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1 Introduction 

In 1888, Francis Galton discovered the concept of correlation while doing 

some quantitative work on heredity. From 1890 onwards a group of persons came 

forward to fill up the gaps in Galton s work and to extend it in various directions. The 

most prominent member of this group was Karl Pearson. The product moment 

formula for correlation coefficient was given by Pearson in 1896 [1]. This is the 

familiar formula 
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Since then correlation analysis has been used quite intensively in the social sciences 

to ascertain the relationship between occurrences of economic or social events. One of 

the earliest examples of using correlation involved an anthropologist investigating 

whether some bones belonged to a skeleton by calculating the correlation between the 

lengths of various bones for each skeleton divided by the length of the skeleton [2]. 

We will call this type of correlation event correlation.  

Qualitatively, the notion of correlation has a much longer history. The first 

manifestations of spatial data arose in 1686 in the form of data maps which were used 

in a qualitatively way to infer a physical cause of monsoon rains [3].  The use of 

spatial models came later in [4] which was concerned with the distribution of particles 

through a liquid. Although spatial dependence was observed in agricultural fields, 

most efforts were aimed at removing them prior to analysis [5]. Spatial models have 

gained popularity in the last decade and have been used in areas such as ecology, 

geology, climatology and environmental science. In forestry, for example, spatial 

models are used to model patterns of tree growth.  

Temporal correlation, dependence of measurements taken at different points 

from the same process in time, have grown in use since the 1950 s. Although many 

observations have a time dimension, often temporal correlation is ignored, instead a 

cross-section of data is analysed.  In the past few years, spatio-temporal models have 

been used to describe dynamic systems such as ecological and climatic phenomena. 
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Nowadays, the notion of correlation is central to financial theory. The Capital 

Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT) use correlation 

as a measure of dependence between different financial instruments [6]. Furthermore, 

the importance of correlation has often been emphasised in the context of the pricing 

of derivatives instruments whose pay-offs depend on the joint realisations of several 

prices or rates. Examples of such derivatives products are basket of options, swaptions 

and spread options [7]. Although insurance has traditionally been built on the 

assumption of independence and the law of large numbers has governed the 

determination of premiums, the increasing complexity of insurance and reinsurance 

products has led recently to increased interest in the modelling of dependent risks, 

especially with the emergence of more intricate multi-line products [6]. With the ICA 

requirements of the FSA, robust and defensible approaches to modelling 

dependencies are required.  In Enterprise Risk Management (ERM) the modelling of 

dependencies between lines of business is critical. 

Dependencies arise when one factor affects more than one variable. The 

insurance premium cycle can result in the loss ratios of different classes of business 

moving in the same direction. Concentration of risks in a given sector, for example 

the energy sector, can result in increased claims such as directors and officers (D&O), 

errors and omissions (E&O), surety and others. Extreme events, such as hurricanes, 

can also result in dependencies between classes of business which are unrelated in 

normal conditions. Dependencies can be both very tricky to model and also not 

intuitive. Quite often dependencies occurs at different levels- for example if the risk 

profile of a particular class of business is broken into different sections by size and 

compared to another class of business, then different dependences can be found 

depending on the section compared. In ecology complex dependence structures, built 

up from several factors, are quite common. In the financial world the dependence 

structures vary with the volatility of the market. The estimation of dependence in non-

volatile conditions can be very tricky depending on the amount of data available, the 

quality of the data available and complexity of the dependence structure.  Quite often, 

it best to impose a dependence structure rather than trying to empirically determine 

and validate a structure. One should always look out for spurious structures that may 

be due to biases in the sampling approach used.   
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There is a need to understand the different alternatives available for modelling 

dependencies and assess the methods available to parameterise and validate such 

models. Finding a model that is robust to certain conditions can be very tricky. In this 

paper we will look at some of the issues in modelling dependencies. We will describe 

some of the measures used to estimate correlation and some of the approaches for 

modelling dependencies while explaining some of the pitfalls inherent in them.  

2 Spurious correlations  

Given, the long history of applying correlation analysis in other fields, it would be a 

pity to ignore what is already known about the empirical estimation of correlation 

structures.  Correlation is only one particular measure of stochastic dependence 

among many. It is the canonical measure for spherical and elliptical distributions and 

being a linear measure it cannot capture the non-linear dependence relationships that 

exist among most real life factors [6]. It is always important to bear in mind that 

correlation does not imply causation.    

