Individual claim loss reserving conditioned by case estimates

Greg Taylor
Taylor Fry Consulting Actuaries
University of Melbourne
University of New South Wales

Gráinne McGuire
James Sullivan
Taylor Fry Consulting Actuaries

GIRO convention, Newport, South Wales
2-5 October 2007

The project

• Work carried out by Taylor Fry personnel
• Data (Medical Liability) provided by a large specialist insurer
• Supported by research grant of £15,000 from Institute of Actuaries for Stochastic Reserving

Why individual claim loss reserving?

• What is meant by individual claim loss reserving?
 • Or let’s call it micro-reserving
Why individual claim loss reserving?

- What is meant by individual claim loss reserving?
- Or let’s call it micro-reserving

Conventionally

Why micro-reserving (cont’d)

Raw data

<table>
<thead>
<tr>
<th>Claim 1</th>
<th>Claim 2</th>
<th>Claim 3</th>
<th>...</th>
<th>Claim n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of accident</td>
<td>Date of notification</td>
<td>Age</td>
<td>Gender</td>
<td>Income</td>
</tr>
</tbody>
</table>

Data Forecast
Forecast
Why micro-reserving (cont’d)

Raw data

Summary data

Accident period

Development period

Information lost

Why does quantity of data matter?

Volume of data

1 2

Data set

Out of reserve

1 2

Data set

Capital employed

1 2

Data set
One form of micro-reserving model

Raw data

<table>
<thead>
<tr>
<th>Claim 1</th>
<th>Claim 2</th>
<th>Claim 3</th>
<th>Claim n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>etc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date of accident
Date of notification
Age
Gender
Income
etc

Data vector X_i for claim i
One form of micro-reserving model

Raw data (finalised claims)

Date of accident
Date of notification
Age
Gender
Income
e tc

Data vector
Xi for
claim i

Parameter vector
Stochastic error

Yi = Xi β + ei

Why case estimates?

1. Simply more information
 • So more efficient prediction

Why case estimates?

1. Simply more information
 • So more efficient prediction
2. Tail data
 • Few finalised claims
 • Claim sizes often at their largest
 • So extrapolating heavy tail from few data points
 • But usually plenty of case estimate data

In “old” triangle terms

Data

Few data points
Factoring case estimates into model

• Natural to think in terms of modelling a development ratio:
 - **Finalised claim size**
 - **Current estimate of incurred cost**

• But what about nil claims? either
 - Nil finalised cost; OR
 - Nil current estimate of incurred cost

Factoring case estimates into model (cont’d)

<table>
<thead>
<tr>
<th>Current estimate of incurred cost</th>
<th>Finalised claim size</th>
<th>Model required</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>Severity</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>Frequency</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severity</td>
</tr>
</tbody>
</table>

Final estimate of liability

• Possibilities are
 - Adopt the “paids” estimate
 - Adopt the “incurred” estimate
 - Adopt some mixture of the two

• There are two versions of the last
 - “**Blended**” estimate: weighted average of the two estimates for each accident year with weights dependent on accident year
 - “**Unified**” estimate: fit a generalised model that includes “paids” and “incurred” models as special cases
Some (very brief) results

<table>
<thead>
<tr>
<th>Model</th>
<th>Forecast</th>
<th>Predictive CoV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mack (chain ladder)</td>
<td>$808M</td>
<td>10.5%</td>
</tr>
<tr>
<td>Paid</td>
<td>$1,000M</td>
<td>5.3%</td>
</tr>
<tr>
<td>Incurred</td>
<td>$1,040M</td>
<td>5.3%</td>
</tr>
<tr>
<td>Blended</td>
<td>$1,021M</td>
<td>3.8%</td>
</tr>
<tr>
<td>Unified</td>
<td>$1,071M</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

Bootstrap distribution of unified forecast of loss reserve

Conclusion

- Micro-reserving useful as a means of reducing prediction error associated with liability estimates
- Can be carried out by means of a “paid” model
- Significant further reduction may be achievable by extension of the model to include case estimates