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Abstract 
 
A simple procedure generating a multivariate density function that satisfies high 
asymmetry and polytonal dependency is defined and studied.  Traditional approaches to 
multivariate distributions develop functions that first establish joint density, with 
dependency inferred, and often poorly understood, as an adjunct at the end.  The result is 
that separate copula designs, such as the Clayton or skew-T, are sought to capture  
particular dependency structures.  The alternative approach presented here generates a 
joint density function after the dependency is explicitly predefined.  This approach, which 
we have termed the D distribution, has produced a variety of satisfactory results relating 
to different univariate and multivariate distributions through the choice of an appropriate 
dependency transfer function. Here we show a new application of the transfer function to 
construct the flexible and hence highly applicable D distribution and D copula. This 
concept is connected to copulas, neural networks, skew normal distributions and 
conditioning on hidden variables. 
 
Key Words: Transfer functions, neural networks, polytonal dependency, local 
dependence function, copulas, multivariate copulas, skew multivariate distributions, 
skew-normal, skew-Cauchy, skew-T. 
 
1. Introduction 
Motivation and aims 
The motivation for this paper was the need for a tool for ‘defensive portfolio 
engineering’: 

• System breaks are a feature of the markets, we need an econometric model able 
to identify thresholds of various variables of interest above or below which some 
kind of impact will occur (e.g. when oil price will have an impact on share 
prices). 

•  Asset models that better capture downside dependency and deepening 
dependency in tails enable robust asset allocation against liabilities.  In addition, 
assets that become jointly negatively correlated in upside events and jointly 
positively correlated in downside events have been observed in the capital 
markets.  

Asymmetric dependency features of capital markets complicate traditional measures 
such as the ‘hedge ratio’, which relies heavily on a parameter driven by correlation.  
Sensitivity testing and hedging of a portfolio requires a methodology where the beta may 
only exist in the downside tail, or where the beta may reverse on deep upside and 
downside tails.  So if we consider a joint distribution shaped like a banana, traditional 
techniques will not be able to capture this type of joint probability distribution. The aim 
of this study was to identify a method that can control and generate banana-shaped 
distributions, where correlation switches across the distribution. 

  This paper aims to challenge the following paradigms: 

• The sum of normal distributions is normal. 
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• Beta and portfolio hedging ratios are symmetric. 

• Different dependency structures require different copulas. 

• Dependency falls out of a probability density function. 

The paper also introduces the idea that a single correlation number is actually made up 
of two partial correlations multiplied together; in the same way that variance is two 
standard deviations multiplied together. 

 

2. Background 

2.1 Methods of introducing skewness 

There is a large body of literature on parametric families of non-normal multivariate 
distributions. The study of the skew normal distribution by Azzalini and Dalla Valle 
(1996) is strongly connected to this work. 

Some of the methods used to introduce skewness are briefly described below. These 
broadly fall into the same category of multiplication by some constant. 

 

2.1.1 A skewing variable  

Conic moments for modelling jump diffusion processes (Barndorff-Nielsen, 1998. 
Also discussed by the economist Smith, 2003). The Normal Inverse Gaussian 
distribution is an example of applying a skewing variable 

 

2.1.2 Dividing and multiplying by distributions 

This is an extension of 2.1. Some such examples involving various distributions are 
the work by Azzalini and Dalla Valle (1996) (skew normal distribution) and the work 
by Tan and Peng (2005) (skew-slash distributions).  For additional references and a 
review on related literature, see Arnold and Beaver (2002) and Genton (2004) for a 
collection of papers on the subject. Distributions such as the t-distribution can be 
constructed independently using the normal distribution and multiplying it by an 
inverse gamma distribution, which has the effect of stretching the tails. 

 

2.1.3 Conditioning  

Samples can be taken from a variable conditioned on hidden variables.  The latter have 
cut off points, which can determine how they influence the seen variables. In simple 
terms, a conditioning variable is forced to take a specific value so that we can 
investigate its effect on the rest of the variables; for example, US equity returns can be 
set to -10%.  The correlation between markets leads to an impact on other international 
equity returns. Hidden variables and truncated sampling can generate highly flexible 
joint distributions, and arguably any joint distribution can be generated from sufficient 
numbers of truncated samples.  
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2.1.4 Local Density functions 

Holland and Wang (1987) defined the local dependence function as the change of the 
natural logarithm of a joint distribution for a change in the corresponding marginals. 
They also proved that a local dependence function and two marginals uniquely 
determine the joint  bivariate normal density. 

 

2.1.5 Neural Networks 

Neural networks attempt to approximate a variety of functions and systems from 
simple algebraic functions to systems of pattern recognition, signal processing, etc. 
They use a sequence of stages, in which transfer functions together with appropriate 
parameter values, are used to manipulate inputs and transform them into a smaller set 
of outputs with discontinuities and rotations.  A transfer function is a function that 
takes an input between [–∞ ∞] and forces it to a particular range [0 1], or [-1 1].  An 
inverse normal function is an example of a transfer function, as is the logistic 
function ( )[ ]{ }x−− exp11 .  A summation of logistic transfer functions and continuous 
nesting of transfer functions could in theory fit any surface, and in the literature it is 
assumed that this process broadly mimics the operation of biological neurons. (Hagan 
et al., 1996). 

 

2.1.6 Dependency driven distributions 

It would be appropriate to contrast these approaches with the proposed D distribution.  
The D distribution connects together approaches 2.1.3 to 2.1.5 by considering that 
variables could have been generated by conditioning them on an unseen uniformly 
distributed variable, U. A univariate dependency structure on the unseen variable is 
defined as a function of U.  The joint dependency is simply the multiplication of the 
univariate dependencies and the uniform variable is essentially the height of a joint 
copula.  The conventional approach for the generation of   distributions defines the 
marginal and joint distributions first, while the dependency structure is solved for 
afterwards. In this new approach, the univariate dependency is defined first and the 
marginal distribution follows. 

