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1. Summary

The purpose of the paper is to provide practical guidance on general insurance claim

reserving from the following viewpoints:

� Providing a framework or working guide to the execution of reserving. Section 2

gives guidance on the factors which should be considered as background to the

reserving process. These factors should help to determine the methodology to be used

and help in assessment of parameters where judgement is involved in the reserving

process.

� Practicalities of the chain ladder projection method. The chain ladder method is the

most widely used method for projecting results. Section 3 considers the practicalities

involved, which are highly contingent on the amount, type and reliability of the data

available.

� Survey of reserving methodology used in practice. As an aid to providing guidance

we arranged for the Institute of Actuaries to send out two questionnaires to reserving

practitioners, the first on reserving in general (that is methods actually used and how

parameters selected) and the second on stochastic reserving methods used, reserve

ranges and risk margins and discounting.  The replies to the survey have been

analysed and the results of the analysis are shown in section 4.

� Provision of ranges using stochastic or other methodology. Section 5 investigates the

practical provision of a range of results, rather than a theoretical approach based on

models which may bear little resemblance to the more practical method used to obtain

the underlying reserve figure.

� Review and description of new methods, that is currently used methods which have

not been presented in the Claims Reserving Manual.  These methods include the

Generalised Cape Cod Method in section 6.



� Chain Ladder or Link Ratio methods. These are described in section 7 within a

framework that can be extended to cover most actuarial projection techniques, the

focus being on practical reserving methodology rather than mathematical rigour.

� Provision of reserving software.  The software generated in investigation of the

reserving methods in the paper will be posted to the Institute web-site.  These include

Linear Reserving, Cape Cod, Thomas Mack and Practical Stochastic Reserving.



2. Framework

2.1 Factors to be Considered as Background

The following is a check-list of factors to be considered when conducting any reserving

exercise:

A. Claim Settlement Pattern

a. Timing of Claim Occurrences

b. Allocated Loss Adjustment Expenses

c. Changes in Settlement Procedures

d. Large Claims

e. Claim Frequency

f. Partial Settlements

g. Special Settlements

h. Nil Claims/ Precautionary Advices

i. Judicial Awards

B. Nature/Mix of Business

a. Changes in Portfolio Volumes

b. Change in Mix of Business

c. Change in Policy Conditions

d. Aggregate Deductibles

e. Premium Rates

C. Data Constraints

a. Computer Systems

b. Availability of Data

c. Reliability/ Credibility of Data

d. Processing Backlogs

e. Heterogeneity of Data



D. Exogenous Influences

a. Changes in Legislation

b. Social Environment

c. Weather Conditions

d. Currency Movements

e. Miscellaneous

E. Outwards Reinsurance

a. Net Liability Calculations

b. Catastrophe Covers/ Large Claims

2.2 Amplification of Check-list

The following discussion amplifies the above check-list.

2.2.1 A. Claim Settlement Pattern

Stability of the claim payment pattern is an assumption that is used in many

projection methods. In practice this ideal is rarely realised and the following are

factors which should be examined before using or modifying this assumption.

a. Timing of Claim Occurrences

For property classes, adverse weather experience late in an origin year would

increase the proportion of payments and settlements made in the first

development quarter following the end of the year. For a household account

with short development patterns, distortion could be severe.

b. Allocated Loss Adjustment Expenses

If any specific allocated expenses are included in payment data, changes in

the method of allocation (such as between classes of business) or in the timing

of allocation (for example: date of payment, date of settlement) will distort the

payment data.



c. Changes in Settlement Procedures

These could arise in a number of ways, such as policy decisions to press for

early settlements, changes in claims handling efficiency, staffing levels  and

closing-off exercises on outstanding claims.

d. Large Claims

Large claims usually have a longer settlement pattern than small ones.  Any

change in the mix of severity of claims or random variations in number,

amount and date of payment will change the overall settlement pattern.

e. Claim Frequency

A change in frequency without a change in the mix or type of claims will not

affect most projection methods, but a change resulting from increased claim

awareness or the introduction of bonus protected motor policies may affect

the settlement pattern.

f. Partial Settlements

The increasing use of partial settlements would have an effect.

g. Special Settlements

Changes in policy towards ex gratia payments or the attitude to borderline

cases may affect settlement patterns.

h. Nil Claims/ Precautionary Advices

The effect on any method using the average claim size is obvious.  The

volume of precautionary advices can be changed by publicity about the need

for such advices.



i. Judicial Awards

The level of settlements for injury may not follow any price or earnings index,

but have sharp upward movements after particular judicial awards, followed

by a period of stability.

2.2.2 B. Nature/Mix of Business

a. Changes in Portfolio Volumes

With a significant change in portfolio volume, it is unlikely that the nature

and mix of the business would remain similar over time.  Inevitably there

would be a change in underwriting standards and the type of risk brought

about either explicitly, by extending cover to certain policyholders previously

declined cover, or implicitly, by starting to charge below-market premium

rates.  This fundamental change in the underlying nature of the “average” risk

and the difficulty in quantifying the effect on the claims process should

immediately introduce an air of caution into the statistical calculation of the

outstanding claims reserve.

Even in the unlikely event of similar before and after portfolios the effect of

random fluctuations (which are more prevalent with a low-volume portfolio)

must be allowed for when projecting the outstanding reserves for a larger

portfolio using historical low-volume statistics.  Similarly, when going from a

high-volume to a low-volume situation, the stability which might have been

experienced in the past because of the minimal effect of such random

fluctuations, could well disappear in the low-volume portfolio. This could

lead to uncertainty about the accuracy of the statistical reserve.

On an even more practical side, it would be necessary to be aware of the

effect on the claims staff of a large increase in portfolio volume.  Inevitably

the numbers and experience of such staff would not keep pace with the

changing portfolio, at least initially, so the claims handling procedures would

change.  This could lead to delays in computer notifications, less thorough



investigations and delays in settlements with potentially higher ultimate costs.

The inherent nature of the claims could have changed and certainly the

statistics of the emerging cohort of business (associated with the increased

volume) would be different from previous low volume cohorts.

b. Change in Mix of Business

If a class of business is very narrowly defined with all risks which fall under

this classification being similar in claim characteristics, then there is little

problem.  Alternatively, consider a company with a single private motor

classification.  If it experiences a swing away from predominantly non-

comprehensive business to comprehensive policies then not only will the

claim size distribution be significantly different, but also the reporting and

settlement patterns will change.

c. Change in Policy Conditions

Some changes can, in practice, have little effect.  For example, increasing a

policy excess by £50 should cause the average net claim to subsequently

decrease by a somewhat similar figure.   In reality the before and after

situations might well not be too dissimilar, making projections less uncertain.

However, for a large change in deductible (for example changing an excess

from zero to £1,000) the average claim cost may rise as a result of there being

a lower proportion of claims that are just larger than the deductible.

Other changes can have a significant effect.  For example, extending private

motor cover to broken windscreens without application of an excess and

without any effect on the NCD or granting protected NCD’s for a minimal

arbitrary premium could cause the incidence of claims to increase sharply and

have a significant effect on the claim size distribution.  In this case a

projection of the current outstanding claims based on past averages is likely to

give an over-inflated reserve.



An even more significant change would be where an NCD scale was changed

or where the rules for determining position on the scale were amended.  Such

a change could have a significant effect on the type of claim subsequently

reported.

d. Aggregate Deductibles

Contracts are common, particularly in the London Market, which provide

coverage excess of underlying deductibles.  In such cases there is often a time

lag before the insurer is notified of claims or books claims to the relevant

layers, or makes claims payments.  Triangulation methods applied to claims at

the insurer’s level would not provide reasonable estimates in such situations.

Such contracts should be extracted from triangulations and considered

separately using appropriate techniques, which may include stochastic

methods to reflect the fact that only excess claims are payable by the insurer.

Work would be required on understanding the policy structure, developing a

model and collecting additional data.

e. Premium Rates

Rate changes will affect any projection methods such as Bornhuetter-

Ferguson or (Generalised) Cape Cod which use initial expected loss ratios.

Also, if premium rates are inadequate then there would be a need to calculate

an unexpired risk reserve (“URR”).

2.2.3 C. Data Constraints

Data can be inadequate or erroneous in content for a number of reasons and these are

examined below:-

a. Computer Systems



A company’s computer system is usually the main, if not the only, source of

information open to the claims reserver.  Computer systems capable of

handling large volumes of diversified policy and revenue information are

necessarily complex.  In order to interpret computer generated statistics, it is

essential to have a sound knowledge of the computer’s database.  Data can be

processed incorrectly owing to a misunderstanding of how the computer

system works.  The statistician must always be aware of current processing

policy if data processing errors of this nature are to be avoided.  Accurate

statistics are essential.  A close association with the database engenders a

sense of awareness of processing errors.  The sooner errors are highlighted

and corrected the cleaner the data become.

Inception-to-date statistics show revenue development by contract or group of

contracts and should tie in exactly with revenue details.  Extraneous factors

can sometimes hinder this relationship.  Statistics must always be reconciled

with revenue accounts.  Otherwise, distortions will appear in the projection of

outstanding reserves.

The importance of knowing one’s computer system may be illustrated by the

following questions, the answers to which must be known:-

� are premiums gross or net of commissions?

� does the term commission include acquisition costs such as premium

taxes, fire brigade taxes, profit commission?

� Do paid losses incorporate provision for settlement costs such as legal

fees, court costs?

� Does the term “outstanding losses” represent only the amount advised by

the broker or are there additional elements to cover outstanding court

costs, legal fees, additional reserves assessed by the claims manager or

even IBNR estimates (rare but does occur such as for some US Auto risks

written at Lloyd’s)?



b. Availability of Data

A computer system is only as good as the information it contains and the ease

with which the information can be accessed.  It is pointless storing

information which cannot be accessed or reported in the format required.  A

statistician can find himself in a situation where certain information is

required, but no programs exist to extract it in the format required.

Sometimes, information essential to claims reserving is absent from the

computer system.  Certain reinsurances, recorded manually, may never have

been processed.  In such cases, allowance must be made when projecting net

statistics to compensate for the known deficiency.  Availability of all data, be

they manual or computer records, is essential for proper reserving.

c. Reliability/ Credibility of Data

The “garbage in – garbage out” scenario is highly relevant in claims

reserving.  The statistician must always watch out for processing errors, (for

example from input errors, incorrect currency codes or exchange rates, non-

processing of reinsurances).

Data can be processed wrongly owing to a processing technician’s lack of

training or understanding.

Statistics net of reinsurance may be overstated if certain reinsurance amounts

have not been processed owing to omission or timing lags.  Unless allowances

are made, projection of such data will generate an overstatement in reserves.

Clean, credible data are all-important when establishing the best estimate of

the reserves to be carried in the company accounts.

d. Processing Backlogs

These can arise, for example, from staff shortages, strikes, an increasing

portfolio or holidays.



