Extreme Events and Portfolio Construction

Malcolm Kemp, Nematrian Limited and Adjunct Professor, Imperial College Business School

Presentation to Risk and Investment Conference, Edinburgh, 15 June 2010

Agenda

- Analysing fat-tailed behaviour
- What causes fat-tailed behaviour?
- Selection effects – an example of model risk
- Portfolio construction in the presence of fat tails

- Talk based on material in:
Extreme events: Robust portfolio construction in the presence of fat tails

- Chapters:
 1. Introduction
 2. Fat tails – in single (i.e. univariate) return series
 3. Fat tails – in joint (i.e. multivariate) return series
 4. Identifying factors that significantly influence markets
 5. Traditional portfolio construction techniques
 6. Robust mean-variance portfolio construction
 7. Regime switching and time-varying risk and return parameters
 8. Stress testing
 9. Really extreme events
- Plus Principles (Chapter 10) and Exercises (Appendix)
- Toolkit available through www.nematrian.com

Agenda

- Analysing fat-tailed behaviour
 - What causes fat-tailed behaviour?
 - Selection effects – an example of model risk
 - Portfolio construction in the presence of fat tails

- Talk based on material in:
Analysing fat-tailed behaviour

- There are various ways of visualising fat tails in a single return distribution. Easiest to see in format (c) below
- By ‘fat tail’ we mean probability of extreme-sized outcomes (returns / movements / events) seems to be higher than from (log) Normal distribution

![Example Probability Density Function](image)

![Example cumulative probability distribution plot](image)

![Example quantile-quantile plot](image)

Source: Nematrian (illustrative)

QQ-plots

- Largest divergences relate to extreme events
 - Usually what we want
 - However, could wrongly emphasise extreme events
 - Under-emphasise: VaR vs TVaR
 - Over-emphasise: fat tails can add rather than subtract value
Tail behaviour dependent on time-scale (1)

- Higher frequency data
 - Typically viewed as more fat-tailed than lower frequency data
- Period analysed below: June 1994 to December 2007

Tail behaviour dependent on time-scale (2)

- Higher frequency data
 - More data points => QQ-plot is naturally further into the tail
 - For these data sets, daily data not much more fat-tailed than weekly data
 - But note e.g. Oct 1987
Skew(ness), kurtosis and Cornish-Fisher

- Fat tails involve deviation from Normality
 - Hence some higher cumulants (moments), aka semi-invariants, e.g. skew and (excess) kurtosis, deviate from zero (Normality)
- Cornish-Fisher (4th moment version) estimates distributional form from merely the first 4 moments, i.e.
 \[
 \text{mean} = \mu = E(x) \quad \text{standard deviation} = \sigma = E\left(\frac{x - \mu}{\sigma}\right)
 \]
 \[
 \text{skew} = \gamma_1 = E\left(\frac{x - \mu}{\sigma}\right)^3 \quad \text{(excess) kurtosis} = \gamma_2 = E\left(\frac{x - \mu}{\sigma}\right)^4 - 3
 \]
 - Regularly appears in risk management academic literature
- Standardised QQ-plot estimated via a cubic equation:
 \[
 y_{x,4}(x) = x + \frac{1}{6} x^3 - 3x^2 + 2x^1 - 6x^0 - 1
 \]

Flaws in Cornish Fisher (and hence in skew/kurtosis)

- Doesn’t model index return distributions particularly well
 - Particularly parts risk managers might be most interested in, i.e. downside tails
- Computation gives less weight to tail observations (most observations are in middle of the distribution)
- Lacks a desirable stability criterion
 - Applying CF twice can lead to a more extreme distribution
- Fit QQ-plot directly, e.g. with cubic (or other weightings)?
Joint fat-tailed behaviour

- Usually split between
 a. Marginals
 b. Copula
- Facilitates Monte Carlo simulation
- But some disadvantages
 - Fat-tailed characteristics difficult to see (copulas akin to joint pdf / cdf)
 - Many problems depend on (a) and (b) in tandem
- Kemp (2010) proposes a multi-dimensional variant of QQ-plots to circumvent these difficulties

Agenda

- Analysing fat-tailed behaviour
 - At a joint as well as at an individual return series level
- What causes fat-tailed behaviour?
 - Selection effects – an example of model risk
 - Portfolio construction in the presence of fat tails

- Talk based on material in:
What causes fat-tailed behaviour?