   

2.2 Preliminaries  

2.2.1 Elliptical distributions 
We start with the definition of the spherical distribution. A vector Y = (Y1, Y2,..., Yn)

T has 
a spherical distribution, if for every orthogonal map U ∈R n x n (UU T = U TU = I n x n), UY 
has the same distribution as Y 2, which using the symbolism from Embrechts et al., 
(2002), is expressed as  
 

2
d .YUY =          Eq. 2.1 

 
 The stochastic representation of a spherical distribution is given as Y~Sn(φ) if and 
only if 
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URY ⋅=d          Eq. 2.2 

 
where U is a random vector uniformly distributed on the unit hypersphere Sn-1 = {y ∈R n | 
yTy = 1} in R n ≥ 0 and R is a positive random variable independent of U and known as 
the generating variable. As a consequence, spherical distributions can be regarded as 
mixtures of uniform distributions defined on spheres of various radii in Rn. 

An n-dimensional continuous random variable X is said to have an elliptical 
distribution with parameters µ (n x 1) and Σ (n x n) if Y has the same distribution as  
µ+ATY, where Y follows a k-dimensional spherical distribution with characteristic 
generator φ (characteristic function ψY(t) =  φ(tT t)) and A is a (k x n) matrix such that AT 
A =  Σ with rank(Σ) = k. The elliptical distribution is an extension of the n-dimensional 
normal distribution Nn(µ, Σ). By setting φ(u) = exp(-u/2), a vector variable X (n x 1) with 
n-dimensional distribution Nn(µ, Σ) is also said to follow a n-dimensional elliptical 
distribution, ECn(µ, Σ, φ) (source: Wikipedia). Thus, mathematically elliptical 
distributions are affine maps of spherical distributions in R n.  
 
2.2.2 The geometric parallel of correlation 
 
In practice, different radii of spherical and elliptical distributions correspond to different 
correlations. In the elliptical case we deal with unequal correlations. The concepts of 
absolute and relative variance and of relative correlation can be easily understood through 
a geometrical parallel, as illustrated below. 
 

  
Fig. 2.1. Illustration of the correspondence between the cosine rule and the concept of relative correlation. 
 
Applying now the Pythagorian theorem we get the following relationships 
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If we replace α, b and c with the relative variances or absolute covariance relating to the 
portfolio, P1, and cash, P2, the expression for the relative correlation coefficient is a 
mirror image of the cosine rule. 
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where B is the benchmark. If we have a portfolio with asset weights W and corresponding 
covariance matrix, C, and a portfolio of the same assets with weights relative to some 
benchmark B and corresponding relative covariance matrix CR, then 
 

WCWBWCBW R
'' )()( =−−       Eq. 2.6 

 
Dorey’s lemma 
We have named Eq. 2.6 Dorey’s lemma, and the solution of CR is a suitable exercise to 
set to quantitative job candidates.  
 
2.2.3 Conditioning an elliptical distribution 
When (Y1, Y2), with Y1 ∈ R p, Y2 ∈ R q and p+q = n, follow an elliptical distribution 
ECn(µ, Σ, φ), then the conditional distribution of Y1 given Y2 (Y1|Y2) is also elliptical, even 
though with a different generator ϕ~ . So, Y1|Y2 ~ ECp(µ1.2, Σ11.2, ϕ~ ), where 
 

21
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       Eq. 2.7 

 
When a multivariate distribution of dimension n is conditioned, the resulting 

conditional distribution is of dimension (n-1) because the conditioning variable is set to a 
specific value (hence it behaves as a constant and not a variable). In Fig. 2.2, the 3-D plot 
of the bivariate normal distribution is sliced where vector vecX2 is equal to -1. This slice 
is the conditional distribution N(vecX1, vecX2|vecX2 = -1) (Fig. 2.2 below). 
 
 
 
 
 
 
 
 



 7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.2.  The bivariate Normal distribution N(vecX1, vecX2; Mu, Sigma) and the conditional slices  
N(vecX1, vecX2| vecX1 = -1; Mu, Sigma)  when the correlation coefficient is 0.8 (top-left and red line, 
respectively) or -0.8 (bottom-left and blue line, respectively). 
 
2.2.4 Pearson distributions 
Another generalisation of the normal distribution is the family of the Pearson 
distributions. These distributions are used in financial applications because of the ability 
to parameterise them in a way meaningful for market traders. Particularly the Pearson VII 
distribution function has a wide range of applications due to the ability to vary its width 
and decay rate of its tails, depending on the value of parameters K and M, respectively 
(Prevéy, 1986): 
 

[ ] M
MxxKxf

−−+= 2
0

2 )(1)(       Eq. 2.8 

 
For M = 1, we get the Cauchy distribution, M = 2 the Lorentzian and for M approaching 
infinity we get the Gaussian distribution. Furthermore, in some areas of research 
including finance and social sciences, it is important to know the distribution of the 
product of two variables X and Y, which could be correlated or not. Nadarajah and Kotz 
(2006) studied this problem when X and Y are jointly distributed with a Pearson type VII 
distribution. The latter is given by the following expression: 
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for -∞<x <+∞, -∞<y<+∞, N>1, m>0 and -1<ρ<1. The bivariate t distribution and the 
bivariate Cauchy distribution are special cases of the Pearson type VII bivariate 
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distribution for N = (m+2)/2 (m is the degrees of freedom) and m = 1, N = 3/2, 
respectively. The bivariate Pearson type VII distribution has become very popular 
because it is a generalization of the univariate t distribution and has more realistic tails in 
view of analysis of real data, as opposed to the more limited multivariate Normal 
distribution. Overall, Pearson proposed a continuous probability density proportional to 
 

21 )1()1( 21
αα αα vv xx −+        Eq. 2.10 

 
for -α1< x <α2, which generalises the hypergeometric distribution. Taking different limits 
of this expression, he derived the types I-III and V. Type II, is characterised by a limited 
range in both directions and by symmetry. Olano and North (1997) mention the type II 
Pearson distribution as part of a class of distributions with elliptical contours. The density 
function for each member of this class of distributions is given as a function of the 
following distance function 
 

Txxxd )()(),,( 1 µµµ −Σ−=Σ −        Eq. 2.11 
 
Then the general expression of the density function is given as 
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The parameter m in the Pearson type II distribution is a constant whose value controls 
how close it gets to the Gaussian distribution. Considering the symmetry of the type II 
Pearson distribution, a d-dimensional point is said to be centrally symmetric around a 
point ξ, if X – ξ= ξ – X.  This requirement implies that the corresponding density function 
f satisfies f(y – ξ) = f(ξ - y). 
 