It is possible to obtain a significant value for a coefficient when in reality the two 

functions are absolutely uncorrelated. Spurious correlation can be due to standard 

ways of processing data, for example one should be very wary of correlating ratios or 

indices. For example, two financial ratios may both be influenced by inflation. The 

two may show a strong correlation, but this is simply an artefact of inflation. Stripping 

inflation out may result in two uncorrelated indices. 

Fallacies can also be caused by mixing different records. Suppose that a drug is 

effective only on women and the population tested is predominantly men. In this case 

a spuriously high correlation is obtained only because some women are present in the 

sample [8, 9, 10]. Correlating time series can also produce spurious correlation 

especially due to noise or finiteness of the time series [11].  
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3 Measures of correlation 

Suppose we have a pair of datasets (X,Y) and we wish to empirically determine the 

correlation coefficient between them. There are a number of methods for estimating 

the correlation coefficient and we will look at some of the most common ones. The 

most common approach is the Pearson s moment approach. This assumes a bivariate 

normal distribution and a linear relationship. This coefficient is given by (1) 

For non-elliptical and non-linear correlation coefficients, one can use the Kendall s 

tau or the Spearman s rho. Note that while the former can give values which are very 

different from Pearson r, the latter can be numerically identical to Pearson r, 

especially if it is applied blindly.  The Kendall s tau is defined as  
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where Q is the number of inversions between the rankings of x and y. An inversion is 

any pair of objects (i,j) such that ri-rj and r i-r j have opposite signs  

The Spearman s rho is defined as  
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where r denotes the rank. 

Note that the standard error of these coefficients can be estimated using bootstrapping 

[12]. There are other alternatives for estimating the correlation when non-linearity is 

suspected. In [13] the observation that close values of X gives rise to close values of 

Y and thus the statistic is given by 

K= {I[ABS(Xi-Xj)< ]I[ABS(Yi-Yj)< ]} 

A large value of K, which can be compared to a reference distribution, will indicate 

strong relationship. The Moran s coefficient [14] replaces the Xs and Ys by their 

ranks and then calculates a moment correlation coefficient using the ranks. The 

coefficient is then compared to a reference distribution. Another rank correlation that 
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is robust to outliers is introduced in [15] and in [16] another robust correlation 

coefficient is proposed and is based on the median.   

4 Modelling and simulating multivariate distributions 

One approach for simulating correlated multivariate distributions is through the 

correlation matrix. Using historical data a correlation matrix is determined, which is 

then decomposed to simulate the random numbers.  

Note that the correlation matrix should be positive semi-definite and that the 

multivariate distribution will be the same as a weighted linear combination of the 

variables constituting the multivariate distribution. For spherical and elliptical 

distributions such as Poisson, gamma, normal, inverse Gaussian, the distribution of 

the weighted sum of linear components is the same as the distribution of the 

components, except for the correlation matrix. For other distributions, finding the 

multivariate distribution can be very tricky.  

Although this approach is intuitive, restrictions on the distributions and positive 

definiteness of the correlation matrix can be problematic.  Furthermore, it is quite 

difficult to structure complicated correlation structures through this method. A 

number approaches have been proposed for rendering the correlation positive definite. 

In [17] the matrix is decomposed into its eigenvalues and eigenvectors, the highest 

eigenvalues are chosen and the matrix is reconstruct using them. In [18] a review of 

existing approaches is given and a new approach is proposed. This consists of 

decomposing the correlation matrix as a block matrix such that the matrices in the 

main diagonals are positive definite while the matrices in the other diagonals are 

transpose of each other. The lower right matrix is then further decomposed in the 

same way as above.  The correlated random numbers are then simulated using the 

Cholesky decomposition of the final matrix. The process is repeated for each stage of 

the decomposition and the random numbers are stacked horizontally. Note that this 

approach can result in a large number of parameters and it might help to parameterise 

the correlation matrix so that its elements can be determined from a pre-determined 

function with lower number of parameters.   
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5 Copulas 

One method of modelling dependencies which has become very popular recently is 

the copula. The word copula is a Latin noun which means a link, tie bond . 