- Time varying volatility (and other distributional characteristics)
- Regime switching
- Crowded trades and leverage

Time-varying volatility

- Very widely observed phenomenon
 - Fits our intuition – sometimes markets more turbulent than at other times
- Distributional mixtures of Normal distributions
 - E.g. draw X_1 with probability p from N_1, draw X_2 with probability $(1-p)$ from N_2
 - Quite different behaviour to linear combination mixtures, i.e. $aX_1 + bX_2$
- If N_1 and N_2 have same mean but different standard deviations then distributional mixture fat-tailed (if $p \neq 0$ or 1) but not linear combination mixture
- Time-varying volatility creates an analogous effect
 - Because drawing from different distributions at different times
Explains some market index fat tails, particularly on upside

Raw Data
Daily returns (End Jun 1994 to end Dec 2007)

With Short-term Volatility Adjustment
Daily returns (End Jun 1994 to end Dec 2007, scaled by 50 business day trailing daily volatility)

Average extent to which tail exceeds expected level (average of 6 most extreme outcomes)

<table>
<thead>
<tr>
<th></th>
<th>Downside (%)</th>
<th>Upside (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unadj</td>
<td>Adj for vol</td>
</tr>
<tr>
<td>FTSE All-Share (in GBP)</td>
<td>54</td>
<td>41</td>
</tr>
<tr>
<td>S&P 500 (in USD)</td>
<td>68</td>
<td>70</td>
</tr>
<tr>
<td>FTSE Eur ex UK (in EUR)</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>Topix (in JPY)</td>
<td>54</td>
<td>72</td>
</tr>
</tbody>
</table>

Not just a developed market phenomenon

Raw Data
Daily returns (End Jun 1994 to end Dec 2007)

With Short-term Volatility Adjustment
Daily returns (End Jun 1994 to end Dec 2007, scaled by 50 business day trailing daily volatility)

Source: Nematrian, Threadneedle, FTSE, Thomson Datastream
A longer term phenomenon too

Raw Data

With Short-term Volatility Adjustment

Tail analysis for S&P 500 and FTSE All-Share price movements 31 December 1968 to 24 March 2009

Tail analysis for S&P 500 and FTSE All-Share price movements (vol adj, by trailing 50-day vol, early 1969 to 24 March 2009)

Expected (rescaled to zero mean, unit standard deviation)

Source: Nematrian, Threadneedle, S&P, FTSE, Thomson Datastream

Time-varying volatility

• Also known as heteroscedasticity
• Closely allied with GARCH modelling
 – E.g. s(t) = a.s(t-1) + c, where s = volatility (if using AR(1) model)
 – The C in GARCH is because we are talking about the volatility conditional on the current time and/or on volatility at earlier times
• Why not incorporate time-varying behaviour in distributional parameters including means and correlations (covariances)?
• More commonly then called regime switching
Regime switching

- Idea: two or more ‘regimes’ (each e.g. characterised by a complete $N(\mu, \Sigma)$ distribution, say R_1 and R_2.
- World is in one of these states at time t.
- Switches from R_i to R_j with probability p_{ij} at time t.
 - Usually adopt a ‘simple’ Markov chain formulation, in which p_{ij} does not depend on what regimes the world was in before the last time period.
- Can be generalised to continuously varying distributions, and continuous time.
 - If latter then typically solved using stochastic calculus.
 - Numerical solution typically reintroduces time grid.

Regime switching (continued)

- Adds complexity and therefore sophistication.
 - And risk of over-fitting, i.e. lack of parsimony.
- Regimes might be Normal but have different means e.g. ‘normal’ and ‘bear’ regimes of Ang and Bekaert (2004).
 - Can introduce fat tails and conditional tail correlation effects.
- In general, risk-return trade-off dynamics are altered.
 - Optimal (i.e. efficient) portfolios then regime dependent.
 - Also time dependent (and hence more sensitive to transaction costs).
 - Also utility dependent, both re. fat tails and re. inter-temporal utility.
Crowded trades

- Some fat tails still seem to come “out of the blue”
 - E.g. Quant funds in August 2007
 - Too many investors in the same crowded trades? Behavioural finance implies potentially unstable
 - For less liquid investments, impact may be via an apparent shift in price basis
- Portfolio and system-wide equivalents via leverage?
 - Leverage introduces/magnifies liquidity risk, forced unwind risk and variable borrow cost risk