3. Copulas 

3.1 Introduction 
Copulas are tools for understanding the relationship within multivariate events.  
Simplistically copulas explain relationships by working with percentiles.  The copula is a 
surface that describes the dependency structure between percentiles.   
 
Regression analysis is a widely used statistical technique for the investigation of 
relationships between variables. However, regression always separates one variable (the 
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dependent) from the rest (the independent or explanatory), while copulas look at all 
variables comprising a multivariate event and explain the joint multivariate distribution 
of these variables (Frees and Valdez, 1997). While the marginals of ordinary multivariate 
distributions share the same characteristics, copulas have the advantage that different 
assumptions can be made for the marginal distribution of each component of a 
multivariate event.  Then the joining of these different assumptions through the use of a 
copula, leads to a better understanding of the underlying relationships within multivariate 
events and consequently better modelling of such events and their components. Copulas 
are multidimensional distributions with uniform marginals on [0, 1]. A copula C of 
dimension n is defined as follows 
 

),...,,(Pr),...,,( 221121 nnn uUuUuUobuuuC ≤≤≤=    Eq. 3.1 

 
If we choose some marginal distributions Fi(xi) = ui, i = 1, 2, …, n, so that 
 

[ ] ),...,,()(),...,(),( 212211 nnn xxxFxFxFxFC =     Eq. 3.2 

  
we get  
 

[ ])(),...,(),(),...,,( 1
2

1
21

1
121 nnn uFuFuFFuuuC −−−=     Eq. 3.3 

 
which is the copula of the joint distribution of the n-dimensional set of variables (X1, 
X2,…, Xn) 
 
3.2 Fréchet-Hoeffding bounds for joint distribution functions.   
For every copula C and vector of percentiles u = (u1, u2, …, un) in In, the following 
inequality is always true 
 

),...,,(),...,,(),...,,( 212121 n
n

nn
n uuuMuuuCuuuW ≤≤    Eq. 3.4 

 
where Mn(u1, u2, …, un) = min(u1, u2, …, un) and  Wn(u1, u2, …, un) = max(u1+ u2+ …+ 
un-n +1, 0) and known as the Fréchet-Hoeffding upper and lower bound, respectively (see 
Fig. 3.1 below). 
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Fig. 3.1. The Fréchet-Hoeffding upper (left) and lower (right) bounds, which apply to all copulas. 
 
In plain language, this means that any copula always lies between A and B (Fig. 3.1). 
When n = 2, both limits in Eq. 3.4 are copulas and A and B are the bivariate distribution 
functions of (U, 1-U)T and (U, U)T, respectively, with U~U(0, 1). It is then said that A 
represents perfect negative dependence, while B describes perfect positive dependence 
(Embrechts et al., 2002). The transfer function in the D distribution aims to directly 
control whether we are considering the minimum or maximum by controlling the 
dependency up the univariate dependency structure.  
 
 In terms of our objective, we considered whether a weighted sum of bounds A and 
B (Fig. 3.1 above) with turning points could create polytonal copulas. However, this 
proved difficult to fit without an underlying assumption of a p.d.f. This led us to the D 
distribution described in the next section. 
 
4. The D distribution  
4.1 Definition 
 
The D distribution is a conceptually straight forward idea.  Generate a variable U that 
describes whether variables are at their lowest or highest percentile.  Now include a 
dependence function that generates simulations where the dependency structure is 
dependent on U.  
 
We shall define a positive random variable X as distributed with a D distribution if its 
distribution is expressed as a function of variable U with random generator distribution, 
R, dependency transfer function, T, and transfer function parameters, B. Then 

 

( ) 






 1121 dddkd

BUTUYUYXRUDX ),(,)()(,,~       Eq. 4.1 
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where: 
 
d1 is the number of dimensions modelled with d1 ≥ 1 and d2 = d1+1. 
 
X is a conditioned vector of random variables, each directly independent of each other 
but directly dependent on a hidden variable U. 
 
U is a continuous uniform univariate variable , i.e. U~U(0,1). U can be described as a 
percentile generating variable or the height of the joint copula surface and must have an 
inverse. Correlation is a function of U, i.e. T(U) (see below). There must be at least one U 
variable, i.e. 1 ≤ k ≤ d2. 
 
R is best described as a random generator that can be conditioned. The purpose of R is to 
carry the effects of the percentile generating function to the conditional distribution 
function it represents, the carrier function. R is a vector of multivariate random number 
generators or density generators of dimension d. A requirement of the random number 
generator is that it must be conditioned on k variables U through its parameters which are 
functions of the U variable/s.  In order to construct a univariate distribution of a variable 
X with values x, we use a bivariate distribution and X represents a sample from the 
corresponding conditional distribution of (X|Y = y), where variable Y is the univariate 
inverse of variable U. If, for example, the carrier distribution function is the Normal 
distribution and we want to generate a univariate D distribution, then y = 
NormalInverse(U) and the conditional distribution for (X|Y = y) is derived from the 
bivariate normal distribution.  
 
