What is a 1-in-200?

Introduction
Who are we?
- John Campbell
- Daniel Clarke
- Darren Farr
- Cameron Heath
- Gladys Hosken
- Gillian James
- Andrew Newman
- David Simmons
- Hannes Van Rensburg

Introduction
What are we going to talk about?
- Definitions of a 1-in-200 – Andrew Newman
- Aid for arriving at a true 1-in-200 – John Campbell
- Modelling Dependency – Gladys Hosken & Darren Farr
- Paper also covers
 - Generic ICA model structure & risks to be considered
 - Regulatory best practices
 - Literature review
Introduction
What are we NOT going to talk about?
- The views expressed in this paper should be regarded as being our personal views and in particular, should not necessarily be regarded as being those of our employers.
- Rating Agency capital charges
- Individual entities’ capital models

Introduction
What do we want from you?
- Your opinions
- Your views
- Your thoughts
- Your comments
- Your observations

What is a 1-in-200?
Definitions
Definitions
Initial thoughts

- Probability theory is key in pricing insurance contracts
- Even more so in deriving distributions of outcomes
- Conceptual problems (human)
- Definitions - initial attempt to place into context

Conventional Thinking
Reasonable foreseeable adverse events:

- Living memory 60-80 years
- Working memory 20-40 years
- Depends who you ask
- Traditional thinking of insurance capital
- MCR = best estimate plus a prudence

Conventional Thinking

Size of Loss:

- Biggest loss expected to occur with 0.5% probability
- Exceedance probability akin to Cat model output
- Combination of events not considered, can extend idea to “Killer” scenario
- Correlations
- Useful check to capital modelling output
- Lloyd’s RDS model
Behavioural Finance
Clouding the blue sky thinking…

Definitions
1-in-200 Years

Sufficiently capitalised to withstand events of 199 out of next 200 years:
- Return periods of an event easy to conceptualise in principle, but…
 - Time changes everything
 - Environment
 - Technology
 - Biased by anchoring and past experience
 - Extremity of events for capital (Non-occurrence)
 - Combination of events

Definitions
1-in-200 Companies

1-in-200 equally well-capitalised companies (relative to their risk) will fail over the next 1 year
- Ignores the systematic events impacting entire markets
- Global nature of business
- Failure of standalone risk assessment
- Change in dependency structures in extreme event
- Massive regulatory issue is inter company correlations
Definitions
1-in-200 Chance

Capitalised to withstand the events of the next 1 year with a probability of 199 out of 200
- Up to date economic and risk environment
- Incorporate year and company definitions
- Holistic paradigm includes return period as well as systematic impacts, giving consideration to:
 - Common risk drivers
 - Extrapolation of reasonable foreseeable events
 - Size of loss

What is a 1-in-200?

Aid

Estimating a 1-in-200 position

1. Set expectations
 - Understand where a 1-10 or 1-20 loss may lie
 - Internal data
 - External data
 - Understand the business
 - Changes over time
Estimating a 1-in-200 position

2. Choose the distribution
 - Consider the choice of a multi-modal distribution
 - Shift of the type of subjectivity inherent in the fit

3. Test expectations
 - RDS
 - External factors

External factor considerations

Estimating a 1-in-200 position

4. Recognise Contagion
 - Reinsurer failure
 - Capital market irrationality
 - Recession
Estimating a 1-in-200 position

5. Sense Checks
 - Input v Output
 - As if / Only if
 - ‘Pre-historic’ events
 - Scenario testing
 - Reverse scenario testing
 - How fast does the distribution tail off

6. Control Cycle
Modelling dependency

- Interdependencies are one of the key drivers of the 1-in-200 year value.
- The model must find a robust way of dealing with such complex interdependencies.
- 4 approaches are considered:
 1. Linear correlation
 2. Copulas
 3. Cause & Effect
 4. Multi-state model

Linear correlation

- **PRO:**
 - Relatively simple to create and explain.

- **CONS:**
 - Can’t cope with one-way dependencies.
 - Insufficient data.
 - Large correlation matrix causes issues.
 - Can’t handle tail-only dependencies.
 - 1-in-200 v 1-in-10 – problem with lack of linearity and level of correlation.

Copulas

- **PROS:**
 - Non-linear cross-element correlations.
 - Mitigates issues with one-way & tail-only dependencies and extrapolation to 1 in 200.

- **CONS:**
 - Insufficient data even more of a problem.
 - Lack of transparency.
 - Loss of focus.
 - Computational challenge.
“Cause & Effect” Model (1)

- **PROS:**
 - Draws out a number of ‘common causes’ and correlates risk types through the causes, rather than to each other.
 - Incorporates qualitative information.
 - Aids thought process.
 - One-way and tail dependencies.
 - More intuitive, so may be easier to explain.

“Cause & Effect” Model (2)

- **CONS:**
 - Efficiency of estimates.
 - Potential ‘causes’.
 - Loss of focus on extreme events.
 - More subjective.
 - Increased complexity.

Multi-state model (1)

- **CONCEPT**
 - Two or more sets of distributions & correlation factors per risk element.
 - Each set associated with an external event / ‘state’.
 - For each iteration simulate the state to determine the distributions and correlation set for that iteration.
 - Most iterations based on the main / ‘benign’ distribution set; remainder based on the alternative / ‘extreme’ distribution sets.
 - Thinking explicitly focused on extreme events.
Multi-state model (2)

PROS:
- As per the “Cause & Effect” model.
- Transparent.
- Focused on extreme shocks.

CONS:
- Highly subjective.
- Is it Solvency II acceptable?

Summary of approaches

<table>
<thead>
<tr>
<th></th>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear correlation</td>
<td>Relatively simple to build</td>
<td>Too simplistic to explain complex dependencies</td>
</tr>
<tr>
<td>Copulas</td>
<td>Reduces issues with one-way & tail-only dependencies</td>
<td>Lack of transparency; determination of the family of copulas may be difficult</td>
</tr>
<tr>
<td>“Cause & effect”</td>
<td>More intuitive; incorporates qualitative information</td>
<td>Doesn’t necessarily focus on improving estimates of 1-in-200 year events</td>
</tr>
<tr>
<td>Multi-state model</td>
<td>Transparent; focused on extreme shocks</td>
<td>Highly subjective; is it Solvency II acceptable?</td>
</tr>
</tbody>
</table>

Conclusion

In practice, a model may use a combination of these approaches to best capture the complex relationships between the different risk sources.