If the backlog is seasonal, for example owing to holidays, then this may be a

regular occurrence and statistical developments may not be distorted.  If

however, the backlog has arisen for reasons which had not happened in the

past, then subjective allowance must be made to accommodate any statistical

distortion which results.

Growth of a business without sufficient growth in backroom staff is a

common example of a non-regularly recurring backlog. In this case, particular

care is needed in assessing the data since the size of the processing backlog

would likely increase over time.

e. Heterogeneity of Data

A commonly used technique in claims reserving is to divide the database up

into homogenous sub-sets.  Taken to the extreme, we would end up with

hundreds of data sets having little if any statistical stability.  This is

impractical and undesirable.  The statistician must therefore restrict himself to

broader sub-sets such as by FSA class.  Depending on the size of a reserving

class, a further sub-division by business type may be appropriate.

Changes in characteristics over time will affect claims development.  Unless

these are known and allowed for, incorrect reserve estimates will result.  In

practice, however, it may be very difficult to identify changes in business

profile from computer data alone.

The underwriter is probably the best person to approach for guidance as to the

change in business type by year.  Taking this into account, we can

subjectively recognise and make allowance for the heterogeneity of the data

when projecting claims reserves.  To be more scientific is impossible.

Data constraints often prevent the statistician from dividing his database into

homogenous sub-sets.  If heterogeneity cannot be avoided, the statistician

must apply subjective analysis when establishing outstanding claims reserves.



(There is more on homogenity et cetera in section 3.3 in reference to chain

ladder considerations).

2.2.4 D. Exogenous Influences

Such influences are to a large extent outside the control of the insurer.  Two

of the most important of these influences are inflation in the general level of

prices and earnings (to the extent that these affect claim settlements) and

uncertainty of investment yields.

Other exogenous influences affecting the claims experience may be revealed

by a gradual trend in the figures being analysed, but in many cases the

exogenous influences will cause a sharp discontinuity in the experience.

Where a discontinuity is known to have occurred and its effects can be

reasonably quantified, observed experience should, of course, be adjusted to

eliminate the effects of the discontinuity before making an assessment of the

provision necessary for outstanding claims.  Since most types of exogenous

influence are not amenable to statistical measurement, it is not possible to

include in the provision for outstanding claims a scientific assessment of

reserves for exogenous influences which may or may not arise in future.  All

that can be done is to include an arbitrary margin in the provision made.  Even

for those exogenous influences where some statistical assessment could in

theory be made (such as the risk of catastrophes), the limited nature of the

data available to the individual insurer may render a statistical approach

inappropriate.  These features are illustrated in the following paragraphs.

a. Changes in Legislation

Changes in legislation, whether fiscal or otherwise, are clearly factors beyond

the control of individual insurers.  For example, an increase in the rate of

value-added tax could result in increased claim costs for motor car repairs

effected after the relevant date, whether or not the damage was inflicted

before the relevant date.  Provided the proportion of claim costs subject to



VAT is known, the effect of a change in the rate of VAT can be quantified

and past experience can be adjusted to produce consistent figures for

assessment of the outstanding claims provision.  It is not possible to make

allowance on a statistical basis for any future changes in the rate of VAT.

Landmark judicial decisions may have a similar effect.

b. Social Environment

Apart from legislative changes, there may be changes in the social

environment which lead to uncertainty in the valuation of outstanding claims.

For example, a more sympathetic attitude towards disabled claimants may be

reflected in higher compensation payments awarded by courts, particularly

where the payment is determined by a jury.  This feature would normally be

revealed as a gradual trend in settlement costs, although not necessarily on a

steady basis, and may be indistinguishable from other features affecting the

claim settlement process discussed in ‘a’ above.  However, occasionally, this

type of change may produce a sharp discontinuity in the experience.

c. Weather Conditions

The vagaries of the weather can result in a fluctuating incidence of claims

between different accounting years, which may give rise to different

settlement patterns.  The problem is greatest when the most recent year has

experienced abnormal weather conditions.  It is unlikely that the data

available on past experience would be sufficiently credible to allow any

adjustment to the assumed future run-off pattern for the latest year other than

on the basis of informed subjective judgement.  Use of weekly or monthly

delay tables could help with certain classes.

Infrequent climatic events, such as typhoons, hurricanes and other

catastrophes, can also complicate the analysis of past experience.  The

preferred course of action is likely to be to eliminate catastrophe claims from

past experience, to use these adjusted claims figures to assess the outstanding



claims provisions, and then to incorporate a further provision for any

outstanding catastrophe claims known at the valuation date.  The difficulties

arise in deciding which claims (or which parts of claim payments) are

attributable to a catastrophe.

d. Currency Movements

It is clearly desirable for the sake of homogeneity that experience in different

territories should be examined separately, provided there is a sufficient

volume of data.  Although the figures in the UK supervisory returns are

normally shown in sterling, the analysis of the experience should ideally be

made in original currencies to reduce the distortion caused by fluctuating

exchange rates.  However, it is not always possible to segregate the data

completely on the basis of currency.  For some risk groups, particularly those

risks that are of an international nature, the currency in which a claim is made

may not be known in advance.  Even where the policy conditions prescribe

payment in a particular currency, the amount of claim ultimately paid may

effectively be linked to some other currency, for example depending on the

location of the claim event or on the country in which court action was

pursued. The currency may also depend on the nature of the claim. For

example, energy claims are always in US dollars even when the policy

currency is not.

If records are available of the proportion of claim payments made (or

effectively made) in each currency within the particular risk group being

analysed, then adjustments to the experience figures can be made to

compensate for past changes in exchange rates.  However, it is likely that only

approximate adjustments would be possible in practice.

There could also be problems when claims are in a different currency to

premiums, giving a mismatch, such as when premiums are used as the

exposure measure on Bornhuetter-Ferguson or Generalised Cape Cod

methods.



e. Miscellaneous

This paragraph considers a further set of distorting influences which are not

outside the control of the insurer, but which are extraneous to the claims

experience.  For example, some methods of estimating outstanding claims

involve the calculation of ratios of claims paid to premiums received.  In such

cases, it is important to be aware of any changes in the general level of

premium rates and to adjust the ratios for such changes so that the figures

examined are on a consistent basis.  Similarly, previous changes in reserving

techniques may make earlier figures not directly comparable with later

figures.  It may also happen that pressure from management in their desire

either to maximise or to stabilise company profits could have had a variable

effect on the assessment of reserves in previous years.  The specialist within

the insurance company who is charged with responsibility for assessing

outstanding claims ought to be aware of all these factors, but the specialist

outside the company, relying only on published information, may not be.  In

that case, a greater degree of uncertainty may be expected in estimating the

outstanding claims provision.

2.2.5 E. Outwards Reinsurance

a. Net Liability Calculations

There are in effect two ways in which net liabilities may be calculated:

� By calculating the gross liability and the outwards reinsurance liability

separately and hence calculating the net liability as the difference

between these two figures.

� By using data which is net of outwards reinsurance and so calculating

the net liability directly.

Both these methods can be considered, although different results are likely

as the valuation methods are not usually additive models.  If the second is



used then the gross liability still needs to be calculated and problems may

be caused by using this order of calculation in obtaining results which are

consistent.  In general it would appear to be more logical to consider gross

and reinsurance as two separate entities, particularly where the proportion

reinsured is substantial.

b. Catastrophe Covers/ Large Claims

The treatment of large claims and catastrophe covers can produce

distortion in the results as there are a number of ways in which allowance

is made for these.  Also, problems are caused by whole account and other

forms of catastrophe cover which are used to protect more than one

account as it is then very difficult to obtain the amounts recovered for

each account separately. Also, any allocation to account may be arbitrary.



3. Chain Ladder Practical Considerations

The following describes how chain ladder development factors are selected in practice.

3.1 Chain Ladder Development Factors: Judgmental Selection

Using the observed historical loss development experience, the following are reviewed:

(i) report-to-report incremental development factors (RTR factors), (ii) volume-weighted

RTR factor averages, and (iii) simple average RTR factors.  Development factors are

selected based on the developmental experience, the RTR factors and the RTR factor

averages which are examined for the following characteristics:

� Smoothness of RTR factors and factor averages, with the ideal patterns showing

steadily decreasing incremental development from evaluation to evaluation,

especially in the later evaluations;

� Stability of RTR factors, with the ideal case being a relatively small range of RTR

factors or a small variation within each column;

� Credibility of the experience, based on the volume of losses for a given origin year

and age;

� Changes in patterns of loss developments such as (i) an increase or decrease in RTR

factors within a column or (ii) a shortening or lengthening pattern of development

over time; and

� Applicability of the historical experience in projecting for all origin years, based on

qualitative descriptions regarding changes in the book of business over time.



3.2 Benchmark Development Factors

Development factor selection is based upon actual historical experience of a class of

business, supplemented by benchmark patterns which are constructed drawing upon

available relevant sources of loss development data.  Benchmarks should be revised

periodically as new information and trends emerge.  While the actual development of a

class of business can be expected to vary from the benchmark because of individual

circumstances, the benchmark may be considered to be an appropriate supplement to the

analysis of triangle data, as it represents the current judgement as to the typical payment

patterns that can be expected for a type of business.  It is, of course, possible that this

historical data will not be predictive of future loss experience of the business concerned.

3.3 Homogeneity versus Paucity of Data

With the use of more sophisticated computer systems it is often the case that data can be

subdivided down to a very finely defined level. A very large number of triangles of data

can be produced, each of which can be considered to be more homogeneous than the

combined data. For example, Aviation data could be split into airlines, airports, products,

general aviation, war, deductible cover, satellites and helicopters with some of these split

into hull and liability. Figures converted to one currency can be split into US dollars,

Sterling, Canadian Dollars and Euros. Here Sterling could include all other currencies

converted to sterling (which describes common analyses at Lloyd’s, in order to comply

with syndicate reporting requirements) or these could all be shown separately. However,

while splitting the data could give more homogeneous data, the data can be so sparse that

stability is lost and reliable projections cannot be made.

A balance has to be made between the two extremes. Other considerations that need to be

made are:

� What is the minimum requirement? For valuation of Lloyd’s syndicates, there are

some sub-divisions that have to be made. For example, US dollar and Canadian dollar

business needs to be split out for trust fund purposes.  Without this requirement

Canadian dollar business, in particular for smaller syndicates, would often not be



treated separately when it was only a small portion of the whole. In practice the

development factors used for small classes denominated as Canadian dollars are

through necessity usually based on the US Dollar selected values.

� Whether there are particular reasons why sub-divisions are required, such as over-

riding requirements by management that ultimate values for particular sub-divisions

are required.

� There are cases where particular sub-sections of data disturb the overall development

and should be considered separately. Obvious examples are environmental losses

(asbestos, pollution, health hazards) and large losses (in particular the 11 September

2001 events).

� Changes in the mix of business need to be considered. If the sub-divisions of business

have different development patterns there is less need to sub-divide if the proportions

of business written and relative loss ratios within each sub-division have remained

relatively constant for succeeding origin years.

