Model assumptions

Working party: ‘Practising ruin’

September 26, 2014 - Giro conference
Classical risk process

- Initial capital \(x > 0 \).
- Constant premium rate/drift \(c > 0 \).
- Time between claims is exponentially distributed with parameter \(\lambda > 0 \).
- \(f \) denotes the (common) probability distribution function of each claim.
Including extra uncertainty

- Perturb the risk process by adding a Brownian motion which has a parameter $\sigma > 0$.
- Roughly speaking, on each time interval of infinitesimal length Δ, a normally distributed random variable with mean 0 and variance $\sigma^2 \Delta$ is added.

![Graph showing surplus over time](image-url)
Characteristics of the risk process

- Local behaviour does not depend on
 - level of the surplus,
 - time,
 - length of time since last claim.
- There are downwards jumps but no upward jumps.
Including dividends

- Dividends can be paid out to shareholders dynamically.
- Ruin level \(a \geq 0 \): ruin occurs when surplus \(< a \).
- Salvage value: at ruin, residual value goes to shareholders.
- Firm value: expected value of cashflow to shareholders, discounted at rate \(q > 0 \).
- Optimal dividend strategy?
We focus primarily on barrier strategies, which are parametrised by a barrier level $b > a$.
Claim distribution

- Mixture of exponentials:

\[f(z) = \sum_{i=1}^{n} \frac{p_i}{m_i} e^{-z/m_i}, \quad z > 0, \]

where \(n \) is a positive integer, \(m_i, p_i > 0 \) and \(\sum_{i=1}^{n} p_i = 1 \).

- Expected value of a claim is given by

\[\sum_{i=1}^{n} p_i m_i. \]
Why this choice?

- Relatively flexible.
- Very easy and fast to compute firm value under a barrier dividend strategy:
 - Explicit formula up to computing the roots of a certain polynomial.
 - Developed bounds for these roots.
- Barrier strategy is optimal (at least when $a = 0$).
Possible extensions

- Different penalty at ruin.
- Include capital injections (can increase firm value).
- Different definition of ruin.
- Allow parameters to change when surplus drops below a certain level.
- Allow parameters to change after an exponentially distributed amount of time.
- Include (optimal) reinsurance.
References

Kyprianou, Andreas E.
Gerber-Shiu Risk Theory.
Springer, Cham 2013.

Major, John A.
The firm-value risk model.
Inputs and output of spreadsheet

- **Input parameters**
 - initial capital $x > 0$,
 - premium rate $c > 0$,
 - Gaussian parameter $\sigma \geq 0$,
 - claim intensity $\lambda > 0$,
 - discount rate $q > 0$,
 - ‘means’ of claim distribution $m_1, m_2, \ldots, m_n > 0$,
 - weights of claim distribution $p_1, p_2, \ldots, p_n > 0$, $\sum_{i=1}^{n} p_i = 1$,
 - ruin level $a \in [0, x]$,
 - barrier level $b \geq x$.

- **Output**
 - firm value with dividend barrier b and ruin level 0,
 - firm value with dividend barrier b and ruin level a.