Mathematically, a copula is a function which allows us to combine univariate 

distributions to obtain a joint distribution with a particular dependence structure. The 

word itself was first employed in a mathematical or statistical sense by Abe Sklar 

[19].  

Sklar s theorem, which is central to the theory of copulas, states that for a given joint 

bivariate distribution function and the two marginal distributions, there exists a copula 

function that relates them. If both marginal are continuous, then the copula function 

exists. Conversely, if given the copula function and the marginal distribution 

functions then the joint distribution is given by applying the copula function on the 

marginal distributions. The theorem describes how functions join together one- 

dimensional distribution functions to form multivariate distribution functions.  Sklar 

named the function knowing that the word copula is a grammatical term that links a 

subject and predicate. Sklar s theorem states that A joint distribution can be expressed 

as inter-dependency C applied to the individual distributions. More precisely: 

Sklar s theorem 

Let Fxy be a joint distribution with margins Fx and Fy. Then  there exists a 

function C:[0,1]2->[0,1] such that  

Fxy(x,y)= C(Fx(x), Fy(y))  (4.1.1) 

If X and Y are continuous, then C is unique; otherwise, C is uniquely determined 

on the (range of X) x (range of Y).  

 Conversely if C is a copula and X and Y are distribution functions, then the 

function Fxy defined by 4.1.1 is a joint distribution with margins Fx and Fy.     

Using a copula to build a multivariate distribution is flexible because no restrictions 

are placed on the marginal distributions [20].  For example, if we have two marginal 

distributions - one with a beta distribution with parameters =5 and =5, and the other 

with a lognormal distribution with parameters =0 and =1. Then we can use a copula 

which is a member of the Frank s Family and given by  
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C(u,v)=-1*ln(1+(e- u+1)(e- v-1)/(e- -1))/

 
Simply by using equation 4.1.1 we generate a new joint distribution. The parameter  

determines the level of dependence of between the marginals.   

Figure 5.1 Contour maps of a Frank Copula function 

   

There exists a range of copulas the most common being the Gumbel copula for 

extreme distribution, the normal copula for symmetric correlation, the Archimedean 

copula the t-copula for dependence in the tail [21, 22]. The functional form of the t-

copula is somewhat complicated but easy to simulate.  However more recent work on 

the t copula shows that it can be generalised to give asymmetric dependence [23].  
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Figure 5.2 Sampled contour maps of a T copula function  

  

[24,25] propose reserving the degree-of-freedom parameter as a user-specified 

simulation input, allowing the user to  subjectively induce the extent of tail 

dependence between assets.  A user can approximate a Gaussian by entering a high 

degree-of-freedom (say 15), or select a lower degree of freedom for higher tail 

dependence (between 1 or 2).  This is useful not only for more traditional VaR 

analyses, but also for stress tests in which the degree of extreme co-dependence is of 

critical importance.  Certainly the authors agreed approach with this and found a 

degree of freedom of 2 to offer realistic equity tail dependence.   

Estimating parameters from data is more problematic. When the right and left 

tails are quite different the t-copula would not be indicated, but if only the right tail 

behaviour is important a fit to that could be sought. The main practical obstacle to the 

use of the t-copula is that there is only one parameter to control tail association and 

different pairs of variates might have different tail association [26].  Ways around this 

have been found by the authors through conditioning, and this will be discussed 

separately in the future. 
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Building a multivariate copula  

In order to minimise the effort in building a multivariate copula practitioners 

often use the same copula function for all dependencies. For example, all 

dependencies are described as a t-distribution where v=2, or all variables are 

described as Gaussian. 

Although a great deal of the literature considers the dependency structure between 

variables, the practitioner will still have to build the marginal distributions. Different 

approaches can be taken, such as empirical distributions or parametric best fit. Using 

empirical distributions results in a cumulative histogram of steps, The discrete nature 

of the steps is often not desirable. As a result many practitioners start with an 

empirical distribution and apply a cubic spline or kernel smoothing technique to 

interpolate between the steps. Consideration also needs to be given to the tails. The 

tails could be an abrupt minimum or maximum, or they can be fitted using  Extreme 

Value Theory (EVT) related techniques; such as a Gumbel distribution [27]. Fitting 

an EVT tail would be appropriate for equity returns, but would not be appropriate for 

unemployment, which has a minimum value of 0% and a maximum of 100%. 

