

**GIRO40** 8 – 11 October, Edinburgh



# Back of the Envelope Price Optimisation

Jan Iwanik, Pulsar Actuaries Oliver Helm, Lloyd's of London



#### Agenda

- 1. Challenges of price optimisation
- 2. How to predict the impact of a rate change with a pen and paper
- 3. How to sense check results of profit vs. volume optimisation
- 4. How to quickly derive simple profit vs. volume optimal rates
- 5. Discussion

15 October 2013

**Challenges of price optimisation** 

- · It can take months
- Software can be complex
- ... so experts are usually required to perform the work
- The rates may be difficult to sense check
- And it is even more difficult to communicate why the specific rate changes are "optimal"

#### Solution

With decent accuracy, many optimisation questions can be answered with a pen and paper on the back of an envelope



There is a balance between accuracy of analysis and its speed.

15 October 2013

Notation

- c<sub>i</sub> cost for policy *i*, usually claim cost, but other allocated fix costs can be included
- *d* rate change, for example d=0.05 for a 5% rate increase
- *e<sub>i</sub>* elasticity for policy *i* defined as percentage change in volume per 1% rate change
- *n* number of policies in the portfolio
- **p**<sub>i</sub> premium for policy **i**, net of all variable expenses

### Typical problem no 1: Impact of a rate change

A form of this question arises for every rate change



15 October 2013

The Covariance Rule

**Claim.** In a portfolio of *n* policies let  $P = \{p_i\}$  be premiums,  $C = \{c_i\}$  predicted burning cost and  $E = \{e_i\}$  elasticities. After a rate change of *d*, if *d*·*e*<sub>i</sub> are small, then



15 October 2013

7

#### The Covariance Rule – intuitions

Think about average premium



15 October 2013

**Example – impact of a rate increase** 

#### Real life situation.

For a motor book

| average premium    | £453  |
|--------------------|-------|
| average cost       | £335  |
| loss ratio         | 74.0% |
| average elasticity | 2.72  |
| rate change        | + 10% |

Question. What will happen to average premium and average cost?

#### **Example – impact of a rate increase**

**Solution.** First, determine **Cov** between elasticities, premiums and burning cost.

We assume that modelled burning costs and elasticities are scored onto a dataset.

Then **Cov**'s is easy to determine. SAS example:

proc corr data=portfolio noprob cov; var model\_elasticity premium model\_cost; /\* by age\_groups [if rate change varies by age\_groups] \*/ run; /\* Results: Cov ( model\_elasticity <-> premium) = 164; Cov ( model\_elasticity <-> model\_cost) = 59; \*/

(The covariances can be tabularised periodically for future use.)

15 October 2013

11

#### **Example – impact of a rate increase**

Average cost predicted by the Covariance Rule is:

|                          | )                       |
|--------------------------|-------------------------|
| $\sum \frac{c_i}{d} = d$ | Cov(C, E)               |
| $\angle \frac{\pi}{n}$   | $1-d\sum \frac{e_i}{d}$ |
|                          | $( \leq n )$            |

is: £335 - 10% \* 59 / (1 - 10% \* 2.72) = £327.

...and average premium



is: £453 \* (1 + 10%) - 10% \* 164 / (1 - 10% \* 2.72) = £476

Therefore loss ratio reduces from 74.0% to 68.7% and not by 10% ☺

#### The Covariance Rule – proof for costs



15 October 2013

The Covariance Rule – proof for premiums



## Typical problem no 2: Checking optimised rates



15 October 2013

15

#### **Marginal profit**

Marginal profit = change in profit from price cut sufficient to gain one policy

Let p be the average premium of a segment, e the elasticity and p - c the average profit. Marginal profit *MP* is:

$$MP = p - c - \frac{p}{e}$$

#### Marginal profit – intuition

- "Cost" of volume
  - Buy "cheap" volume
  - Sell "expensive" volume



Example – optimising # bedrooms

We have optimised number of bedrooms for home insurance.

Optimisation is volume vs. profit.