� For combined currencies projections are likely to be more accurate if data are

converted all at the valuation date rates of exchange. If data are converted at historic

rates of exchange there can be distortions, particularly in times of rapid changes or

revaluations of currencies.

3.4 Triangle Data: Missing Cells

Data may be missing from triangles of claim data because of problems with systems. In

particular, the data from the top left part of the triangle may be missing as historical

records were not maintained. Options available are as follows.

� The most obvious option is to try to restore the missing data, possibly by examining

paper records or off-line computer systems.

� If cumulative-from-inception data are available then the standard methods are still

applicable. The chain-ladder methods can be used with fewer years available on

which to base development factors.  This may in fact be more appropriate in practice



even when all data are available as development for the missing top left triangle of

data may no longer be appropriate with the lapse of several years.

� If cumulative data are not available, one option is to re-create the data based on later

development. For example, if ultimate values are normally based on incurred claim

projections, the missing paid claim data can be estimated based on development data

for subsequent development periods. This will then give cumulative incurred claim

data that can be used as normal.

� There are methods which can be used, such as development methods based on

incremental data, curve fitting methods or the least squares method. Depending on the

quantity of data missing, these methods can be highly unstable.

3.5 Chain Ladder: Interpolation

One example where interpolation is required is for a non year-end valuation, particularly

at the end of the third quarter of a year when an early indication of the year-end results is

required or when more time can be spent on preparing the forecast compared with the

year-end which is often subject to severe time constraints. The data available are often

end-year data for all of the triangle apart from the most recent diagonal, which would be

as at the valuation date (or third quarter for our example).

The first problem is that standard development factor estimation cannot be done. The

RTR factors in the triangle for the latest development period are based on three-quarters

of a year rather than a whole year. One option is to ignore these ratios when calculating

average factors, particularly if it is considered that the development to third quarter is less

reliable than to year-end for various reasons such as that year-end figures are subject to

more rigorous audit. A second option is to include the values in the averages, after

grossing up to year-end values, usually assuming linear development over the year

(possibly with less weight used in the averages for the grossed-up factor).

The second problem is that the averages derived are values to progress from one year-end

to the next whereas the current data is at third quarter. This is usually solved by linear

interpolation between the derived year-end percentage of ultimate figures. Linear



interpolation is unlikely to be precise. The hope is that it is close enough to be used in

practice. This is likely to be true for later development periods but may be inappropriate

for the first few development periods. One consideration is whether the RTR factors are

being selected at the third quarter in order for them to be used at year-end, when fourth

quarter data are available, without further analysis or if they are required to project third

quarter data when more accuracy would be required.

 If the historic data are available as at third quarter for previous years, more accurate

interpolation formulae can be derived. Alternatively, as described by Sherman (1984), a

curve could be fitted to the selected end-year development data and used to determine the

interpolation formulae (although this may not be applicable for the latest origin year with

just three quarters development).

If complete quarterly development data are available then there are various options:

(a) Triangles based on end-year data for all apart from the current diagonal can be used,

as above.

(b) Quarterly development factors can be derived and used to project to ultimate.  This

has the advantage of using all the data and no interpolation is required.  The

disadvantages are:

- considerably more work is involved;

- historic quarterly development will likely be more subject to fluctuation than

annual development and hence, selection/smoothing of development factors will

likely be more difficult;

- quarterly data other than year-end may be less accurate as they may not be subject

to audit;

- true underlying development factors may not reduce smoothly, for example if

there are annual reviews of reserves

- presentation of triangles requires much larger space.



(c) Triangles with annual data being that applicable to the current diagonal. For example,

if the valuation is at third quarter then the historic data would all be at third quarter in

the respective calendar years.  The advantage of this approach is that it is

straightforward and no interpolation is required (unless a forecast as at the end of the

year is needed).  The disadvantages are:

- Non year-end data is likely to be less reliable than year-end data for insurers who

do not issue audited financial reports at the valuation date;

- The development factors selected at previous year-end or previous quarter cannot

be used as the framework for the current quarter as is possible with (a) above.

3.6 Chain Ladder: Irregular Reporting Dates

The data for the triangle may be at irregular dates, that is the diagonals for the triangle

may be at various, non year-end, dates.  The options available, depending on the degree

of difference from standard triangle development, includes:

� Ignoring the fact that data are not annual and making ad-hoc adjustments as required.

� Interpolating between values in the data to derive annual data (using linear

interpolation or non-linear if warranted by the data and if this is feasible).

� Curve-fitting using standard development curves with appropriate adjustment to a

non-annual basis.

� Using a more frequent development period than annual, with appropriate adjustments

if there is no unique choice.

� Using benchmark development factors with interpolation as appropriate.

3.7 Bornhuetter-Ferguson

3.7.1 Initial Expected Loss Ratios

In order to use the Bornhuetter-Ferguson (“BF”) method initial expected loss ratios

(IELRs) need to be determined.  The BF method is heavily dependent on the quality of



the IELRs.  If a poor IELR is used this will result in a poor estimate. The following are

methods used in practice:

� If very little information is available about the class of business a fixed value of 100%

as a break-even value (as was suggested in the original paper by Bornhuetter and

Ferguson), or allowing for practical issues as 100% less various values such as

commission (if relevant) and profit margin.  This approach should only be used as a

last resort.  If there is any information which suggests that 100% may not be

appropriate then this information should be used.

� An alternative to the previous is to start with such an IELR for the first valuation and

then at subsequent valuations (either quarterly or year-end) to use the selected

ultimate loss ratio rolled forward from the previous valuation for each origin year as

the IELR for the new valuation.  It should be noted that different results would be

derived based on how frequently valuations are made. Using the results from the

previous valuation gives results that are not very different to the previous valuation.

This has the advantage that projection results are fairly stable over time.  However, a

serious disadvantage is that an inappropriate result from the previous valuation would

not be corrected.

� Underwriters’ estimates can be used based on their experience and judgement (but

allowance may need to be made for undue optimism!)

� If rate adequacy changes for the class of business being valued, either based on the

actual business or using market knowledge, including information about the

underwriting cycle, are available, these can be used  (adjusted for inflationary

influences) to determine an IELR for an origin year relative to the IELR or ultimate

selected loss ratio for the preceding origin year.

3.7.2 Large Loss Adjustment

The chain ladder method can be adjusted by:

� Removing large losses



� Projecting excluding large loss data using development factors assumed pertaining to

data excluding large losses.

� Individual projection of the individual large losses to give IBNER (using curve-

fitting, graphical analysis, market knowledge, exposure information etc).

� Calculation of pure IBNR for large losses (which would usually be zero if data are on

an accident year basis as relevant large losses should be known at the time the

valuation is made, although this may be less true for casualty than for property).

For the Bornhuetter-Ferguson method, either one of the following applies:

� The initial expected loss ratio is assumed to be for data including large losses.  In this

case the formula does not necessarily need adjustment. For the incurred BF method,

the formula for IBNR of � � Pc �.1�  is applicable where c is the expected proportion

of ultimate for claims including large losses, � is the initial expected loss ratio and P

is the premium.

� The initial expected loss ratio is assumed to be for data excluding large losses.  In this

case the IBNER  for large losses needs to be added to the above formula for IBNR,

together with pure IBNR for large losses if the data are not on an accident year basis.

3.8 Inflation

We are now in a low-inflation era, but this does not mean that we can ignore inflation,

particularly as claims inflation may be much higher than anticipated compared with RPI.

Should future inflation be allowed for explicitly or implicitly? There are some methods

which allow for inflation explicitly such as the inflation adjusted chain ladder method and

the separation method. The standard chain ladder method assumes that future inflation

will be similar to the inflation inherent in the historical data. This may be more or less

accurate than using an explicit inflation method for which assumptions need to be made

about future rates of inflation. Consideration should be given to ways of adjusting the

standard chain ladder method without using the full inflation-adjusted method to allow for

changing levels of inflation.



3.9 Discounting

When discounting results consideration needs to be given as to what interest rates should

be used.  Depending on circumstances these could be related to the company’s actual

investment portfolio, at fixed rates, or at rates related to standard risk-free bond rates.

Different rates may be used for short-tail and long-tail classes. Rates may be adjusted to

allow for non-invested assets.  Section 4.2.2.3 suggests that in practice the discount rate

used is a risk-free rate, with or without a margin.

3.10 Gross versus Net Projections

This is mentioned in Section 2.2.5.  It should be noted that projection techniques rely on

the past being representative of the future.  This is invalidated by changing reinsurance

structures and therefore the reinsurance programme applicable to each origin period

should be considered before selecting an approach.

One approach used is to project the gross data and then to work out how the reinsurance

programme applies in order to calculate the net results. How easy this is to do depends on

a number of factors:

� How complex the reinsurance programme is. The programme may comprise a large

number of contracts with complex arrangements, each covering various classes of

business with various inuring previous reinsurances.

� Levels of deductibles. If the excess of loss cover is at high levels then large losses can

be projected at the gross level to determine recoveries. For lower level cover it may

be impractical to project losses directly and in particular to determine IBNR claims.

� Some reinsurance contracts may require special consideration, in particular those with

aggregate deductibles (including but not limited to stop loss contracts).

If reinsurance is small relative to gross then net-to-gross or reinsurance-to-gross ratios

may be used, possibly based on incurred amounts by origin year and applied to ultimate

amounts or directly to reserves.



Alternatively, net projections can be made directly. In some cases the development is

smoother at the net level as the peaks from the gross development have been smoothed

out. Factors that need to be considered are current and possible future exhaustion of

reinsurance contracts and how the reinsurance programme has changed over time. Also,

net figures may be projected at levels net of proportional and some excess of loss

programmes but before multi-class covers and stop loss covers which would be estimated

subsequently.

3.11 Large Losses

Judgement is required as to what is defined as a large loss if these are excluded from the

standard projection methods and treated separately. As intimated above, one

consideration is at what level claims enter the reinsurance programme. Also, too low a

threshold would involve considerable work. For the larger losses there is information

available from the market to help determine ultimate losses.



4. Survey of Reserving Methodology

4.1.1 As part of the process for this year’s working party, we decided to conduct a

survey of reserving methodology.  There is a huge amount of background material

available on reserving methods, apart from the Institute and Faculty’s Claims

Reserving Manual, including a large number of papers written in this country and

abroad, including USA, Canada, Australia and the rest of Europe.  For anyone

embarking on a claims reserving exercise the main questions for which they

require answers are:-

� What method(s) should I use?

� What results should I produce, for example: reserve estimate, range around

estimated reserve, discounted reserve?

4.1.2 As an aid to answering these questions it would be helpful if we knew what was

done in practice.  The survey, conducted through the auspices of GIRO, aims to

identify:

� What can be considered to be normal practice among UK reserving actuaries.

� The range of methods used (and found useful) in practice, so that others may

consider using methods they might not otherwise have used.