In addition the modeller can improve the flexibility of a copula through the smart use 

of pre-processing, for example [24,25] suggest applying a GARCH filter to give i.i.d. 

observations.  The authors found that a simple normalisation of the form (x-

mean)/stdev offers an improvement in the dependency estimation and modelling of 

tails.  Indeed pre-processing would remove the need for complicated copulas designs 

such as the EV t copula described in [23]. 

.       
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Conditioning copulas 

From the perspective of the practitioner the ability to condition copulas seems 

to be a very powerful approach. Fitting the copula to all the data is equivalent to 

fitting a non-linear regression. Forcing certain variables to take a particular value 

allows the modeller to generate an expected distribution given a variable value Y. 

This offers benefits over traditional Markov chains.   

 The conditional distribution can be defined using copulas by differentiating 

the copulas with respect to the first argument to get Fy|x(y). In an independent case 

C(u,v)=uv and the conditional distribution of V given U=u is C1(u,v)=v, where 

C1(u,v) denotes d(C(u,v))/du.  One can use C1 to simulate the joint distribution. First 

simulate a value for U, then simulate a value of V from C1. 

The authors have found that conditioning allows different copula forms to be 

bolted together in one model, i.e. different tail dependencies.  As the scope of this 

subject is beyond this paper we have decided to address this subject in more detail 

separately.   
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6 Case Study: Life company ICA  

The available capital of a life company is given by its net assets. The Financial 

Services Authority (FSA) requires institutions to demonstrate that they are adequately 

capitalised, i.e. that they have enough capital such that the probability of the company 

failing over a certain time period is sufficiently small. This is known as an ICA 

 

Individual Capital Assessment. In the following we consider how we might evaluate 

the situation of a life company, and in particular, how we could use copulas to help 

us.  

The model 

The value of capital at any future time can be modelled as a random variable, 

in fact we could write   

0t tC C X

  

Where 0C is the current net assets of the insurer, and tX is some random variable. (We 

could equally well take 0C  as the expected value of capital at time t, and arrange for 

tX  to have zero mean). 

Clearly the financial health of a life insurer is affected by many different risks. The 

FSA identifies seven categories of risk: 

 

Market 

 

Credit 

 

Insurance 

 

Business 

 

Liquidity 

 

Operational 

 

Enterprise  

We could further break down market risk for example into the risk factors 

determining: 

 

domestic equity returns 

 

foreign equity returns 

 

bond returns 
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property returns  

This would lead us to propose  

t t tX R

  

Where t and tR  are, respectively, vectors of exposures and random variables 

representing risks. 

For example, for a company with no liabilities, $100 in capital at time zero invested 

75% in equities and 25% in short bonds we would have  

b

e

R

R

C

C
X

0

0

25.0

75.0 

where eR  would be a random variable of returns with (say) mean 8% and standard 

deviation 20%, and bR would be similarly defined. 

Now if we assume R is jointly normal, then tX  is a linear combination of normal 

random variables, and hence is also a normal random variable. In fact, if R ~ 

Nd( , ), then tX ~N(H.M, H  H) where H is the transpose of the vector H. 

 It is then trivial to calculate 0tP C , simply by noting that     

HH

C

HH

C
ZP

RHCPCP tot

'

'

00

0

0  

So all that remains is to estimate H and R.  

The catch  

Above we assumed that all the components of tR  are (jointly) normal. Then 

evaluating the individual contributions to capital requirements is trivial. Additionally, 

we can demonstrate how the lack of perfect correlation between the risks lowers 

capital requirements. This can be done because the joint normal distribution has 

normal marginals, and both are well understood. 
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However, in doing so we would ignore two important facts about risks: 

1. In general, individual risk factors will not be well approximated by a normal 

distribution. A distribution with fat tails would be a more appropriate choice. 