T is a vector of transformation functions that define some dependency pattern of 
dimension d1.  These functions take as input the values u of the variable U, which is 
uniform in the range [0 1], and convert them into measures of real dependency in the 
range [-1,1]. Examples of possible transfer functions are the logistic and the sine 
functions. 
 
B is the vector (univariate case, βi) or matrix (multivariate case, βij) of parameters 
determining the dependency transfer function, T, with the number of row vectors equal to  
the dimension parameter, d1 (d1 vector parameters). By changing the vector parameters 
the dependency structure, i.e. the correlation, changes (i refers to the transfer function and 
j to the parameter). 
 
For simplicity, it is often helpful to have the same random number generator and transfer 
function.  We will adopt the convention that where the same random number generator 
and transfer function are used, there is only a single row argument in the D distribution 
function definition.  Furthermore, when there is only one variable U, we omit it from the 
D descriptor.  The number of generated X variables is then indicated by the number of 
rows in the parameter matrix, B. Initially, we shall ignore location and scale parameters 
and assume we are modelling normalised distributions. 
 
4.2 Example 
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4.2.1Definition 
A variable X with values x, is D distributed as follows: 
 

[ ]( )011,,~ −LogisticNormalDx       Eq. 4.2 
 
The random generator is a bivariate normal distribution and the dependency transfer 
function of the uniform variable U is the logistic function with row parameter vector, B, 
with elements β1 = -1, β2 = 1 and β3 = 0.  There is only one row of parameters because 
here we describe a univariate distribution 
 
4.2.2 Generating samples from this D distribution 
The stochastic form for this univariate distribution is a three step process: 
1. Sample values u ~U(0,1) to represent percentiles of the variable X. 
2. For each sample of U calculate a corresponding correlation ρ using the dependency 

transfer function, T(u). In this example, T(u) (and hence ρ) is a logistic function with 
parameters -1, 1 and 0. 

3. Generate a sample from a conditioned bivariate normal distribution using the 
dependency transfer function T(u), with mean, µ, and covariance, Σ. 

 
So, for the stochastic representation we have: 

 
),(~ 10Uu  and is randomly generated     Eq. 4.3 

 
y = norminv(u), is the conditioning variable     Eq. 4.4 
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[ ] [ ]yyuT )(== 21 µµµ , refers to (x|y, y)     Eq. 4.6 
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, refers to (x|y, y)    Eq. 4.7 

( ) zx 21Σ+= µ  , where z~N(0,1)       Eq. 4.8 
 
Even though Y is normally distributed, X will follow a skewed path determined by the βi 
parameters in the transfer function.  In Table 1 we summarise the parameters and 
functions involved for the construction of the univariate standard D distribution, which 
we define as a univariate D distribution with carrier function the Normal distribution. 
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Table 1. Parameters and functions involved in the generation of the standard D 
distribution, i.e. the carrier distribution function is the normal distribution. 

Parameters/Functions Formula 
Percentile generating function U~U(0, 1) 
Conditioning variable y = norminv(u) 

Transfer function ,)( 1
1

2 −
+

= −ne
uT  

B parameter vector function 2
321 uun βββ ++=  

Mean vector of (x|y, y) [ ] [ ]yyuT )(== 21 µµµ  

Covariance matrix of (x|y, y) 






 −
=
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=Σ
00

01 2

2221

1211 )(uT
 

Values of bivariate carrier distribution ( ) ,zx 21Σ+= µ  z ~N(0, 1) 

 
In Table 2 we give a numeric example of applying Eq. 4.4-4.8 when the parameter vector 
is B = [-1 1 0] and in Fig. 4.1 we illustrate the full results for the same parameters. 
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Table 2. Worked example  
Values of y, n, T(u), mean, µ, variance, Σ11 and x as described by Eq. 4.4-4.8 for a sample 
value of U, u, when the parameter vector is B = [-1 1 0]. 

U = u 
y=normal 
inverse(u) 
(Eq. 4.4) 

n= -1 +1*u+0*u^2 
(Eq. 4.5)  

T(u) 
(Eq. 4.5) 

µ 
(Eq. 4.6) 

Σ11 
(Eq. 4.7) 

x 

0.371 -0.329 -0.629 -0.305 0.1 0.907 -0.213 
 
So the random value u = 0.371 leads directly to y as its normal inverse. The mean is the 

product of -0.329 and -0.305 and the standard deviation is ( )[ ]230501 .−−  from which x is 
sampled. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.1. The components of the univariate D distribution described by Eq. 4.3-4.8 in the text when the 
carrier distribution is Normal and the parameter vector of the dependency transfer function is 

[ ]011−=B .  
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4.2.3 Results 
To illustrate the role of the transfer function, we show the transfer function and the 
resulting joint distribution generated from Eq. 4.1 (Fig. 4.2-4.7 below).   

If the transfer function generates a constant correlation, then the output will be 
noise around a straight line with gradient equal to β1 (Fig. 4.2). If the transfer function 
graduates from perfect correlation to zero without changing sign, the distribution will 
become increasingly skew (Fig. 4.3). If the transfer function changes sign, such as 
illustrated in Fig. 4.4-4.5, the distribution will become skew and resemble a bifurcation 
pattern. If the dependency transfer function does not change sign but is concave, then the 
distribution will have tighter dependency in the centre and be more scattered at the tails 
(Fig. 4.6-4.7). 