Agenda

- Analysing fat-tailed behaviour
 - At a joint as well as at an individual return series level
- What causes fat-tailed behaviour?
- Selection effects – an example of model risk
- Portfolio construction in the presence of fat tails

- Talk based on material in:
Selection effects, see e.g. Kemp (2010a, 2010b)

• ‘Selection’ effects are a common problem in finance
 – E.g. Individuals buying annuities typically have longer life expectancies than individuals who don’t
• Can also apply to portfolios being analysed by risk models
 – Many risk models assume behaviour that is (approximately) Gaussian, i.e. multivariate (log) Normal, akin to lots of different sources of random noise
 – Can decompose multiple series return data into principal components, the most important of which contribute the most to the aggregate variability exhibited by securities in the relevant universe
• But what if portfolios are structured to seek ‘meaning’ (e.g. if they are actively managed!) and ‘meaning’ is (partly) associated with non-Normality?
 – Both meaning and magnitude are important

<table>
<thead>
<tr>
<th>Component</th>
<th>PCA, only StdDev (c = 0)</th>
<th>Blended (1 in 200 quantile level, CF4)</th>
<th>ICA, Only Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>StdDev</td>
<td>Kurt</td>
<td>Criterion</td>
</tr>
<tr>
<td>1</td>
<td>10.6%</td>
<td>3.1</td>
<td>10.6%</td>
</tr>
<tr>
<td>2</td>
<td>6.5%</td>
<td>2.1</td>
<td>6.5%</td>
</tr>
<tr>
<td>3</td>
<td>5.6%</td>
<td>1.7</td>
<td>5.6%</td>
</tr>
<tr>
<td>4</td>
<td>4.8%</td>
<td>1.4</td>
<td>4.8%</td>
</tr>
<tr>
<td>5</td>
<td>4.2%</td>
<td>0.4</td>
<td>4.2%</td>
</tr>
<tr>
<td>6</td>
<td>3.7%</td>
<td>1.1</td>
<td>3.7%</td>
</tr>
<tr>
<td>Av (top 6)</td>
<td>5.9%</td>
<td>1.6</td>
<td>5.9%</td>
</tr>
<tr>
<td>Av (all 23)</td>
<td>3.2%</td>
<td>1.2</td>
<td>3.2%</td>
</tr>
</tbody>
</table>

• (a) Principal components analysis – focuses on standard deviation, (b) independent components analysis – focuses on, say, kurtosis, or (c) blend
• Sizes of ‘1 in 200’ events potentially underestimated several-fold by PCA (and hence traditional risk systems), if factors expressed are selected for fat-tailed characteristics
Agenda

- Analysing fat-tailed behaviour
 - At a joint as well as at an individual return series level
- What causes fat-tailed behaviour?
- Selection effects – an example of model risk
- Portfolio construction in the presence of fat tails

Talk based on material in:

Portfolio construction

- Traditional (quantitative) approach involves portfolio optimisation
 - Typically mean-variance optimisation
 - Identify expected return (‘alpha’) from each position
 - Maximise expected return for a given level of risk (subject to constraints, e.g. weights sum to unity)
 - Maximise $\mathbf{a} \cdot \mathbf{r} - \lambda \mathbf{a}^\mathbf{Va}$
- Time-varying parameters add realism and complexity
 - alpha + beta ‘separation’
Portfolio construction – sensitivities

- Output results notoriously sensitive to input assumptions
- Possible responses:
 - Treat quant models with scepticism (the fundamental manager’s approach?)
 - Use ‘robust’ approaches, Bayesian priors/anchors, e.g.:
 - Black-Litterman
 - ‘Shrinkage’
 - Position limit ‘priors’ (e.g. 1/N, long-only, etc.)
 - Focus on reverse optimisation

Portfolio construction – impact of fat tails (1)

- If all return opportunities (and combinations of them) ‘equally’ fat-tailed, then end results the same, if risk budget adjusted appropriately
- If different combinations exhibit differential fat-tailed behaviour then in principle adjust portfolio construction to compensate:
 - If we can reliably estimate these differentials
 - And if investors do not have solely quadratic utility functions
Solution A - simplest