2. The joint normal distribution restricts the form of the dependence between the 

marginal variables. We may wish for example, to model a dependency where 

good returns are uncorrelated, but poor returns are positively correlated   

The solution  

We turn to the copula tools discussed above instead. Using a copula we can 

specify arbitrary marginal distributions for the different risk factors based on 

empirical estimation and/or on theoretical grounds. Then using a copula we can create 

a joint distribution for the risk factors. One useful copula for this function would be 

the t copula which will then be used in our formulae above. 
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7 Case Study: Pricing CDO s  

Most readers will be familiar with the growth in the market for credit derivatives and 

structured products based on those instruments. In this section we discuss how copula 

based models are used to price Collateralised Debt Obligations, or CDO s. We believe 

this will be of interest to many actuaries given that many life and pension funds are 

investing in these products in the search for higher returns. 

We emphasise that we are describing what we believe to be an emerging industry 

standard. However, the methods described below have many theoretical 

shortcomings, and the standard will no doubt change in this fast developing field [26].  

What is a CDO? 

We begin by explaining the nature of a CDO. CDO s are a wrapper around a basket of 

corporate debt instruments, for example high-yield bonds. The CDO is divided into 

tranches , or levels of seniority, each with a promised coupon. Payments from the 

underlying instruments are passed on, via a Special Purpose Vehicle (SPV), to the 

purchasers of the tranches, starting with the most senior level, and proceeding down. 

If defaults occur in the underlying assets, the senior levels are (at first) unaffected, 

with the lower levels losing some or all of their investment. More defaults will mean 

more layers are burnt through , but the senior level s principle and interest payments 

will continue unless almost all the underlying instruments have defaulted 

 

generally 

considered to be an unlikely scenario.  

This is illustrated in figure 6.1. 
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Figure 6.1 A schematic view of a CDO transaction 

So a CDO is a method of taking a large number of high risk investments, and creating 

a several artificial structures (the tranches) with a varying levels of risk. 

Synthetic CDO s are designed to be similar from the investor s point of view. They 

are created, not from the underlying assets themselves, but rather by the use of credit 

derivatives like credit default swaps. 

A credit default swap (CDS) is essentially an insurance contract on a corporate debt: 

one party pays a regular premium, while the other party agrees to pay an amount if a 

specific credit event occurs 

 

generally the default of a specific company on a 

particular debt. The premium is set such that the (risk-neutral or market implied) 

expected value of payment on default is equal to the value of the premium payments.  

In a synthetic CDO the default swap premiums are paid to the SPV, who passes them 

on to the various tranche holders. The tranche holder s principle will be used to make 

any necessary payments on default; again the lower level tranches lose their principle 

before the more senior tranches. From the investor s point of view there is no 

difference between a synthetic and standard CDO 

 

the cashflows are identical, and 

the risks are triggered by the same events (default of specified names). 

These products are often said to be opaque, the risks poorly identified, understood and 

priced. We hope to shed some light on the matter, by setting out what we understand 

has become the market standard method of pricing tranches. 

Underlying  
Assets 
(bonds, etc) 

SPV 

AAA 3% 

BBB 7% 

BB   9% 

payments payments 
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The pricing problem 

Pricing a CDO, either synthetic or pure, comes down to calculating the (joint) 

probabilities of default of the underlying instruments. The problem is that we are 

attempting to price a basket of credit instruments which may not have independent 

risks of default. Although the correlation of defaults may be small, it can have a 

sizeable impact on the risk and price of a tranche. 

Additionally, the individual risks of default are traded directly in the corporate bond 

and credit derivatives market. We need our CDO tranche prices to be consistent with 

the individual bond and default swap prices if we are to avoid arbitrage opportunities. 

Note that, as in all pricing problems, it is not the real-world probabilities that are 

needed, but the risk-neutral probabilities [28].  

A Copula based solution. 

If we think of the prices of individual bonds and CDS s as reflecting the marginal 

risks of default, and the price of a CDO tranche as reflecting the joint risk of defaults, 

we see immediately that a solution involving copulas is indicated. 

Given that the marginal prices (and hence probabilities of default) are observable, we 

could assume a copula and then either: by observing the price of the CDO, infer the 

relevant correlation structure, or, by estimating the correlation structure exogenously, 

calculate the fair price of the CDO.  

The copulas most used by market practitioners are the standard Gaussian, the one-

factor Gaussian, and the Clayton copula. We describe in more detail how and why 

they are used below.  