4.1.3 The survey looks at reserving in general and three specific areas:

� The use of stochastic methods in practice

� Reserve ranges in practice

� Risks margins and discounting

The questions asked in the survey were as follows:



4.1.4 Background

� What percentage of your working time over the course of a year relates to

reserving?

� To which market areas does your reserving work generally relate?

� Type of organisation worked for (insurer; consultancy; other, to be specified)

� How many years of reserving experience do you have?

4.1.5 Reserving Survey 1: Reserving in General

Q1. Identify those projection methods that you use in practice: regularly, less

frequently, once in a “blue moon” (chain ladder; inflation-adjusted chain ladder;

average cost per claim; simple loss ratio applied to ultimate premiums; ratio

applied to case reserves to estimate IBNR; exposure based method; other, to be

specified).

Q2. Identify the main method(s) you regularly use to allow for reinsurance (push gross

losses through actual reinsurance programme; apply net-to-gross ratios or

reinsurance-to-gross ratios; projecting gross and net data separately; apply same

method and same assumptions to net as were selected for gross; other, to be

specified).

Q3. Identify the main methods you regularly use when rolling projections forward,

rather than re-projecting, for example when rolling forward to the next quarter.

(No change in ultimates, that is reduce reserves by payments in the quarter; look

at “actual vs. expected” movements and use judgement; mechanically apply same

method and assumptions, with one quarter removed; apply same method and

assumptions, but review of necessary changes; Bornhuetter-Ferguson approach,

using previous ULR as IELR; other, to be specified).



Q4. Identify the main method(s) you regularly use to select development factors for

chain ladder or similar methods (calculated average; manual selection; curve

fitting; benchmarks; other, to be specified).

Q5. Identify the main method(s) you regularly use to select tail factors for chain

ladder or similar methods (manual selection; curve fitting; benchmarks; other, to

be specified).

Q6. Identify the main method(s) you regularly use to select initial expected loss ratios

for Bornhuetter-Ferguson or similar methods  (ULR from previous underwriting

years, adjusted where necessary; IELR from previous underwriting years,

adjusted where necessary; underwriter’s estimate; ULR from previous valuation;

default break-even ratio, for example 100%; manual selection; benchmarks; other,

to be specified).

Q7. Identify the associated reserves that you normally cover; whether included

explicitly or implicitly (ALAE; ULAE, UPR; (additional) URR; reinsurance bad

debt).

Q8. If where you would like to be is different from where you are in respect of your

general reserves approach, what are the main differences?

Q9. If where you would like to be is different from where you are, what are the main

reasons for this?

4.1.6 Stochastic Reserving Survey 2:

Q1. Have you used stochastic reserving methods in a real reserving situation?  (No;

yes, but only occasionally; yes, sometimes; yes, frequently).

Q2. In which situation, do you use them? (Estimating reserve requirements;

identifying reserve ranges; DFA/asset-liability modelling).



Q3. Identify methods you have used and how useful you found them (Bootstrap;

random walk model for paid loss development; Zehnwith; Wright; Mack; Verral;

Hoel curve and GAMs; other, to be specified).

Q4. Indicate where you would like to be (compared to where you are), that is whether

you would ideally like to use stochastic methods in your reserving work  (No; yes,

but only occasionally; yes, sometimes; yes, frequently).

Q5. If where you would like to be is different from where you are, principal reasons

for this (Too time-consuming; too complicated; need to learn more about them;

other, to be specified).

4.1.7 Reserve Ranges

Q6. Do you identify reserve ranges when performing reserve work? (No; yes, but only

occasionally; yes, sometimes; yes, frequently)

(If answer “No”; Q7 to Q10 ignore).

Q7. How would you describe the range(s) you usually produce? (Range of outcomes

with specific associated probabilities; range of likely outcomes; range of possible

outcomes excluding very unlikely outcomes; range of reserve estimates that I

would consider reasonable/acceptable; other, to be specified)

Q8. What principal method(s) do you normally use to identify reserve ranges?

(Stochastic methods; varying projection assumptions; rules–based framework;

judgement; other, to be specified)

Q9. If where you would like to be is different to where you are, what are the main

differences?

Q10. If where you would like to be is different to where you are, what are the main

reasons for this?



4.1.8 Risks Margins and Discounting

Q11. How would you describe your undiscounted reserve estimates in general?

(Mean; median; mean plus a margin; median plus a margin; other, to be

specified).

Q12. Do you produce discounted estimates when performing reserving work?

(No; yes, but only occasionally; yes, sometimes; yes, frequently)

Q13. (If yes to Q12)

Identify your usual approach(es) to determining the discount rate(s) to use:

(Risk-free rate; risk-free rate, reduced by a margin; rate based on actual

investment portfolio; rate based on actual investment portfolio, reduced by a

margin; a number of rates, for others to select from; other, to be specified)

Q14. Do you make explicit allowance for risk margins when performing reserving

work? (No; Yes, but only occasionally; Yes, sometimes; Yes, frequently)

Q15. (If Yes to Q14)

Identify your usual approach(es) to risk margins  (Subjective addition to

reserve estimates; calculated addition to reserve estimates, method to be specified;

subjective reduction in discount rate; calculated reduction in discount rate, method

to be specified; other, to be specified)

Q16. If where you would like to be is different from where you are, what are the main

differences?

Q17. If where you would like to be is different from where you are, what are the main

reasons for this?

4.2 Results

We are grateful to all those who filled in and returned the surveys.  A good cross-section

of actuaries responded, balanced between those working for insurers and for

consultancies and including those involved in a variety of business lines.  The results of

the survey are summarised below.



4.2.1 Reserving Survey 1: Reserving in General

Projection methods that are used regularly were, unsurprisingly, dominated by the chain

ladder and Bornhuetter-Ferguson methods.  These are not universal preferences though –

one person felt strongly that we should be moving away from these deterministic

methods, believing that they produce misleading results.

Only in a few cases did people indicate that they regularly used projection methods other

than those listed in the survey question.  The most popular of these other methods were

the projected case estimate method and variations on the average cost per claim method.

Similar methods were used by those working for insurers and those working for

consultancies.  Those working for insurers tended to use average cost per claim methods

more often, perhaps linked to the fact that more of them indicated that they worked in

personal lines.  In general the consultants used a greater variety of methods and more

often mentioned methods not on the list in the survey question.  This may simply be

owing to a tendency to look at a greater variety of types of business.

In question 2, the main methods regularly used to allow for reinsurance by those

responding were: Push gross losses through actual reinsurance programme; Apply net-to-

gross ratios (or reinsurance-to-gross ratios); Project gross and net data separately.  Each

of these methods was regularly used by about 50% of those responding.  The fourth

Q1 - Projection methods used in practice
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option, Apply same method and same assumptions to net as were selected for gross, was

less popular (15%).  A small proportion of those responding said that they regularly used

a stochastic approach.

Question 3 asked which methods were regularly used when rolling projections forward

(rather than re-projecting), such as when rolling forward to the next quarter.  The most

popular methods were: Apply same method and assumptions but review for necessary

changes (regularly used by about 50%) and Look at 'actual vs expected' movements and

use judgement (50%), closely followed by No change in ultimates – just reduce reserves

by payments in the quarter (35%).  In fact, No change in ultimates was more often used

by those working for insurers, probably because they are likely to assess reserves more

frequently.

When it comes to selecting development factors for chain ladder or similar methods, by

far the most popular approaches are manual selection and calculated averages.  In each

case, about 75% of replies indicated that this was one of the main methods used.  Curve

fitting was regularly used by 50% and benchmarks by 30%.

Following on from this, manual selection was also by far the most regularly used method

for selecting tail factors (80%), following by curve fitting and benchmarks (about 45% in

each case).

Question 6 asked how Initial Expected Loss Ratios are selected in practice for use in the

Bornhuetter-Ferguson method.  The most popular approach was to use the Ultimate Loss

Ratio from previous underwriting years, adjusted where necessary (see below).

In each of the three questions above, the most noticeable difference between those

working for consultancies and those working for insurers was that consultants were more

likely to incorporate benchmarks (as might be expected).

In question 7 the survey asked which associated reserves actuaries normally cover in their

reserving work.  The results were: ALAE 66%, ULAE 49%, UPR 46%, Additional URR

51%, Reinsurance bad debt 34%.



The first seven questions were designed to identify current normal practice among

reserving actuaries.  The survey then went on to ask how actuaries would ideally like to

approach their reserving work, if this is different to what they do at the moment.  They

were also asked to indicate the main reasons for any differences.  The most common

comment was a desire to use stochastic methods or to use them more often (23%).  A

variety of reasons were given as to why this is not done at the moment.  The main reasons

were a lack of time or resources (including a few people who felt the extra time required

was not justified by the value added) and a lack of familiarity with stochastic methods.

4.2.2 Reserving Survey 2: Stochastic Reserving Methods, Reserve Ranges, Risk

Margins and Discounting

The second survey was designed to address three aspects of reserving that we felt were of

particular interest.

4.2.2.1 Stochastic Reserving Methods

Q6 - Methods regularly used to select IELRs for Bornhuetter-
Ferguson methods
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The results of the survey showed that the majority of people have not used stochastic

methods in a real reserving situation or have done so only occasionally (about 70%).

Those working for consultancies were more likely to have used stochastic methods.

However, a large proportion of people indicated that ideally they would like to use

stochastic methods either frequently or sometimes (80% in total).  Few people use them

frequently at present (6%), but it is interesting to note that out of those who use them

“sometimes”, most would like to use them more.  The most common combination of

replies to questions 1 and 4 were from the following groups:

� Those who don’t currently use stochastic methods (or do so only occasionally), but

would ideally like to use them “sometimes” (37%); and

� Those who currently use them “sometimes”, but would ideally like to use them

“frequently” (17%).

The main obstacles cited by those who don’t use stochastic methods as often as they

would like were that the methods are time-consuming (50%) and that they need to learn

more about them (50%).  Several other problems were noted: budget constraints, lack of

data, lack of suitable software, issues with the general approach (such as the reliance on

Q1 and Q4 - Use of stochastic methods in real reserving situations
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assumptions) and difficulties in convincing others to accept these methods.  Some replies

noted that external factors such as regulatory requirements and fair value accounting are

likely to lead to increased use of stochastic methods.

For the most part, stochastic methods are currently used to identify reserve ranges

(indicated by 80% of those who have used them in practice) rather than to estimate

reserve requirements (30%).  50% use them for DFA/Asset-Liability Modelling and 30%

use them for other purposes – the most common of these being reinsurance modelling and

issues relating to solvency or capital requirements.

Question 3 asked which stochastic methods have been used and whether they were found

to be useful in practice.  Encouragingly, most people found the methods they had used to

be useful.  By far the most commonly used methods were Bootstrap (60%) and Mack

(50%).

4.2.2.2 Reserve Ranges

Most actuaries responding to the survey identify reserve ranges when performing

reserving work (about 80%), although only 30% do so frequently (see chart).  Those

working for consultancies tend to do so more often than those working for insurers.