 
          Fig 4.2 Constant T(u)        Fig 4.3 Monotonic T(u)       Fig 4.4 Polytonic T(u) 

  
 
Fig 4.5 Hard limit, discontinuous                Fig 4.6 Return 1           Fig 4.7 Return 2 

 
 

In each example illustrated in the previous figures, Y is normally distributed.  
However, the transfer parameters in Fig 4.3-4.5 generate asymmetric univariate 
distributions for variable X.  In particular, in Fig. 4.5 the distribution of variable X is a 
half normal distribution.  This is equivalent to max(X, Y) when X and Y are perfectly 
negatively correlated normal variables.  This is another way to arrive at the skew normal 
distribution described by Azzalini and De Valle (1996). 
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5. An alternative carrier function 
5.1 The Parallelepid distribution  
The integration of exponential forms, as involved in the normal distribution, can be 
complicated. Our next question was whether some other distribution or geometrical 
construction might be easier to tackle mathematically. If a variable has a conditional 
uniform distribution, then the integration over the range of the conditioning variable 
should result in a four sided plane. Depending on the degree of inter-dependency (for 
simplicity we will be using the term’ dependency’) between the two variables, their joint 
scatter plot can vary from a perfect square or rectangle, to a parallelepid of non acute 
angles, all the way to a straight diagonal line when dependency is perfect (angle of data 
spread is 0o). The cosine of the angle of data spread is equal to the dependency between 
the variables. The sign of the dependency parameter changes the direction of the pattern 
so that when dependency is negative, the pattern is the mirror image of the one obtained 
when dependency is positive. Below are examples of when the dependency parameter is 
zero, 0.4 and -0.4, 0.8 and -0.8 and 1 and -1. In each of these cases the angle of data 
spread is 90o, arccos(0.4), arccos(-0.4), arccos(0.8), arccos(-0.8), 0o and 0o, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.1. Joint parallelepid distribution when the dependency parameter is 0 (5.1a), 0.4 (5.1b), -0.4 (5.1c), 
0.8 (5.1d), -0.8 (5.1e), 1 (5.1f) and -1 (5.1g), respectively.  

 

 5.1c 

5.1a 

5.1b 

5.1d 
5.1e 

5.1f 5.1 g 
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If the general diamond shaped pattern is divided into two halves along the median 
value of the X variable, the two parts are a reversed mirror image of each other and 
therefore, it suffices to find the functional forms for one half of the diamond shape (the 
left part). In the case of positive correlation, in order to produce the other half of the 
pattern, i.e. for values of x≥median(X), the same functions need to be applied on the 
converted values [max(X)-x]. In the case of negative correlation, all is needed is to 
convert the x values into [max(X)-x] and then proceed as if the correlation was positive. 
This is so because if we examine the two shapes obtained for the same absolute 
correlation but of opposite sign along their correlation diagonal (Fig. 5.2), then the two 
halves above the diagonal and the two halves below the diagonal are mirror images of 
each other. As shown in the diagram below, part abc on the right (negative correlation) is 
treated as part 123 on the left (positive correlation) and part adc on the right is treated 
like part 143 on the left, in order to get the functions producing either shape. 
 

 
Fig. 5.2. General parallelepid distribution shape when dependency is positive (left) or negative (right). 
 

In the case of the parallelepid distribution being the carrier distribution, we get 
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and T(u) is the transfer function described in section 4.2.2. After substituting Eq. 5.2 and 
Eq. 5.3 into 5.1 and using some trigonometric inequalities, Eq. 5.1 becomes 
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6. The probability density function: univariate D distribution 
6.1 Normal carrier function 
The probability distribution function is unique to each transfer function and random 
generating function.  If we study the example described in 4.2 (i.e. the carrier distribution 
is Normal and there is a single percentile generating function U) in more detail, we derive 
the following expression for the p.d.f. of variable X|Y: 
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6.2 Parallelepid transfer function 
Using some trigonometric relationships, Eq. 5.4 can be further simplified and written as 
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6.3 Difficulties of integration 
In order to derive the formula for the D distribution, with either the normal or the 
parallelepid as the carrier distribution function, the formula described by Eq. 6.1 or Eq. 
6.2, respectively, needs to be integrated across the range of the U variable, i.e. between 0 
and 1. However, this is not a simple calculation and it has not been possible to reach a 
result of a closed form formula for the p.d.f. for either case of carrier function. This is 
because of the dependency of the correlation coefficient, and hence the variance of 
variable X, on the hidden variable U. The integration was attempted using integration by 
parts, i.e. 
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where f and g are functions of  variable Y and the prime sign denotes a first order 
derivative. In the case of the normal distribution, i.e. Eq. 6.1, the two parts representing 
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f1
´(y) and f2(y), are
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respectively.  The purpose of integrating by parts is to try and group terms together into 
recognisable forms of functions that are easy to integrate. However, in this case the full 
derivative of either expression is quite complicated because of the dependency on U and 
not fully present in either Eq. 6.1 or Eq. 6.2.  
 
7. Multivariate D Distribution 
7.1 Partial correlations 
To construct a sample from a multivariate D distribution, a set of transfer functions with 
corresponding βij parameters are required.  Each transfer function leads to a precise 
dependency structure between X1, …, Xn given that they are conditional on variable U.  In 
the example presented in 4.2.2, there is no direct correlation between X and Y because 
correlation applies indirectly through variable U. The equivalent bivariate case is 
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Even though X1 and X2 are correlated across a range of U, they are not correlated given 
U, i.e. X1 and X2 are correlated indirectly through some values of U.  This property means 
that the correlation between X1 and X2 given U is equal to the product of the ‘marginal’ or 
partial correlations, i.e. 
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This means that the covariance matrix for variables Y [=FunctionInverse(U)], X1 and X2 
given U is 
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where the subscripts 1, 2 and 3 refer to Y, X1 and X2, respectively. 
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A worked example of a bivariate D distribution has been submitted to the conference web 
site as an excel sheet. 
 
7.2 Mixture probability density 
Since by definition of the D distribution E(E(X|Y)) = E(X) = T(U)Y, U~U(0 1), the 
expected value is a scale mixture of normal variables. Because the percentile generating 
function refers to the whole of the D distribution, while the two sets of percentiles refer to 
each of the marginals for X and Y, the D distribution consists of a set of slices, which can 
be overlapping (Fig. 7.1), and it is a weighted sum of bivariate distributions (Fig. 7.2) (X 
= X2 and Y = X1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.1. Components of the bivariate D distribution when the carrier distribution function is Normal.  

