considering the future
Converging or Diverging?

- "Projectionists" e.g. Vaupel – no current evidence of restrictions to improvements in life expectancy leading to expectations that medical advances will deliver – up to 0.25 years per calendar year
- "Realists" e.g. Olshansky – treatment of disease without affecting ageing process has limited potential to expand life expectancy, and not clear how "less healthy" cohorts will develop
- No current treatments affect ageing process and no biomarkers to determine effectiveness of treatments
- Acceptance of the possibility of future treatments that could slow ageing process
Understanding the potential for further improvements from disease-elimination models

Fig. 2. Percentage of reduction in the conditional probability of death for the United States (from 1985 levels) required to produce a life expectancy at birth from 80 to 120 years.

The impact of the ageing process

- Hand grip strength reduces by 45% by age 75
- Blood flow to brain reduces by 15-20% by age 70
- Sense of smell reduces to 50% of peak by age 80
- Maximum heart rate reduces by 15-20% by age 70
- Blood pressure of 50% population at age 65 is mild or worse hypertension
- Maximum breath capacity reduces by 40% by age 80
- Dementia affects 10% of those over age 65; 20% of those over age 85
Potential benefits from disease elimination and slowing of ageing process

![Image of table showing life expectancy at birth, at age 65, and at age 85 for males, females, and the total population for 2000, 2030, and 2050 under Network A (lower disease mortality) and Network B (slow aging).]

International trends in cause-specific mortality
Myocardial infarction (1980-2006)

UK standardised myocardial infarction death rate per 100,000 population (41) is twice that of France (19) - but UK death rates fell faster than any other European country between 1980 and 2006

Source: OECD data
Relative importance of risk factors and treatment

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Effect</th>
<th>Treatments</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obesity</td>
<td>+3%</td>
<td>AMI</td>
<td>-8%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>+5%</td>
<td>Secondary prevention</td>
<td>-11%</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td>-10%</td>
<td>Heart failure</td>
<td>-13%</td>
</tr>
<tr>
<td>Smoking</td>
<td>-48%</td>
<td>Angina: CABG/PTCA</td>
<td>-7%</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>-9%</td>
<td>Hypertension therapy</td>
<td>-3%</td>
</tr>
<tr>
<td>Physical activity</td>
<td>+4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deprivation</td>
<td>-3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-58%</td>
<td></td>
<td>-42%</td>
</tr>
</tbody>
</table>

Source: CHD Impact model – University of Liverpool – England & Wales
Obesity trends among U.S. adults 1985

(*BMI ≥30, or ~ 30 lbs overweight for 5’ 4” person)

Source: CDC
Obesity trends in U.S. adults
1990

Source: CDC
Obesity trends in U.S. adults
1995

Source: CDC

© 2010 The Actuarial Profession • www.actuaries.org.uk
Obesity trends in U.S. adults 2000

Source: CDC
Obesity trends in U.S. adults 2005

Source: CDC
Obesity trends in U.S. adults 2010

Source: CDC
United States: The Revis family of North Carolina
Food expenditure for one week $341.98
Italy: The Manzo family of Sicily
Food expenditure for one week: 214.36 Euros or $260.11
Egypt: The Ahmed family of Cairo
Food expenditure for one week: 387.85 Egyptian Pounds or $68.53
Bhutan: The Namgay family of Shingkhey Village
Food expenditure for one week: 224.93 ngultrum or $5.03
What do we want from our healthcare systems

- Fast access to reliable health advice
- *Effective treatment delivered by trusted professionals*
- Involvement in decisions and respect for preferences
- Clear, comprehensible information and support for self-care
- Attention to physical and environmental needs
- Emotional support, empathy and respect
- Involvement of, and support for, family and carers
- Continuity of care and smooth transitions

Source: Picker Institute Europe based on patient interviews
Healthcare expenditure at end of life Survivors and deceased in regional study in Italy