A variety of types of range are produced and some actuaries produce more than one type

of range.  The most common types of range identified were: Range of reserve estimates

that I would consider reasonable/acceptable (50%), Range of likely outcomes (30%) and

Range of possible outcomes excluding very unlikely outcomes (30%).  A smaller

Q6 - Do you identify reserve ranges when performing reserving 
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proportion of people said that they identified ranges with specified associated

probabilities (20%), although a few noted that they would like to be in a position to attach

probabilities to their ranges.

The principal methods used to identify reserve ranges are: varying projection assumptions

(70%) and judgement (70%).  Stochastic methods are regularly used to identify reserve

ranges by 30% of people responding to the survey and a rules-based framework is used

by about 20%.  Consultants more often used stochastic methods than those employed by

insurers, but otherwise there were no clear differences in methods.

Question 9 asked what people would like to change about their current approach to

reserve ranges and question 10 asked about the obstacles preventing them from doing so.

The responses varied, but a clear theme was that the actuaries responding would like to be

able to be more scientific in their approach to identifying ranges.  In particular, a number

of people commented that they would like to reduce the amount of subjectivity involved

and several said that they would like to use stochastic methods.  Constraints included time

and data issues, plus a lack of methods accurately reflecting the risks (for example

allowing for correlations and reflecting how reserves are selected in practice).  A few

people said that, for them, it was not worthwhile spending more time on reserve ranges or

that it was not currently an important enough issue to do so – although some felt that this

would change.

4.2.2.3 Risk Margins and Discounting

When asked how they would generally describe their undiscounted reserve estimate, most

people said they would describe it as a mean (50%) or as a mean plus a margin (25%),

with the remainder evenly split between median and median plus a margin.  Those

working for insurers were more likely to describe it as including a margin.

In answer to question 12, most people said that they did not produce discounted estimates

or did so only occasionally (35% and 30% respectively).  Of those who produce

discounted estimates, the most popular approach to determining discount rates was to use

a risk-free rate, with or without a margin (see chart).



Explicit allowance for risk margins is not particularly common, with only 10% of those

responding indicating that they frequently incorporate an explicit risk margin.  15% do so

sometimes, and 20% occasionally, but 55% do not use explicit risk margins.  One person

noted that it can be difficult to convince others to accept explicit margins.

Those who do use explicit risk margins generally do so by adding a margin to the reserve

estimate (80%) rather than by deducting a margin from the discount rate (20%).  The

approach to selecting the margin is usually subjective.  Few people specified an approach

to calculating a risk margin.  Of those that did, the most popular approaches were

stochastic methods and varying the original reserving assumptions.

The final two questions asked how actuaries would ideally like to approach risk margins

and discounting in their reserving work, if this differs from their current approach, and the

main reasons for any differences.  Fewer comments were made here than in the equivalent

sections on the use of stochastic reserving methods and approaches to reserve ranges,

perhaps indicating that people are more satisfied with their current approach in this area

or perhaps just that this area feels further away from the work of most actuaries.

The most common response was a desire to reduce the subjectivity inherent in the

approach currently used.  However, one person noted that they preferred to use a

subjective risk margin and commented that a more scientific approach lends an air of

accuracy to the assessment that is not justified given the number of subjective

assumptions involved.
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5. Stochastic Methods in Practice

5.1 Range value selection in practice is often done by:

� Using percentages of reserves or of outstanding claims and IBNR, by origin year. The

percentages would be judgementally selected based on previous experience and a

view as to the degree of variability in the possible outcome of the forecast. This

would give a range of results which would possibly be presented as : “ The ranges are

provided as a guide to uncertainty only. The ranges selected are intended to be a range

of possible outcomes for which it is believed possible but unlikely that losses would

fall outside the range.”

� By varying the parameters selected. For example, with the Bornhuetter-Ferguson

chain ladder method, upper and lower values for both the development factors and

initial expected loss ratios would be selected to determine upper and lower values for

the ultimate values and hence for the reserves.

� By using a stochastic method which would provide a statistical range. The paper

“Stochastic Claims Reserving in General Insurance” by England and Verrall gives a

review of some of these stochastic models.

A stochastic method might be thought to be a preferable method for estimating a range of

results. However, as intimated above, the method used in practice to select the reserve

required for statutory purposes may not be the mid-point of the values found using a

stochastic method. This may be because the estimated reserve has implicit or explicit

margins but even if these are taken into account, there still may be problems. One

particular example in practice is when the reserve is obtained by using smoothed or

benchmark development factors and a Bornhuetter-Ferguson methodology with initial

expected loss ratios based on rate changes from a particular base year. There is no

straight-forward stochastic method that can be used to give a range around the reserves

derived using this methodology.

One suggestion that might be worth looking into is to use a Monte Carlo simulation

approach. For the underlying BF method, one could work out a distribution for



development factors around the selected values and hence simulate the possible

outcomes. Also, one could simulate around the trend line for the a priori ultimate loss

ratios. The England-Verrall paper suggests a Bayesian approach to accommodate the BF

method. Questions that arise are:

� How to allow for correlations, firstly between development factors and secondly

between chain-ladder ultimates and initial expected ultimates particularly where the

initial expected loss ratios are trended from chain-ladder estimates for earlier origin

years.

� If the mean values of the chain-ladder and initial expected values are very similar,

does this give a wider range than if the chain-ladder and initial expected values are

completely different (in which case the range of possible results might be considered

to be rather narrow)?

� The BF method is usually considered to be a credibility approach between two

methods, the chain-ladder and the naïve ultimate loss ratio method and hence

statistically superior to the two underlying methods (see section 6.2.7). The Mack

paper suggests that the Bayesian model is a credibility approach between two

methods, namely chain-ladder and BF and hence that using this model would give

results that are statistically superior to BF (but only if the naïve loss ratio is in itself a

credible estimate). Which method is “superior”?

Note that in Benktander’s “Approach” he derives the standard BF formula for IBNR

by suggesting the credibility factors that should be given to the a priori and incurred

development IBNR estimates.  He then selects IBNR “modified by experience” as BF

IBNR x BF ultimate / a priori ultimate, with no more justification than “It is thus

natural to put” followed by this formula.  The Benktander method is in fact an

iterative credibility calculation that effectively uses the result of a normal BF

credibility calculation as the prior estimate for a second credibility calculation.  Mack

(2000) has since shown that the so-called Benktander method is usually “superior”

(by which he means it has a lower mean-square error) to either the Chain Ladder or

BF methods.



Conversely, Gluck shows that the BF ultimate is a weighted average of the

development based ultimate and the initial expected ultimate and that the weights are

optimal with certain constraints.

� Some other approaches in the England-Verrall paper also need further examination.

Other ways to adjust the ranges from the results of a stochastic method to match the value

that has been selected for a particular valuation (which may be put forward as a best

estimate or mid-point value, which could be supposed to be a mean or median value), are:

� Just use the range round the mid-value. For example if the method gives a mean and a

90% value, take mean of distribution as selected reserve amount and 90% value as

reserve amount +(90% value from stochastic method – mean value from stochastic

method).  This is arguable using Bayesian theory as the range should presumably not

be more than the range found if more information is used to obtain the actual

valuation reserve.

� Pro-rata adjustment: take 90% values as 90% value from stochastic method x reserve

amount / mean from stochastic method

5.2 Stochastic Reserving – A Case Study (1)

5.2.1 Introduction

The results of the survey relating to stochastic reserving suggest that many actuaries

would like to use stochastic reserving techniques more extensively but feel they do not

know enough about these methods to use them with confidence.  This feeling is shared by

some members of the working party.  Therefore, it was decided that it would be useful for

one member of the working party with no experience of stochastic reserving to attempt it

for the first time and report on some of the issues encountered.

The actuary who carried out the work:

� had no experience of stochastic reserving;

� does not have a particularly strong statistical background;



� had not recently taken any of the relevant actuarial exams.

Because of this, stochastic reserving veterans are likely to learn little from the following

section.

5.2.2 Approach

There is a fairly daunting volume of literature on the subject so it was decided that a good

place to start was volume 2 of the Claims Reserving Manual.  Most of the papers in this

volume turned out to be to be both fairly accessible and reasonably interesting.  In

addition to the papers in the claims reserving manual, the recent paper by England and

Verrall (2002), which provides a fairly comprehensive summary of the range of

approaches, was also useful.

It became clear after reading the England and Verrall paper that the level of mathematics

required for several of the methods exceeded the current level of the actuary carrying out

the work.  A fair amount of progress can be made, but sooner or later, actuaries who are

not comfortable with techniques such as Generalised Linear Modelling are likely to have

to become so in order to be confident using several of the methods.

It was mainly for this reason that the Mack (1994) method was chosen for this first

attempt, since the mathematics required is reasonably accessible (although some of the

appendices are fairly hard work).  Other reasons were:

� it is easy to implement in a spreadsheet – there is no need for specialist software;

� its basis is the chain ladder method, which is the most common method used to derive

central reserve estimates (at least for earlier origin years);

� it can cope with development factors of less than one, so can be used with incurred

projections;

� it can be extended to incorporate tail factors, and factor selections using weights other

than the volume of claims (as described in Mack 1999).



An Excel spreadsheet will be attached to the institute website to accompany this paper.

The spreadsheet enables the user to derive reserve ranges using the Mack (1994) method

(that is before the extension for tail factors described in Mack 1999).  While

programming a spreadsheet such as this is a relatively simple task, it is hoped that this

spreadsheet will make it easier for stochastic reserving novices to experiment with the

method using their own data.

One of the most useful aspects of the Mack 1994 paper is the discussion of the

assumptions underlying the chain ladder method and the description of methods to test

the validity of those assumptions for the current data set.  (These tests are implemented in

the Mack spreadsheet which accompanies this paper.)  If the data does not adequately

satisfy the chain ladder assumptions then not only will the central reserve estimates be

likely to be invalid, but so will any ranges calculated using the model.

Four different classes were reserved using the model.   They were chosen to represent a

range of different tails and development characteristics.  Each of these had previously

been reserved using a combination of the Chain Ladder and Bornhuetter-Ferguson

techniques – although the reserves for several of the origin years had been adjusted to

allow for known factors not reflected in the triangles.

5.2.3 Problems Encountered

Several problems were encountered while performing the analyses.  The paragraphs

below set out these problems and suggest potential approaches to overcome them.  It is

likely that experienced stochastic reserving practitioners are familiar with these problems

and have their own approaches for dealing with them.  Papers which deal with these

issues, written by experienced stochastic reserving practitioners, would therefore be very

welcome.

5.2.3.1 Treatment of large claims



These were not a big problem for the classes chosen for this exercise.  One class had a

particularly large claim in it, which was fully settled, so could just be removed from the

analysis and added back (to the central estimate and the upper and lower confidence

limits) at the end.  Large claims will be more of a problem in cases where there is more

uncertainty associated with them (for example: they are not fully settled, they take longer

to emerge in the data, there is a greater probability of new large claims emerging in

respect of past origin periods).  In these situations, just extracting large claims from the

triangles and adding selected large-claim ultimates back at the end will be likely to

understate the uncertainty.  One possible way around this would be to assume a

distribution for the total of large claims and combine this in some way with the

distribution for the remaining reserve.  If large claims can be considered independent of

the residual claims just adding variances and assuming a lognormal distribution for the

overall reserve may suffice.  Depending on the significance of the large claims and the

distribution assumed, simulation may be necessary.