 
Each percentile of the full distribution is a weighted mixture of probability 

densities, so that the sum of the weights used is unity. Being a mixture probability 
density, each data point has a degree of membership in the distribution. This is also true 
for the means E(X|Y) and variances Var(X|Y), where the degrees of membership are the 
scaling weights and their squares, respectively. The standard deviation of the D 
distribution is the square root of the weighted sum of the component variances, i.e. 

∑
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=
n

j
jjD VarianceweightcomponentSD

1

2 .  

 
In order to build the p.d.f., first a grid is created using the ranges of the modelled 

variables, X1 and X2. Then we calculate a weighted sum of the p.d.f. value at interpolated 
pairs of values for X1 and X2 from the grid surface. The c.d.f is calculated in exactly the 
same way by replacing the p.d.f. An example of the bivariate D distribution is shown in 
Fig. 7.2 below. 
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Fig. 7.2.  Joint probability distribution function for the D distribution as a weighted sum of bivariate 
distributions when the carrier dependency function is normal and the parameters of the dependency transfer 

function are 
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7.3 Examples: same transfer function  
7.3.1 Examples of  dependency structures with symmetry and normal carrier function 
Below are some examples of the stochastic version of the bivariate D distribution for 
various cases of symmetry and tail dependency when the carrier distribution function is 
normal and the transfer function is the same for both modelled variables. 
 If the dependency changes from perfect correlation to zero without changing sign, 
then the joint distribution becomes increasingly skew (Fig. 7.3-7.4). If neither of the 
transfer functions changes sign and both are convex, the distribution is tighter towards the 
centre and more scattered towards the tails (Fig. 7.5). 
 
            Fig. 7.3   Fig. 7.4               Fig. 7.5           Fig. 7.6 
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Fig. 7.7      Fig. 7.8   Fig. 7.9 

 
 
If there are multiple changes in sign in the transfer function, then the distribution will be 
characterised by turning points in correlation (Fig. 7.7-7.9). 
 
The marginal distributions are generally pretty close to normal. However, when the 
distribution is highly skewed (Fig. 7.3-7.4) or has a pronounced change of correlation the 
marginal distributions tend to become more asymmetric with longer tails (Fig. 7.7-7.9). 
 
7.3.2 Examples with Parallelepid carrier function 
Below are some examples of the stochastic version of the bivariate D distribution for 
various cases of symmetry and tail dependency when the carrier distribution function is 
parallelepid, i.e. 
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with a logistic dependency transfer function with parameters B1 = [β11 β12 β13] for 
variable X1 and parameters B2 = [β21 β22 β23] for variable X2. 
 

Fig. 7.10  Fig. 7.11  Fig. 7.12  Fig. 7.13 
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Fig. 7.14  Fig. 7.15    Fig. 7.16          

 
 
When there is no dependency between the variables (Fig. 7.10) then the distribution is 
perfectly uniform. When there is constant dependency other than zero, the resulting 
distribution is of a diamond shape with spread depending on the absolute value of 
dependency, i.e. the higher the absolute dependency, the more the distribution tends to 
one of the diagonals. The direction of the distribution depends on whether the transfer 
functions are of the same or opposite signs (Fig. 7.11). If one of the transfer functions is 
concave without changing sign, while the other remains constant, the distribution will be 
tight at the tails with noise in the centre (Fig. 7.12). If one of the transfer functions is 
constant and the other one changes sign abruptly the distribution will resemble a 
bifurcation pattern, while if the variable transfer function changes sign twice, the 
distribution will be of the ‘Zoro’ shape with more concentration at the diagonal and the 
end points (Fig. 7.13-7.14, respectively). When both transfer functions change from 
perfect correlation to zero, the distribution will become increasingly skew (Fig. 7.15). If 
one of the transfer functions gradually changes sign and the other one is concave and 
does not change sign the distribution will have a clear turning point and change of 
correlation (Fig. 7.16). 
 

The marginal distributions are pretty uniform when the corresponding 
dependency transfer functions are constant (Fig. 7.10-7.11, variable X2 in Fig. 7.12-7.14), 
while becoming more skew as the transfer functions deviate from a constant value with or 
without a change of sign (Fig. 7.15-7.16). 
 
 Comparing the distributions derived from using a normal dependency transfer 
function (Fig. 7.3-7.9) and a parallelepid dependency transfer function (Fig. 7.10-7.16), it 
is evident that the spread of the data differs even when looking at virtually the same 
distribution patterns (maybe with the exception of Fig. 7.15). 
 
Note that in the distribution there is an alternation of parts of data with perfect correlation 
(tight clusters of points) and parts of data with greater variability (scattered groups of 
points).  This indicates a distribution able to model processes with both deterministic and 
stochastic responses.  This must have application in wider industry. 
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7.3.3 Examples wth Student-t carrier function 
Below are examples of the stochastic version of the bivariate D distribution for two cases 
where the carrier distribution function is the Student’s-t with stretch parameter, v = 4, and 
stretch parameter, v = 1, in which case the resulting carrier distribution is the Cauchy, i.e. 
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with a logistic dependency transfer function with parameters B1 = [β11 β12 β13] for 
variable X1 and parameters B2 = [β21 β22 β23] for variable X2. 

 
The t-distribution function, provides long tailed results.  The resulting distribution 
resembles a cluster of points, which becomes tighter as the stretch parameter, v, of the t-
distribution carrier function reduces. However when it comes to adjusting the shape of 
the joint distribution, the t-distribution does not offer any obvious advantages over the 
use of the ordinary normal distribution or the parallelepid distribution as carrier functions 
within a copula, where the stretching can be expressed as a long tailed univariate 
distribution. 
 