- Most important (predictable) single contributor to fat tails seems to be time-varying volatility. So:
 - Calculate covariance matrix between return series after stripping out effect of time-varying volatility
 - Optimise as you think fit (standard, “robust”, Bayesian, BL, ...), using adjusted covariance matrix
 - Adjust risk aversion/risk budget appropriately
 - Then unravel time-varying volatility adjustment
 - Or derive implied alphas using same adjusted covariance matrix
- Implicitly assumes all adjusted return series ‘equally’ fat-tailed

Solution B – more sophisticated

- Model with a mixture of multivariate Normal distributions
- Time-stationary? Maybe not realistic?
- Time-varying?
 - (Discrete) regime switching, and/or
 - (Continuous) parameterisation (and continuous time?)
- However:
 - Even a mixture of just two multivariate Normal distributions involves estimation of twice as many parameters
 - Making parameter estimation correspondingly less reliable
 - Results very sensitive to input assumptions
 - Time varying => dynamic => sensitivity to transaction costs
Solution C – lower partial moments

- Any return = threshold + upside + downside
- Non-quadratic utility will typically give greater weight to downside and will in general also depend on higher moments
- Single series, define as: \(\text{lpm}(K,m) = \mathbb{E}[\min((r-K)^m,0)] \)?
- Multiple series, define as: \(\text{lpm}_{ij}(K,m,n) = \mathbb{E}[\min((r_i-K)^m(r_j-K)^n,0)] \)?
 - Or max
 - E.g. co-skewness, co-kurtosis
 - Or symmetric alternatives
- Substantially increased numbers of parameters, and few observations in tail
 - Specify candidate distributional form and fit this?

Summary

- Fat-tailed behaviour
 - Very common in practice
 - Several intrinsic reasons for its existence, including time-varying world
 - QQ plots focus more on extremes than pdf / cdf
- Active management may 'select' fat-tails
 - Potentially major implications for risk modelling
- Portfolio construction can be refined to cater better for extreme events
 - But refinements potentially complex, especially in a time-varying world
References

Important Information

Material copyright (c) Nematrian, 2010 unless otherwise stated.

All contents of this presentation are based on the opinions of the relevant Nematrian employee or agent and should not be relied upon to represent factually accurate statements without further verification by third parties. Any opinions expressed are made as at the date of publication but are subject to change without notice.

Any investment material contained in this presentation is for Investment Professionals use only, not to be relied upon by private investors. Past performance is not a guide to future returns. The value of investments is not guaranteed and may fall as well as rise, and may be affected by exchange rate fluctuations. Performance figures relating to a fund or representative account may differ from that of other separately managed accounts due to differences such as cash flows, charges, applicable taxes and differences in investment strategy and restrictions. Investment research and analysis included in this document has been produced by Nematrian for its own purposes and any investment ideas or opinions it contains may have been acted upon prior to publication and is made available here incidentally. The mention of any fund (or investment) does not constitute an offer or invitation to subscribe to shares in that fund (or to increase or reduce exposure to that investment). References to target or expected returns are not guaranteed in any way and may be affected by client constraints as well as external factors and management.

The information contained in this document is confidential and copyrighted and should not be disclosed to third parties. It is provided on the basis that the recipient will maintain its confidence, unless it is required to disclose it by applicable law or regulations. Certain information contained in this document may amount to a trade secret, and could, if disclosed, prejudice the commercial interests of Nematrian or its employees or agents. If you intend to disclose any of the information contained in this document for any reason, including, but not limited to, in response to a request under the Freedom of Information Act or similar legislation, you agree to notify and consult with Nematrian prior to making any such disclosure, so that Nematrian can ensure that its rights and the rights of its employees or agents are protected. Any entity or person with access to this information shall be subject to this confidentiality statement.

Information obtained from external sources is believed to be reliable but its accuracy or completeness cannot be guaranteed.

Any Nematrian software referred to in this presentation is copyrighted and confidential and is provided “as is”, with all faults and without any warranty of any kind, and Nematrian hereby disclaims all warranties with respect to such software, whether express, implied or statutory, including, but not limited to, the implied warranties and/or conditions of merchantability, of satisfactory quality, or fitness for a particular purpose, of accuracy, of quiet enjoyment, and non-infringement of third party rights. Nematrian does not warrant against interference with your enjoyment of the software, that the functions contained in the software will meet your requirements, that the operation of the software will be uninterrupted or error-free, or that defects in the software will be corrected. For fuller details, see license terms on www.nematrian.com. Title to the software and all associated intellectual property rights is retained by Nematrian and/or its licensors.