Comparisons of different treatments
Breast cancer

Hazard ratios for mortality

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Comparator</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trastuzumab</td>
<td>Observation</td>
<td>0.66 (0.57, 0.77)</td>
</tr>
<tr>
<td>Docetaxel[TAC]</td>
<td>FAC</td>
<td>0.70 (0.53, 0.93)</td>
</tr>
<tr>
<td>Anastrazole[HR +ve]</td>
<td>Tamoxifen</td>
<td>0.97 (0.83, 1.14)</td>
</tr>
<tr>
<td>Exemestane</td>
<td>Tamoxifen</td>
<td>0.83 (0.67, 1.02)</td>
</tr>
<tr>
<td>Letrozole</td>
<td>Tamoxifen</td>
<td>0.86 (0.70, 1.06)</td>
</tr>
<tr>
<td>Gemcitabine[GT]</td>
<td>Paclitaxel(T)</td>
<td>0.82 (0.67, 1.00)</td>
</tr>
</tbody>
</table>

Based on: NICE Technology Appraisals, 2005 to 2010
Comparisons of different treatments
Breast cancer

Modelled life expectancy with and without interventions

- Gemcitabine
- Letrozole
- Exemestane
- Anastrazole
- Docetaxel
- Trastuzumab

- Mean survival without intervention
- Additional survival with intervention

Based on: NICE Technology Appraisals, 2005 to 2010
Guidance over use of different treatments
% of breast cancers

Based on: NICE Technology Appraisals, 2005 to 2010
Evaluating cost-effectiveness of treatments
Co-ordinated stroke care in different locations

Clinical trials – scope and timeframe

<table>
<thead>
<tr>
<th>Time</th>
<th>Preclinical testing</th>
<th>Phase I Trials</th>
<th>Phase II Trials</th>
<th>Phase III Trials</th>
<th>Filing/approval</th>
<th>Phase IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study subject</td>
<td>Laboratory and animal studies</td>
<td>20 - 80 healthy volunteers</td>
<td>100 - 300 patient volunteers</td>
<td>1’000 - 3’000 patient volunteers</td>
<td>—</td>
<td>open, according to indication</td>
</tr>
<tr>
<td>Study aim</td>
<td>Assess safety & biol. activity</td>
<td>Determine safety & max. dose</td>
<td>Evaluate effective dose, side effects</td>
<td>Verify efficacy, monitor long term</td>
<td>Review process</td>
<td>Post marketing safety monitoring</td>
</tr>
</tbody>
</table>

Source: CDC
Clinical trials – approval rates by therapeutic class

Table 3 Phase transition and clinical approval probabilities by therapeutic class for self-originated compounds first tested in humans from 1993 to 2004

<table>
<thead>
<tr>
<th>Therapeutic class</th>
<th>Phase I–II (%)</th>
<th>Phase II–III (%)</th>
<th>Phase III–RR (%)</th>
<th>RR–approval (%)</th>
<th>Clinical approval success rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antineoplastic/immunologic</td>
<td>71.8</td>
<td>49.0</td>
<td>55.3</td>
<td>100</td>
<td>19.4</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>62.9</td>
<td>32.4</td>
<td>64.3</td>
<td>66.7</td>
<td>8.7</td>
</tr>
<tr>
<td>CNS</td>
<td>59.6</td>
<td>33.0</td>
<td>46.4</td>
<td>90.0</td>
<td>8.2</td>
</tr>
<tr>
<td>GI/metabolism</td>
<td>67.5</td>
<td>34.9</td>
<td>50.0</td>
<td>80.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>72.4</td>
<td>35.2</td>
<td>80.0</td>
<td>100</td>
<td>20.4</td>
</tr>
<tr>
<td>Respiratory</td>
<td>72.5</td>
<td>20.0</td>
<td>85.7</td>
<td>80.0</td>
<td>9.9</td>
</tr>
<tr>
<td>Systemic anti-infective</td>
<td>58.2</td>
<td>52.2</td>
<td>78.6</td>
<td>100</td>
<td>23.9</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>62.8</td>
<td>48.7</td>
<td>69.8</td>
<td>91.3</td>
<td>19.5</td>
</tr>
</tbody>
</table>

Through June 2009.
CNS, central nervous system; GI, gastrointestinal; RR, regulatory review.