     Fig. 7.17           Fig. 7.18 

             
 
8. Discussion of dependency structures 
8.1 Murphy’s Law 
Major Edward Murphy, an engineer in the U.S. Air Force, was testing the effects of G-
force on human beings in the late 1940s with extra diligence against risk in this 
dangerous field. He had a great understanding of links, dependency and defensive design.  
To apply Murphy’s law to problem solving, every possible outcome, especially anything 
that can go wrong or against our expectations, has to be considered and engineered 
against.  He law is often misquoted as ‘what can go wrong will go wrong’. 
 
We define a Murphy dependency structure as one where dependency increases in 
downside events, such as Fig. 7.3 or 7.15. Our motivation for the creation of the D 
distribution was the ability to be able to explain as many possible forms of dependency as 
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possible, which is something that portfolio design can benefit from. In the financial 
world, portfolio performance can be very different during normal (or more ordinary) 
situations as opposed to situations of crisis and extreme events. Hence, it is to be 
expected that various financial behavioural patterns will be better described by a flexible 
distribution, which is in fact a mixture of probability density functions, as is the case of 
the D distribution. 
 
8.2 Tail independency/dependency 
While it is possible to have returns of two assets behaving like the data points on any of 
the figures shown in section 7.3, e.g. Fig. 7.3, a lot of the modelling on joint asset 
movements is based on the assumption of normal behaviour and hence, the heavy use of 
the Gaussian distribution. However, in the bivariate Gaussian distribution correlation 
approaches zero as we asymptotically move towards the tails and in the case of the data 
shown in Fig. 7.3 the Gaussian distribution would be a poor choice for explaining their 
behaviour and dependency structure. The latter is not only variable but it also varies in an 
unequal and asymmetric way towards either of the tails: on one end (the bottom left 
corner) there is a tight relationship between the data, i.e. a large degree of dependency, 
while on the top right corner, where the data points are much more scattered, the degree 
of dependency is very low and it would not be wrong to say that at the high end of the 
scale for either of the two assets there is a great deal of independency. The D distribution, 
as is shown in this paper, is able to capture the dependency structure between data even 
when it changes unevenly and in opposite directions at different low-high data value 
combinations. 
 
8.3 ‘Zoro’ dependency 
In practice, a ‘Zoro’-type dependency structure occurs when under normal (ordinary) 
circumstances the day to day dependency is strong but under extreme circumstances 
dependency is reversed, Fig. 7.7 or Fig. 7.14. 
 
8.4 ‘Banana’ dependency 
A regulator, like the FSA, may require negative dependency between equities and bonds 
when equities are on an upward trend and positive dependency when equities are on a 
downward trend for prudence Fig. 7.8. There is some evidence that this has happened 
over recent time periods. Using the D distribution it is possible to examine whether there 
is banana dependency or whether changes in dependency are spurious calculations on 
quadrants of a joint distribution. 
 
8.5 ‘Stag’ dependency  
In practice, a ‘Stag’-type dependency structure occurs when non-extreme upside and 
downside events are co-dependent, while middle range and extreme events are 
independent. 
 
9. D Copula  
The D copula models the joint percentiles between variables. It is calculated by 
considering the joint cumulative distribution function, c.d.f., over a grid formed from two 
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variables, say X1 and X2.  A c.d.f. takes as input values of variables, such as X1 = 5th 
percentile, X2 = 50th percentile and gives as a result the cumulative probability.  
 

To build the D copula we calculated a weighted sum of joint normal c.d.f.’s for a 
range of U values in equal increments from 0 to 1.  For each value of U we have a c.d.f. 
joint distribution for X1 and X2.  The c.d.f. was calculated on model points on the X1, X2 
grid ranging from -5 to +5.  Expressing X1 and X2 as percentiles and using interpolation to 
convert the grid into linear percentile units leads to a copula with clear straight edges, 
which characterise a copula. Taking second order differences of the copula surface, i.e. 
along both X1 and X2 axes, gives a density function for percentiles, which is the copula 
p.d.f.  Every row and column on the grid sum up to the same constant, and the total area 
under the curve is 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.1 Copula surface of the bivariate D distribution when the carrier function is normal and the 

parameters of the dependency transfer function are 
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The D copula is a useful tool because the modeller can parameterise a dependency 
structure for any data set using percentiles.  Similarly, samples of the copula can be 
transformed into any univariate distribution. 
 
10. Ongoing research 
10.1 Parameter estimation 
10.1.1 Maximum likelihood 
At the time of writing we had not derived an expression for the p.d.f. of the D 
distribution. So it was not possible to use the method of maximum likelihood for the 
estimation of model parameters analytically.  This remains an open problem.   
 

However, an empirical likelihood maximising function, L, can be obtained by 
using the copula p.d.f. surface from Fig. 9.1.  For every pair of empirical observations 
and a given parameter matrix B calculate the probability of occurrence, call it Lk.  The 
sum of all the Lk’s is the likelihood L.  The best fit copula is the set of parameters that 
maximises L for a given set of observed joint percentiles.  
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10.1.2 Confidence intervals 
Once L has been optimised, the confidence interval for the estimated parameters will be 
calculated using the Cramér-Rao inequality, a lower bound for the variance of an 
unbiased statistical estimator, say θ, based on the Fisher information I(θ). 
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var         Eq. 10.1 

 
In statistics, score (or score function), say S, is defined as the partial derivative of 

the (natural) logarithm of the likelihood function in terms of the function parameters. In 
our case the function parameters are the elements of the parameter matrix B.  
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The Fisher information is the variance of the score. Because the expected value of the 
score is zero, its variance is simply the expected value of the squared score. The greater 
the variance of the score is, the lower the variance in a parameter. 
 
10.1.3 Objective Function 
Because the p.d.f. surface is calculated over a percentile grid, computational constraints 
place a limit on the grid size generated by X1 and X2 and the degree of resolution of U, the 
percentile generating variable that can be used to estimate the likelihood function.  In our 
analysis we achieved a better parameter fit to the empirical copula surface by developing 
a hybrid function that includes the likelihood maximising function and measures of 
surface fit.  This investigation is still ongoing as we have achieved limited stability in the 
derivation of optimised parameters. This difficulty was expected because of the lack of 
mathematical formulas for the p.d.f. as mentioned in 10.1 and therefore the lack of 
analytical solutions for the distribution parameters. 
  