Standard Gaussian copula method 

The Gaussian copula is used to generate Monte Carlo simulations of the defaults of 

the underlying instruments, which are then used to price the CDO [29]. The 

correlation structure used is the pair-wise asset correlation as used, for example, in 
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CreditMetrics. Often equity correlation, as derived from historical time series, is used 

as a proxy for asset correlation.  

The observed marginal default distributions, together with the correlations and the 

Gaussian copula, define the joint default distribution. Pricing can then be done by 

simulating from the joint distribution, and assessing the payouts in each simulation, as 

per normal Monte Carlo pricing methods. 

We summarise by figure 6.2:  

Figure 6.2 Pricing a CDO using a Gaussian Copula 

This method is useful since it can be used to price CDO s accurately, given the 

appropriate marginal distributions and the asset correlation parameters. The 

disadvantages are that it requires a large number of inputs (the correlation parameters 

 

CDO s can contain hundreds of names) and the computation time required for the 

Monte Carlo simulation can be onerous. Finally, given a market price for the CDO 

tranche, we are unable to invert this price to find the implied correlation parameters.  

One Factor Gaussian and Clayton 

Those familiar with the pricing of credit risk will recall the notion of one-factor 

models [30]. These models postulate that defaults are dependent through a single 

random factor, often identified with the state of the economy, or some other macro-

economic variable. Conditional on the value of that variable, defaults are held to be 

independent. So during a recession we have more defaults than during a boom, but if 

Correlations (Historic 
estimate) 

Marginal default 
probabilities (Bond/ 
CDS prices) 

Copula CDO 
Price 

Simulations

 

Inputs 
Assumption Output 



 

19

we know we are in a recession, company A and company B will default 

independently (but both with a higher probability than in a boom). 

This model further assumes that the underlying portfolio consists of a large number of 

homogenous assets. 

Because the defaults are conditionally assumed to be independent, the conditional 

joint density function factorises. The unconditional joint density function can then be 

found by performing a one-dimensional integration over the possible values of the 

factor. This integration must usually be done numerically, but the computation time 

and effort is far smaller than for the Monte Carlo method above. 

In this model the marginal default probabilities are correlated with the factor variable 

by a common amount. Since we no have a single correlation factor, we can invert 

market (observed) prices for CDO tranches, and solve for the implied correlation .  

Figure 6.3 Using a one factor model to derive a market implied correlation.  

This inversion has become market practise, with some talk of implied correlation 

becoming the credit market equivalent of implied volatility. Indeed, this correlation 

varies by tranche of a particular CDO, where the model tells us it should be constant, 

in a way some see as being analogous to the implied volatility smile. Others merely 

think that this shows that better models are needed. 

The Clayton copula is used in a similar way, but is technically more convenient for 

calculations.  

Joint default 
probability (CDO 
price) 

Marginal default 
probabilities 
(Bond/CDS prices) 

Copula Correlation 

Inversion

 

Inputs 
Assumption Output 
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Conclusion 

CDO s are structured assets based on underlying instruments in the credit market. The 

pricing of a CDO reduces to the estimation of the joint probability of default of the 

underlying assets. The marginal probabilities of default are observable in the 

underlying market, making copulas the natural choice for a pricing methodology.  

Market practise is to use the Gaussian copula or a factor variant thereof for pricing. 

This seems to be for modelling convenience rather than for any solid theoretic reason. 

Correlations can be estimated, and combined with the marginal default probabilities to 

produce a joint default probability distribution. This can be sampled from to produce a 

price for a CDO tranche by Monte Carlo techniques. 

Alternatively, the underlying portfolio can be assumed to be homogenous and follow 

a one factor model. The observed price of a CDO can then be numerically inverted to 

find the implied correlation factor of the underlying risks and the common factor. 

We note that this field is still rapidly expanding, and market standards are shifting. 

Notably, the Gaussian copula which is used in the techniques described above can be 

shown to significantly underestimate the frequency of multiple extreme defaults, and 

hence underestimate the risk associated with these products. 

Interestingly, in our research for this section, we noticed that much of credit risk 

valuation involves the analysis of survival probabilities 

 

an area which should be a 

speciality for actuaries. It is possible that the profession has something to contribute to 

this field.    
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