5.2.3.2 Tail factors

The Mack method requires the actuary to estimate the standard error of any tail factor

selected.  Even where a tail factor is not required the method requires the user to make an

assumption about the standard error of the last factor (it cannot estimate this as there is

only one observed value).  The ranges derived for the early origin years are sensitive to

these assumptions.   In his 1999 paper Mack gives some advice on a possible approach

for selecting the standard error of tail factors.  Since the selection of tail factors

themselves is a difficult exercise it seems unlikely that estimating the standard error will

be any easier.  It could be argued, though, that since estimates of these factors are fairly

subjective it is not worth spending long periods of time agonising over the estimates of

standard errors.

5.2.3.3 Selected central estimates that are not pure chain ladder results



This was a common problem. Where this was the case consideration was given to why the

selected estimates were different from the pure chain ladder estimates.  In many cases this

was because less weight had been given to factors of less than one in the top right hand

corner of the triangle (in order to add a small margin for prudence).  Providing the

difference between the estimates was relatively small it would appear that any of the

following approaches could be justified:

� Use the upper and lower confidence limits as suggested by the pure chain ladder

method (recognising that the central estimate has a small margin for prudence).

� Shift the range upwards by the same amount as the difference between the selected

best estimate and the pure chain ladder estimate (to allow a degree of prudence in the

confidence limits as well as the central estimate).

� Similar to the above only adjusting the limits so the ratios between the central

estimates and each limit remain constant.

Alternatively the weights given to factors in the stochastic model could be adjusted so

that the central estimates match fairly closely.  If this is done by excluding factors less

than one in later years, the range derived from the model will reduce to reflect the fact

that the remaining factors are less volatile.

The approaches were less satisfactory when the difference between the pure chain ladder

estimate and the selected best estimate was more marked and no easy and satisfactory

solution was found for this exercise.  In cases where the difference is caused by some

IBN(E)R in relation to a specific issue / issues (this could be positive or negative) then it

may be possible to follow an approach similar to the one suggested for large claims (that

is assuming a distribution for this component of the IBNR).  Where the difference is

caused by the fact that the chain ladder result isn’t considered trustworthy for some

reason, then it seems reasonable to question whether the chain ladder method should be

used to derive the range.

5.2.3.4 Recent origin years



Since the selected reserves for recent years were based, at least partially, on the

Bornhuetter-Ferguson result, these years presented more of a problem.  As mentioned

above, the use of the chain ladder model to derive ranges in this case would appear to be

highly questionable.  The regression and residuals plots for the first development year

(see Mack 1994) tended to show that the chain ladder model could not be trusted for the

most recent origin year. Once again no easily implemented and satisfactory solution was

found in the time available.  The Bayesian Models described by England and Verrall

(2002) may help to solve this problem as they would appear to be more consistent with a

central estimate derived using the Bornhuetter-Ferguson method.

Using different methods to derive ranges for different origin years raises the question of

how to combine them to estimate a range for the overall reserve.  Even where we can

consider the individual origin year reserves to be independent (which is, after all, an

implicit assumption of the chain ladder method) reserve estimates will not be if we have

used the same estimates of development factors to derive them (see Mack 1994).  A move

toward a Bayesian approach for all origin years would appear to solve this problem.

5.2.3.5 The size of the range estimates

In general the ranges derived were larger than those that the actuary would previously

have considered reasonable.  This is possibly owing to a tendency on behalf of the actuary

concerned to underestimate the volatility of the results, but it is also likely to be, at least

to a degree, owing to the fact that the actuary could take into account information which

was not reflected in the triangles.  This external information not only affects the central

estimate, but may also reduce the degree of uncertainty around this estimate.  If a

Bayesian approach is used it may be possible to incorporate some of these factors in prior

estimates.

5.2.3.6 Combining estimates over several classes

While underwriters are likely to be interested in the ranges of reserves for a particular

class, management are more likely to be interested in ranges over several classes.



Combining the result for classes will be simple enough if we can assume independence

(providing we are happy to assume a specific distribution for the overall reserve).  In

many cases this is unlikely to be a valid assumption (especially where there are recent

origin years with unexpired exposures).  It should be possible to use a simulation

approach to do this allowing for correlations between classes.  Care may need to be taken

where there is unexpired exposure leading to tail dependencies, which may not be

adequately captured by specifying correlations in a package such as @Risk.  However the

probability of these events may be small enough to be outside the confidence limits that

would normally be under consideration.

Most actuaries are happy to believe that the widths of their carefully selected ranges are

proportional to the standard deviations of the results.  Therefore, a simple method for

estimating ranges for a combination of classes is as follows.  If we define H1 and H2 to be

the difference between central and higher estimates for classes 1 and 2, we can estimate

the difference between central and higher estimates of the classes combined as

2
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where � is between -1 and 1.  It is of course necessary to select a value of � to complete

the estimate and to do this, we note that it is difficult to think of two ordinary classes of

business that would be negatively correlated which means that we can set � to zero to

define our narrowest possible range.  Similarly, the widest possible range is derived by

setting � to one which can only approach being true for very similar classes of business.

5.2.3.7 Consistency of Gross and Net estimates

This was found to be a big problem.  The central estimates for net ultimates had

previously been derived by explicitly netting down the gross IBNR.  However, for this

exercise the net chain ladder was used to derive net range estimates. Where the mid-

points of the two methods did not agree the range was just shifted by the difference



between the two central estimates.  This approach did not feel very satisfactory especially

for the net data used for this exercise which, owing to historic adjustments (for example:

corrections of errors, re-allocations of RI accruals between classes, re-allocation between

origin years), resulted in net development factors that were believed to be unrealistically

volatile.

One approach that could be used in practice (but was too time consuming to implement

this time) was to deduce a curve of recovery percentages (RI/Gross) against the gross

IBNR for each origin year (interpolating between a small number of points may be

sufficient). Then the various outcomes of the gross IBNR could be simulated, and the

percentage recovery read from the curve accordingly.  If necessary some additional

variation could be simulated around the selected percentage.  The net IBNR could then be

derived from the gross IBNR and the recovery percentage for each trial.  The distribution

of net outcomes could be built up over the entire simulation.  This method would require

knowledge of the RI program for each year and assumptions about what might drive

changes to the gross IBNR and what the corresponding net effect would be.  It would

clearly be fairly approximate but may be a practical method to use particularly for an in-

house actuary who carries out regular reserving exercises on the same business.

5.2.4 Summary

� Looking at stochastic reserving for the first time is likely to be intimidating for many

actuaries.  In this situation, Volume 2 of the Claims Reserving Manual is a reasonable

place to start as most of the papers in it are fairly accessible.

� There may now be reason to add some more papers to this volume (for example:

Mack 1999 – in which he extends his analysis to included tail factors, and England

and Verrall 2002 – which is a fairly comprehensive review of some different

approaches, although the original papers on which England and Verrall is based

would likely provide more thorough analyses).

� Using Mack’s method it is reasonably easy to make a start and estimate confidence

intervals for reserves in a fairly short period of time.



� Sooner or later, however, it is likely that many actuaries will have to revise their

statistics (for example by using GLM) before they become comfortable in using some

of the available methods to estimate ranges.

� Stochastic reserving takes time (although this no doubt improves with experience).

Given the relatively small number of actuaries that use these methods at present, there

appears to be little demand from employers for actuaries to sacrifice other activities in

order to spend time producing range estimates that are theoretically more justifiable

than the ad-hoc estimates that are often produced at the moment.  If, as many people

suspect, the importance of more theoretically sound range estimates is working its

way up the agenda, then this situation may well change.  This may have implications

for actuarial training both before and after qualification. Alternatively, maybe it is just

for individual actuaries to train themselves.  The actuary who carried out this exercise

initially found it quite intimidating, and wasn’t able to solve all the problems that he

encountered, but did find it much more interesting that a standard deterministic

reserving exercise.

� There are many papers which cover theoretical aspects of stochastic claims reserving,

but there appears to be limited coverage of the practical issues that are faced, such as

- Treatment of large claims

- Consistency of gross and net projections

- Estimating ranges where considerable judgement has been used to adjust, say,

chain ladder estimates

Research and examples in this area from experienced stochastic reserving practitioners

would be very helpful for actuaries attempting to use these methods in practical situations

for the first time.

5.3 Stochastic Reserving – A Case Study (2)



5.3.1 Introduction

There is a large body of material on Stochastic Reserving, much of it impractical to use.

Those methods which are practical to use tend to be divorced from the practical

methodology used to arrive at a “mean” value for the reserves.  Also, the ranges produced

tend to be too large as all the information available has not been used to reduce the ranges

in line with Bayesian theory (refer to the Sanders and Leifer paper).  This case study is

intended to provide practical guidance on how a method can be constructed to give ranges

of results around the mean value obtained from a practical reserving methodology.  Note

that the Sanders and Leifer paper gives some guidance on this approach.

5.3.2 Underlying Practical Deterministic Reserving Methodology

The data used here is the triangle of data, with ten origin and development years, used by

Thomas Mack in his paper “Measuring the variability of Chain Ladder Reserve

Estimates”.  We have invented ultimate premiums by origin year.  We have assumed for

this exercise that the triangle data are incurred claims as these are what are used in

practice.  Hence, the difference between ultimate claims and the incurred claims (the last

diagonal of the triangle) are IBNR claims.

The practical methodology assumed, and around which we will build the stochastic

model, is:

� Projection of claims using standard chain ladder methodology with hand-smoothed

development factors presumed based on observed averages and whatever other

information is available (see section 3.1).

� Selection of a tail factor to proceed from the 10-year development horizon of the

triangle to ultimate, presumed based on curve-fitting, graphical methodology,

benchmarks, et cetera

� Selection of initial expected loss ratios, in this example for the latest four origin years,

presumed based on knowledge of the account (see section 3.7).



� Selection of ultimate claims based on the Bornhuetter-Ferguson (“BF”) calculation

for the most recent four origin years and the chain ladder method for the first six

origin years.

5.3.3 Practical Stochastic Reserving Methodology

The steps used were as follows, using @Risk as the stochastic platform.

5.3.3.1 Development Factors

The basic assumption was made that for chain ladder factors for most development years

the selected values, jr�1  are the mean values of the distribution and that the standard

errors are proportional to jr .  For later development years, there is still variation even

though jr  are close to zero.  For these years, we have assumed that the standard deviation

is constant.  Note that this is a practical solution as the standard duration should reduce by

development year, eventually becoming zero.  One way to overcome this problem would

be to derive benchmarks based on data for comparable lines of business with more years

of data.

