How to believe your models

Louise Pryor

Outline
- Setting the scene
- Specifying the model
- Implementing and testing the model
- Parameters and data
- Believing the results

What do you use models for?
- Reserving
- Pricing
- Capital requirements
- Reporting
- ...

How do you build them?
- Pencil/paper/calculator
- Spreadsheet(s)
- Specialist modelling package
- Purpose built system
- Combination

What do you expect from your models?
- The Answer(s)
- Range(s)
- Distribution(s)
- Qualitative relationships
- ...

Who cares?
- You (professional pride)
- Your boss
- Board (Sox...)
- Shareholders
- FSA
- Marketing and sales folk
- ...
What could go wrong?

- You’re using the wrong model
 - The specification is wrong
- The implementation is wrong
 - It doesn’t do what you want it to do
- The wrong data or parameters are used
 - Garbage In, Garbage Out

Proportionality

- How much do you care?
 - What is the model being used for?
 - How complex is the model?
 - There is less to go wrong with simple models

The links in the chain

Specifying the model

Outline

- Setting the scene
- Specifying the model
- Implementing and testing the model
- Parameters and data
- Believing the results

Specification

- What the model is meant to do
 - Is the model appropriate for what you will be using it for?
 - What limitations are there on the theory (if any) you are using?
 - What assumptions are you making?
 - Is the specification complete
 - Every case should be covered
 - It should be specific enough to test against

Specification sign offs

- Who should sign off on the specification?
 - Someone who has the authority
 - Someone who knows enough about the details
- What if a signed-off specification has obvious errors in it?
 - Consider having two levels of specification
 - The general principles; signed off at a high level
 - Detailed enough to implement from
 - Proportionality
Reviewing

- Reviewing should happen throughout the process
- It’s necessary but not sufficient
 - You can’t expect to pick everything up at the review stage
 - The earlier you find problems the easier it is to fix them
- Who should review?
 - More or less experienced in general/particular?

Outline

- Setting the scene
- Specifying the model
- Implementing and testing the model
- Parameters and data
- Believing the results

Implementation

Where things can really go wrong

- You are writing software
 - Spreadsheet
 - Specialist modelling package
- Writing software is hard
 - Software error rates are high
 - Lawrence & Lee: average 7% of unique formulae, maximum 22%, 100% of spreadsheets had errors

Managing the risk

- Good systems and controls (process)
- Thorough reviewing
- Thorough testing
- Change control

Reviewing vs Testing

- Reviewing
 - Inspect
 - Manual or automatic (depends on software)
 - Automated: syntactic
 - Depth depends on the reviewer’s understanding
- Testing
 - Run the code
 - Manual or automatic
 - Automated: semantic
 - Breadth depends on the execution paths chosen

When to test

- Unit testing individual components
- System testing as a whole
- Regression testing new against old
- Acceptance testing by user

- All are more difficult with spreadsheets
Change is a part of life

It’s a continuously iterative process
- Implementation raises questions about the specification
- Testing raises questions about the implementation and specification
- When a model is used you see how it could be improved

Preventing problems

Be aware
- Don’t be over confident
- Don’t trust yourself or others
- “It’s only a small change – it won’t affect anything else”

Use version control
- Easy to back out of changes
- Know where you are

Having confidence in the implementation

Audit trail of
- Changes (with versions they appear in)
- Tests (with versions tested)
- Documentation
 - For future maintainers
 - So you know what you think it’s doing

Outline

- Setting the scene
- Specifying the model
- Implementing and testing the model
- Parameters and data
- Believing the results

Parameters

Where have the parameters come from and why?
- Have they been signed off, and if so by whom?
 - Are the principles right?
 - How about the details?
 - Was the sign off a full review?
- Are they the results of some calibration process?
 - Do you believe the calibration process?
 - Specification, implementation, parameters, data...

Data

Where has the data come from?
- Extracted from back office system?
 - Do you have confidence in the extraction process?
 - Specification, implementation, assumptions, data...
- Some other source?
 - Do you believe it is what it says it is?
 - Is there a sign off on data?
 - Who signed off?
 - Was it a full review?
Outline

- Setting the scene
- Specifying the model
- Implementing and testing the model
- Parameters and data
- Believing the results

Results

Do the results come from where you think they do?
- What version of the implementation was used?
 - What is its specification (including changes)?
 - What tests has it passed?
 - Has everything been reviewed or signed off? By whom?
- Which set of parameters was used?
 - Signed off by?
 - What changes?
 - What data set was used?

Audit trail

Trace the results back to known
- Implementation
- Parameters
- Data

Believing your models

Know what you are doing
- Appropriate theory, correct model, reasonable assumptions
- Be aware of the risks
- Do it properly
- Good process
- Demonstrate that you’ve done it
- Good audit trails