The objective function is a surface, and where the local optimum on the surface is 
very pronounced we have stronger confidence in the parameters true value.  On the other 
hand very gentle changes in the surface for a change in the parameter lead to less 
confidence in the precise positioning of the true underlying parameter value. However, 
applying Eq. 10.2 to our objective function leads to a lower bound for the variance of 
each parameter βij and hence a corresponding approximate confidence interval. 
 
10.1.4 Fitting a simple symmetrical model 
For a symmetrical bivariate D distribution, where dependency increases or decreases 
symmetrically at the tails, the βij parameters can be reduced to three variables as shown 
below. 
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Parameter ρ can be established by calculating a rank correlation statistic such as 
Kendall’s τ. If τ is positive, ρ is +1, while if τ is negative, ρ is -1.  This then leaves only 
two parameters, the strength of correlation, α, and the inflection between the middle and 
the tails, β, to be fitted. This reduced model is easier to optimise. 
 
10.2 Measures of dependency  
In this paper we have demonstrated the D distribution in its simplest form, i.e. we have 
always used one U variable, assumed no correlation between X1 and X2 (or X and Y) and 
have used the same transfer function in every case. The advantage of introducing a 
dependency transfer function is the ability to control polytonal dependency.   
 
It is evident from the results presented earlier in this document that the output of the 
transfer function, which is affected by the choice of parameters, is directly linked to tail 
dependency.  If the transfer function generates dependency values close to +1 or -1 for 
variables when U is in the bottom 5th percentile or top 95th percentile then there will be 
strong tail dependency. 
 
Fitting a D distribution and subsequent examination of the transfer function parameters 
appears to offer a new way to calibrate tail dependency in a data set. 
 
10.3 Conditioning  
Conditioning is a fundamental building block to the D distribution.  However the next 
step is to generate a multivariate D distribution conditioned on X = x.  Forcing X to take a 
particular value leads to a distribution of U at that point.  Stochastic simulation from the 
distribution of U leads to a conditioned multivariate distribution.   
 
10.4 Deterministic and Probability models  
The D copula has the ability to model deterministic and probabilistic events within the 
same structure.  A deterministic range is where the joint variation goes to zero, driven by 
high partial correlations in a range of U.  We believe this has a lot of applications in the 
financial markets.  
 
11. Conclusions 
At the beginning of this paper we set out to challenge a few long standing statistical 
concepts. We have demonstrated that a sum of normal distributions where there is 
dynamic correlation is far from normal and this property allows us to create a new class 
of distribution functions driven by dependency, the D distribution.  We have a 
distribution where there is strong asymmetry of beta and portfolio hedging ratio.  We 
have developed a copula where one copula form, the D copula, can bring together vastly 
different dependency structures.  We are confident that with the development of the D 
distribution we have managed to shake these concepts and offer a more realistic insight 
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into statistical modelling and especially, the modelling of dependency structures in the 
financial markets. 
 

The most important issue here is dependency and the use of the correlation 
coefficient to describe this. The standard correlation coefficient is fine as long as any 
multivariate event under consideration is static, i.e. Variance and correlation between 
variables is constant. 
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Fig. 11.1. An attribution of variance on an equally weighted index of broad UK FTSE sector indices across 
a 14 day window.  The calculation separates out change due to dynamic correlation between sectors and 
change due to dynamic variance of the sectors themselves.  
 
Fig 11.1 supports the argument for dynamic correlation.  The chart attributes movements 
at an index level due to changes in dynamic risk and dynamic correlation over a 14 day 
window in underlying constituent indices.  The index was built of equally weighted UK 
sectors. Around 75% of the movements in the index can be attributed to dynamic 
correlation in underlying constituents and only 25% due to dynamic variance.  Therefore, 
it is important that dynamic dependency measures are employed to model and understand 
risk.  The use of the normal distributions or sums of various normal distributions can at 
best be a rough approximation.  
 

Correlation will work for a whole distribution on average. Therefore, it can easily 
misinterpret and/or neglect data points that lie beyond the average bulk of the data. 
Likewise, beta and the hedging ratio will only apply correctly if the average market 
conditions are true but will be inadequate and false otherwise. That is because beta is a 
function of the correlation coefficient between variables and is defined as the ratio of the 
standard deviations of the portfolio and the market, scaled by their correlation coefficient,  
i.e. 
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Fig. 11.2. Example of a joint distribution between AW Financials and AW Basic Industries. The blue 
points are monthly returns January 1994 to March 2005.  The red circles highlight the fact that correlation 
can be very strong at the joint tails: over 90% positive in the joint downside tail (bottom left corner) and 
negative (about -20%) on the joint upside tail (top right corner). This is a Murphy dependence structure. 
 
In Fig. 11.2 above, it would seem fine to fit a straight line though the data points, which 
would imply a constant positive hedging coefficient. However, as shown on the bottom 
left hand quadrant of the chart, there is strong correlation at the joint downside tails. Any 
hedging based on a constant positive correlation would be valid for the market conditions 
underlying the central part of this distribution, but if conditions became extreme, the 
hedge will fail.  It is most likely that we want the hedge to work in an extreme upside or 
downside tail event, and it is during these tail events that the hedge will break down.  
This is an example of Murphy’s law.  Murphy structures are common place in financial 
time series. 
 

The D copula is flexible. Altering the parameters involved generates a whole set 
of completely different dependency surfaces, rather than simple variations of the same 
oval correlation shape.  As long as the proper dependency structure of the modelled 
variables has been established, the D copula can be used as a multivariate copula with 
very different dependency structures between pairs of variables.  The authors are not 
aware of a technique able to model different positive and negative skew structures in a 
multivariate copula.  
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