We examined various statistics, including straight standard deviation, skewness and

kurtosis and standard error based on replacing the statistical mean by the selected value in

the standard deviation formula.  These were calculated for absolute value, and for values

based on proportionate values, that is jji rr /, for single development years and for ranges

of development years.  The values selected were:

� For development years 8-9 and 9-10, a standard error of 0.018 based on the standard

error for years 7-8 up to 9-10.

� For development years 2-3 to 7-8, a proportionate standard error of 0.8 (standard error

for years 2-3 up to 6-7 is 0.826 and for years 2-3 up to 7-8 is 0.789), that is standard

error for selected factors of jr�1 is 0.8 jr .

� For development years 1-2, there was observed to be fairly high negative correlation

between the observed development factors and the amounts, or rate-adjusted first year

loss ratios (see below).  We based the standard error on the deviation from the



regression line as 10.65, which is lower than the 12.34 standard deviation 1 or 13.52

standard error) on the basis that the additional information used has reduced the

uncertainty, in line with Bayesian theory.

� For the tail, we assumed a further three years of development and selected the

standard deviation as �3 times the year 9-10 value.

Because of the high skewness for development years 1-2 to 3-4 we assumed log-normal

distributions for the development factors.  We assumed normal distributions for all other

years.

5.3.3.2 Initial Expected Loss Ratios

For the initial expected loss ratios, we assumed that we know about rate changes and

could adjust historic loss ratios for these.  It is assumed that these rate changes allow for

the effects of inflation, as appropriate.  It is likely that this sort of approach had been used

to derive the deterministic IELRs.

Based on the rate-adjusted ultimate loss ratios from the deterministic chain-ladder

projection, standard deviations from the mean were calculated for origin years 1–6 up to

1–10.  A value was selected of 14.5%.  Initial expected loss ratios (IELRs) were

generated for origin years 7–10 as normally distributed with the deterministic values as

means and standard deviations of 14.5%.

5.3.3.3 Variable BF Simulation

The first attempt at simulation was made with the credibility varying for each iteration,

that is, the formula for ultimate for origin years 7 to 10 was:

� � EcPc ..1 �� �

with � = initial expected loss ratio

P = Premium



E = Ultimate from Chain-Ladder

A = Actual incurred claims

c  = A/E (with minimum of 0, maximum of 1)

This did not work as the formula (ignoring the restrictions on the credibility factor, c)

reduces to:

IBNR = � � PE
A �.1�

with E and � both derived stochastically and giving an unstable result.

5.3.3.4 Fixed BF Simulations

The same formula was used,

that is � � EcPc .1 �� �  but with c=A/E from the deterministic chain-ladder method, that is

fixed for each iteration.

This is inherently a straight credibility formula between the two choices of ultimate, the

initial expected estimate and the chain ladder estimate, with both estimates varying

stochastically.



5.3.4 Results of Simulation (10,000 iterations)

RESULTS OF SIMULATION (10,000 ITERATIONS)
IBNR:

Chain Ladder IELR Bornhuetter-
Ferguson

Deterministic: 58,263 66,410 62,954

Stochastic:

mean 58,284 66,410 62,960

Standard deviation 76,388 8,104 10,526

Percentiles: 5% 28,846 53,027 50,024

10% 30,348 56,107 52,852

50% 45,753 66,356 62,220

90% 83,301 76,773 72,883

95% 120,171 79,768 76,844

Minimum 13,652 37,358 32,057

Maximum 4,393,941 97,160 503,252

Differences
from
Deterministic:

5% (31,416) (13,383) (12,930)

10% (27,914) (10,302) (10,102)

90% 25,038 10,363 9,929

95% 61,908 13,358 13,890

5.3.5 Observations

5.3.5.1 The practical approach via the BF method gives much lower ranges of results

than the CL method.  This is in line with Bayesian theory, that is the use of

more information reduces the range.



5.3.5.2 The standard deviation could be misleading (for both the CL method and BF

method) because the results are highly skewed by particular outliers; note the

maximum value of 4,393,841 for the CL method which is a complete outlier.

Consideration could be given to imposing some restrictions on ultimates that

are considered to be impossible.

5.3.5.3 The mean values from the stochastic distributions are in all three cases very

close to the deterministic values.  This backs up the assumption that the value

produced by the practical deterministic approach is the mean value, rather

than the median (see Section 4.2.2.3), although the mean has been increased

significantly by outliers.

5.3.5.4 Even though the standard deviation could be misleading, the ranges should be

considered as useable, with, for example, the result being quoted as an IBNR

of 62,954 with a probability of 5% that it would not exceed 76,844 and of 5%

that it would not be below 50,024 (subject to standard caveats).

5.3.5.5 There is reasonably high negative correlation between RTR factors for years j

to j +1 and the amount for year j , for j from 1 to 5 (varying from -0.504 for j

= 2 to -0.776  for j = 5).   This has not been allowed for in the stochastic

approach used, apart from development year 1-2, and was not mentioned by

Mack. It is possible that results would be different if this had been allowed

for, but probably not significantly.



5.3.6

Practical Stochastic Reserving: Test
Development Triangle of Incurred

Origin 1 2 3 4 5 6 7 8 9 10
1 5,012 8,269 10,907 11,805 13,539 16,181 18,009 18,608 18,662 18,834
2 106 4,285 5,396 10,666 13,782 15,599 15,496 16,169 16,704
3 3,410 8,992 13,873 16,141 18,735 22,214 22,863 23,466
4 5,655 11,555 15,766 21,266 23,425 26,083 27,067
5 1,092 9,565 15,836 22,169 25,955 26,180
6 1,513 6,445 11,702 12,935 15,852
7 557 4,020 10,946 12,314
8 1,351 6,947 13,112
9 3,133 5,395

10 2,063

RTR Factors
1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10

1 1.650 1.319 1.082 1.147 1.195 1.113 1.033 1.003 1.009
2 40.425 1.259 1.977 1.292 1.132 0.993 1.043 1.033
3 2.637 1.543 1.163 1.161 1.186 1.029 1.026
4 2.043 1.364 1.349 1.102 1.113 1.038
5 8.759 1.656 1.400 1.171 1.009
6 4.260 1.816 1.105 1.226
7 7.217 2.723 1.125
8 5.142 1.887
9 1.722



Averages 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10
   WAD 2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009
   SAD 8.206 1.696 1.315 1.183 1.127 1.043 1.034 1.018 1.009
   WAD 5 yr 4.234 1.748 1.245 1.175 1.113 1.042 1.033 1.017 1.009
   SAD 5 yr 5.420 1.889 1.229 1.190 1.127 1.043 1.034 1.018 1.009
   WAD 3 yr 3.246 2.054 1.232 1.157 1.093 1.024 1.033 1.017 1.009
   SAD 3 yr 4.694 2.142 1.210 1.166 1.103 1.020 1.034 1.018 1.009
   SAD xHL 4.540 1.597 1.229 1.176 1.144 1.033 1.033
   Trend 9.525

Tail
Selected 3.000 1.800 1.250 1.175 1.120 1.040 1.033 1.020 1.010 1.010
Cumulative 9.930 3.310 1.839 1.471 1.252 1.118 1.075 1.041 1.020 1.010
% of Ultimate 10.1% 30.2% 54.4% 68.0% 79.9% 89.5% 93.0% 96.1% 98.0% 99.0%
Incremental 2.000 0.800 0.250 0.175 0.120 0.040 0.033 0.020 0.010 0.010

Projected Triangle
Origin 1 2 3 4 5 6 7 8 9 10 Ult

1    5,012          8,269         10,907        11,805       13,539       16,181        18,009        18,608      18,662      18,834       19,022           
2    106             4,285         5,396          10,666       13,782       15,599        15,496        16,169      16,704      16,871       17,040           
3    3,410          8,992         13,873        16,141       18,735       22,214        22,863        23,466      23,935      24,175       24,416           
4    5,655          11,555       15,766        21,266       23,425       26,083        27,067        27,960      28,519      28,805       29,093           
5    1,092          9,565         15,836        22,169       25,955       26,180        27,227        28,126      28,688      28,975       29,265           
6    1,513          6,445         11,702        12,935       15,852       17,754        18,464        19,074      19,455      19,650       19,846           
7    557             4,020         10,946        12,314       14,469       16,205        16,853        17,410      17,758      17,935       18,115           
8    1,351          6,947         13,112        16,390       19,258       21,569        22,432        23,172      23,636      23,872       24,111           
9    3,133          5,395         9,711          12,139       14,263       15,975        16,614        17,162      17,505      17,680       17,857           

10    2,063          6,189         11,140        13,925       16,362       18,326        19,059        19,688      20,081      20,282       20,485           
<---------lognormal----------> <----------------------------------------normal------------------------------------------->



Chain Ladder Projection Premium Data
Origin Actual Ult% CL Ult IBNR Premium CL LR% IELR%

1    18,834 99.0% 19,022 188 23,257 81.8%
2    16,704 98.0% 17,040 336 19,015 89.6%
3    23,466 96.1% 24,416 950 22,421 108.9%
4    27,067 93.0% 29,093 2,026 22,810 127.5%
5    26,180 89.5% 29,265 3,085 20,327 144.0%
6    15,852 79.9% 19,846 3,994 23,789 83.4%
7    12,314 68.0% 18,115 5,801 24,526 73.9% 95%
8    13,112 54.4% 24,111 10,999 23,118 104.3% 95%
9    5,395 30.2% 17,857 12,462 24,423 73.1% 85%

10    2,063 10.1% 20,485 18,422 30,257 67.7% 75%
Total 58,263

Ratios: 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10
1. Based on Observed Values
   Standard Deviation 12.340 0.474 0.317 0.067 0.075 0.050 0.009 0.021
   Skewness 2.770 1.636 1.896 0.786 -1.139 1.105 0.565
   Kurtosis 7.947 3.130 3.781 0.482 1.227 2.075
   Standard Error 13.520 0.487 0.325 0.067 0.075 0.050 0.009 0.022
   S.E. to End 5.981 0.642 0.216 0.116 0.088 0.034 0.018 0.017
   Selected S.E. 0.018

2. Based on Proportional Values
   S.D./Incr Sel 1.713 0.681 1.008 0.365 0.588 1.160 0.250 1.186
   Standard Error 6.760 0.609 1.299 0.385 0.626 1.260 0.265 1.077
   S.E. from Yr 1 6.760 4.797 4.055 3.615 3.346 3.184 3.066 2.999 2.964
   S.E. from Yr 2 0.609 0.953 0.820 0.775 0.826 0.789 0.787 0.776
   S.E. from Yr 3 1.299 0.951 0.855 0.905 0.850 0.843 0.828
   Selected 0.800
   Value from Select 1.600 0.640 0.200 0.140 0.096 0.032 0.026 0.016 0.008



3. Based on Correlation for Year 1

Straight 
Amount

Rate 
Adjusted LR

  Selected 
S.E.