Source: DiMasi et al. Nature (March 2010), 87, 3, 272-7
Regenerative medicine: gene therapy

http://en.wikipedia.org/wiki/Gene_therapy
Regenerative medicine: cell therapy

Nature Reviews Neuroscience 2002
Genetic information:
Revolutionary developments from DNA sequencing

Source: E. Pennisi, Science 2011, 331, 666-8
Combining different elements in a forward-looking approach to assessing future mortality

General drivers to diagnosis and survival

- **Individual risk factors**
 - Age, gender, diet, smoking – smoking considerations:
 - Taxes and restrictions
 - Current treatments (bupropion)
 - Future treatments (vaccines)

- **Healthcare funding**
 - Public vs private funding
 - Disease-based patient advocacy groups’ influence
 - Allocation of resources towards cure vs prevention

- **Patient interaction**
 - Health awareness
 - Trust and confidence in advice given
 - Use of clinical guidelines to improve quality of care

- **Research & development**
 - Public vs commercial sponsors
 - Regulators’ attitude to developments
 - Disease-focused approach vs global impact of ageing

Disease types and disease progression

- Healthy
- Cancer: Lung, colorectal, prostate, breast
- Neurological: Dementia, Alzheimer’s, Parkinson’s
- Circulatory: Stroke, angina, heart attack
- Respiratory: Chronic obstructive pulmonary disease

Factors involved in assessing specific example disease

- Risk factors:
 - Family history
 - Obesity
 - Having children later in life
 - Not breast feeding

- Early detection:
 - Digital mammography
 - MRI for high-risk
 - Gail algorithm (own factors)
 - Klaus algorithm (family history)

- Medical innovations:
 - Growth factor inhibition
 - Future of personalised medicine (e.g., tumour profiling)

- Current approaches:
 - Targeting DCIS
 - Surgery with node follow-up
 - Adjuvant radiotherapy
 - Herceptin, Tamoxifen

- Clinical trials pipeline:
 - Phase II (230 trials*)
 - Phase III (56)
 - e.g., pertuzumab (limits cancer growth)
Education of future medical professionals
Implications of an ageing society
Teaching Geriatric in Medical Education study (TeGeMe)

- Collaborative study of WHO and International Federation of Medical Students' Associations
- WHO intends healthy/active ageing and promotion of long term health to form education of all future young doctors
- Promotion of life course in graduate training and later
- 41% of medical school curricula refer explicitly to geriatrics
- GERIND index calculated by medical school and averaged across country – separation of geriatrics teaching and quality of ageing science being taught
- Central hypothesis is that countries with higher percentage of older persons are more likely to have separate high-quality teaching on geriatric medicine – not always true
TeGeMe – GERIND index vs. age of population

Source: World Health Organisation
A new relationship between doctor & patient

- Classic asymmetrical relationship based on knowledge
- Medical and surgical specialisation driven or required because of technical information & procedures
- Doctors facing information overload
- Transforming effects of internet as clinical guidance becomes more comprehensive
- Two key roles for doctors
 - Patient advocate – facilitate patient-based healthcare and act as guide to new technological breakthroughs
 - Scientist/technician – maintain pace of development

A new functional divide across the profession
Some thoughts for holders of longevity risk

- Continuing differences in schools of thought over future longevity
- Conflicting forces between risk behaviours and treatment
- Impending revolution in genetic information
- Increasing demands from regulators for justification
- No market as yet in longevity risk

Holders of longevity risk have several options –
- Transfer risk
- Invest in further research and understanding
- Wait and see
Thank you