Each age group has its own average premium, cost and elasticity.

| Rooms | Premium | Cost | Elasticity | Marginal<br>profit |
|-------|---------|------|------------|--------------------|
| 1     | p1      | c1   | e1         | p1-c1-p1/e1        |
| 2     | p2      | c2   | e2         | p2-c2-p2/e2        |
| 3     | р3      | c3   | e3         | p3-c3-p3/e3        |
| 4     | p4      | c4   | e4         | p4-c4-p4/e4        |

Calculate marginal profit before and after applying rate change.

Compared on next slide.



#### **Example: Marginal profit vs. optimal rates**

#### Marginal profit – applications

- Deep understanding of the value added by different segments both in terms of profit and volume
- · Verifying if proposed rate changes are indeed optimal
- · Explaining to others what the optimal rates do
- · Choosing most valuable factors for optimisation

#### Marginal profit - derivation



Marginal profit - derivation

Definition of marginal profit:  $MP = \pi(d) - \pi = n(d) \left[ p(1-d) - c \right] + n(p-c)$ Substituting n(d) and d:  $MP = (n+1) \left[ p(1-\frac{1}{ev}) - c \right] - n(p-c)$ Multiplying out:  $MP = p - c - \frac{p}{e} - \frac{p}{ve} + np - nc - n(p-c) = 0$ 

### **Typical problem no 3: Optimal rates**

The ultimate question is:



15 October 2013

Formula for optimal rates

**Claim.** Let *p* denote average premium net of variable cost, *c* be the average claim cost and *e* be the elasticity of a portfolio. Let *{p<sub>i</sub>}*, *{c<sub>i</sub>}* and *{e<sub>i</sub>}* represent average premium, cost and elasticity for each pricing cell *i*.

In addition let's assume that the overall rate level is already optimal.

Then the optimal rate in a volume vs. profit optimisation for segment i is



15 October 2013



The formula does not handle:

- Multiple constraints, but it is not recommended to use too many constraints anyway
- Constraints in subsequent years, but policy ageing is hard to model correctly anyway
- Big changes in business mix, but maybe such changes are unlikely to happen most of the time
- Non-linear forms of elasticity, but maybe one can do without them

15 October 2013

Example – optimising age groups

- · We are optimising age group for motor insurance
- · Optimisation is volume vs. profit
- Each age group has its own average premium, cost and elasticity

| Age group | Premium p | Cost c | Elasticity e | Optimal rate<br>change |
|-----------|-----------|--------|--------------|------------------------|
| Group A   | £ 800     | £ 600  | 2.95         | 0.8842                 |
| Group B   | £ 825     | £ 652  | 3.23         | 0.9171                 |
| Group C   | £ 840     | £ 697  | 3.52         | 0.9512                 |
| Group D   | £ 870     | £ 757  | 3.84         | 0.9890                 |
| Group E   | £ 900     | £819   | 4.18         | 1.0304                 |
| Group F   | £ 950     | £ 903  | 4.54         | 1.0779                 |
| TOTAL     | £ 881     | £ 751  | 3.77         |                        |

#### Example – optimising age groups



New rates are derived using the proposed formula & using Excel Solver

- · The two are very close
- · With the new rates the marginal profit is ~ flat

15 October 2013

27

#### Formula for optimal rates – proof

To attract  $k_i$  extra policies from segment i, we need to reduce rates in this segment by a multiplier of

Profit will change by



Optimal rates mean that trading volume between segments does not increase profit. Hence derivatives over  $k_i$  must equal across all segments. For simplicity, let's assume that it equals the current average across all segments.



#### Formula for optimal rates - proof

After transformations and dividing both sides by  $\mathbf{e}_i$  we have



The left hand side equals a percentage rate change. Therefore to get back-of-theenvelope optimal rates for segment *i*, we need to correct the rates by a multiplier of



15 October 2013

29

30

#### Conclusion

✓ Accurate predictions of rate change impact

- ✓ Explaining rate optimisation
- ✓ Optimising rates for volume vs. profit

...can be done with a pen and paper (and 3 lines of SAS code)





Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the presenter.

15 October 2013