Correlation Year 1 to 2 Ratio v Yr 1 Amount or LR -0.583 -0.593
Standard deviation from regression line 10.721 10.624 10.650

<-Correl-> <--Tail-->
Selected S.E. 10.650 0.640 0.200 0.140 0.096 0.032 0.026 0.018 0.018 0.031

Rate Adjustment Calculations

Origin
Rate Change Rate Adjust 

Factor Premium CL Loss 
Ratio

1st Year 
Loss Ratio

Stochastic 
IELR

Stochastic IE 
Losses

Initial 
Expected 

IBNR
1    1.190 27,667 68.8% 18.1% 19,022 188
2    7.50% 1.107 21,042 81.0% 0.5% 17,040 336
3    -10.00% 1.230 27,569 88.6% 12.4% 24,416 950
4    -10.00% 1.366 31,163 93.4% 18.1% 29,093 2,026
5    0.00% 1.366 27,771 105.4% 3.9% 29,265 3,085
6    20.00% 1.139 27,084 73.3% 5.6% 19,846 3,994
7    -10.00% 1.265 31,025 58.4% 1.8% 95.0% 23,299 10,985
8    0.00% 1.265 29,245 82.4% 4.6% 95.0% 21,963 8,851
9    15.00% 1.100 26,865 66.5% 11.7% 85.0% 20,760 15,365

10    10.00% 1.000 30,257 67.7% 6.8% 75.0% 22,693 20,630
Total 66,410

<--------Rate Adjusted-------->

<------------Pro-rata to Selected Incremental Ratios------------> <---Constant---->



Observations on Rate Adjusted CL Loss Ratios 1 to 6 1 to 7 1 to 8 1 to 9 1 to 10
Correlation v Origin Year 39.74% -14.37% -10.07% -26.49% -35.62%
Standard deviation from  trend-line 13.88%

M ean 85.05% 81.24% 81.39% 79.73% 78.53%
Standard Deviation 13.53% 15.94% 14.77% 14.68% 14.35%
Skew ness 36.18% 10.60% 6.83% 32.76% 53.62%

Selected Standard Error 14.50%

Fixed Crediblity BF Simulation

Origin
Actual
Claims CL Ultimate

Initial
Expected
Ultim ate

CL
Credibility

Fixed BF Ultimate BF IBNR
1 18,834 19,022 19,022 100.0% 19,022 188
2 16,704 17,040 17,040 100.0% 17,040 336
3 23,466 24,416 24,416 100.0% 24,416 950
4 27,067 29,093 29,093 100.0% 29,093 2,026
5 26,180 29,265 29,265 100.0% 29,265 3,085
6 15,852 19,846 19,846 100.0% 19,846 3,994
7 12,314 18,115 23,299 68.0% 19,775 7,461
8 13,112 24,111 21,963 54.4% 23,131 10,019
9 5,395 17,857 20,760 30.2% 19,883 14,488

10 2,063 20,485 22,693 10.1% 22,470 20,407
Total 62,954

Summary of Results for IBNR Claims
IBNR

   Chain Ladder 58,263
   IELR 66,410
   BF Fixed Credibility 62,954



5.4 Bayesian Model

One other practical approach suggested in the England and Verral paper is

construction of a Bayesian model supplementing a Markov Chain Monte Carlo

(MCMC) approach, possibly using WinBUGS (Note: BUGS is an acronym for

Bayesian inference Using Gibbs Sampling) software.  This approach is also

considered in the paper by Scollnik, “Actuarial Modelling with MCMC and

BUGS”.  The Bayesian statistical method treats all unknown parameters

appearing in a statistical model as random variables and derives the distribution

conditional upon known information.  It may be argued that the Bayesian

paradigm is the most natural and convenient one to adopt for the implementation

and analysis of range models arising in actuarial science, insurance and risk

management.

Until recently fully Bayesian analyses of these statistical models had been

computationally infeasible.  This changed in the early 1990’s following the

rediscovery in the statistical literature of computer-intensive MCMC simulation

methods like the Metropolis-Hastings algorithm and the Gibbs sampler.  Also,

specialised software for implementing MCMC analyses is now available, the

foremost being BUGS and WinBUGS software packages.  WinBUGS is available

free of charge via the internet from www.mrc-bsu.cam.ac.uk/bugs.

It is recommended that further work be done implementing WinBUGS in a

practical reserving context and establishing if it could be of use for stochastic

reserving.  It may be that a more rigorous approach to Bayesian modelling may be

more appropriate than the empirical methodology suggested in section 5.3.



6.       Generalised Cape Cod Method

6.1 Introduction

Definitions

6.1.1. "Exposure base" is defined as a measure that is directly correlated with the

quantity being estimated and is known or accurately estimated in advance.

Premium (ideally after adjusting for rate changes and inflation) and

vehicle-years are well known examples of exposure bases that are often

used for reserving purposes.

6.1.2. A "leading indicator" is defined as a measure that is directly correlated

with the quantity being estimated but is not known in advance.  When

performing projections for reserves, leading indicators may be used as

exposure bases, although the ultimate value of the leading indicator also

needs to be estimated.  The reported number of claims is a well-known

example of a leading indicator that is also often used as an exposure base

for reserving purposes.

6.1.3. "A priori" here refers to any estimate of the amount being projected that is

based on an exposure measure.  Multiplying the earned premium by an

expected loss ratio is an example of an exposure-based estimate.

6.1.4. For generality we will refer to the amount to be estimated as "losses" and

the exposure base as "exposures".

Blending and Bornhuetter-Ferguson

6.1.5 Common actuarial procedures involve projections of the traditional loss

development triangle in two directions:

- the development direction

- the trend direction.

6.1.6 The development direction refers to the emergence of information for a

single year of origin, such as the development of cumulative paid claims



in respect of a particular origin year.  The trend direction refers to the

expected changes in the ratio of a projected amount to an exposure base,

such as an increasing trend in the claim frequency from one origin year to

the next.

6.1.7 Stochastic reserving methods are increasingly used to reflect both the

development and the trend directions simultaneously.  However, given the

still-low level of understanding of the complexities and the time and

difficulty in implementing these methods, other methods that reflect

development and trend directions in projections will still be in high

demand.

6.1.8 Stanard found significantly higher prediction errors when using the loss

development (chain ladder) method and concluded that this method is

clearly inferior to the methods that give weight to expected losses.

Murphy, Patrik and Mack all give reasons why a method which blends

development and trending projections is preferred.  The Bornhuetter-

Ferguson method is the most commonly used approach for blending

development and trend projections.

6.2 Traditional Cape Cod Method

Introduction

6.2.1 Both Stanard and Bühlmann described the Cape Cod method.  Although

Stanard originally presented the method assuming that the exposure is

constant for each year of origin, Gluck allowed for varying levels of

exposure.

The Method

6.2.2 Losses and/or exposures are adjusted for trend so that the adjusted loss

ratios are expected to be equal for all years.  The expected loss ratio

calculated using the data from all available years is then used to calculate

a priori expected losses in the Bornhuetter-Ferguson procedure.  The Cape

Cod method is, therefore, an application of the Bornhuetter-Ferguson



method with the a priori estimates being determined from a specified,

trend-based calculation.

6.2.3 The expected loss ratio for all origin years can be calculated as the

weighted average of the trended developed ultimate loss ratio for each

year of origin as follows:

where

� Ê(LR) is the expected loss ratio

� iLTD is the current evaluation of losses for each year of origin i

� ijTF is the trend factor from year of origin i to year of origin j

� iDF is the development factor to ultimate for each year of origin i

� iE is a measurement of the relative exposure for each year of origin i .

6.2.4 The weights used in the calculation of the expected loss ratio are:

� proportional to exposure

� inversely proportional to the development to ultimate.

This means that larger weight is given to those years of origin with greater

exposure and those years that are more mature.

6.2.5 Equation 6.2.3 can be simplified to the ratio of reported losses to the

amount of exposure expected to relate to the reported losses for all years

combined.  This means that the Cape Cod method could be seen as

applying this expected loss ratio to the amount of unreported exposure in

order to estimate the ultimate level of losses.
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6.2.6 The ultimate losses can then be estimated by applying the Bornhuetter-

Ferguson method to blend the development projection with the expected

losses as follows:

where

� )(ˆ LRE is the expected loss ratio

� iLTD is the current evaluation of losses for each year of origin i

� ijTF is the trend factor from year of origin i to year of origin j

� iDF is the development factor to ultimate for each year of origin i

� iE is a measurement of the relative exposure for each year of origin i

� iTLU ˆ is the estimated ultimate losses for year of origin i.

6.2.7 Gluck demonstrated that the Bornhuetter-Ferguson weights are optimal,

that is they produce the minimum variance of the prediction error, subject

to certain constraints.

6.2.8 Section 6.5 shows an example of the Cape Cod method.
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6.3 Generalised Cape Cod method

6.3.1 Gluck developed a modification to the Cape Cod method that allows the a

priori trended loss ratio to vary for each year of origin.  More importantly,

however, it takes into account the relationship between the variance and

trending, which if not considered could cause excessive weight to be

given to years that are out of date.

6.3.2 The variance related to trending is taken into account by introducing an

exponential decay factor.  Equation 6.2.3 then becomes:

where

� Ê(LR) is the expected loss ratio for year of origin j

� LTDi is the current evaluation of losses for year of origin I

� TFij is the trend factor from year of origin i to year of origin j

� DFi is the development factor to ultimate for year of origin I

� Ei is a measurement of the relative exposure for year of origin I

� D is the exponential decay factor, assuming a value between 0 and 1,

inclusive.

6.3.3 The expected loss ratio for a particular year of origin can now be seen to

be a weighted average of the trended developed ultimate loss ratio for

each year of origin where the weights are

� proportional to exposure

� inversely proportional to the development to ultimate

� inversely proportional to the length of the trending period.
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6.3.4 The ultimate losses can then be estimated by applying the Bornhuetter-

Ferguson method using equation 6.2.6.  Section 6.6 shows an example of

the Generalised Cape Cod method including decay.

6.3.5 The traditional loss development and Cape Cod methods can be viewed as

special cases of the Generalised Cape Cod method since when D=0 the

Generalised Cape Cod method returns the loss development method result

and when D=1 it returns the traditional Cape Cod method result.

6.3.6 Among the constraints required for the Bornhuetter-Ferguson weights to

be optimal is that for a given year of origin the variance of the

development-based estimate of ultimate losses is proportional to the

development factor.  Although this assumption is often adequate, it is

sometimes the cause of the Bornhuetter-Ferguson and Cape Cod methods

being unusable or of limited effectiveness, for example where the

development factors are less than 1 or approach 1 faster than the

uncertainty surrounding the development projection is eliminated.  Gluck

demonstrated that alternative weights could be used that are inversely

proportional  to the development-based and the a priori projections to

overcome this problem.

6.3.7 Although determination of the alternative variance factors might be based

on the actual data triangles, it usually requires sufficiently detailed data

making it more practical to use a reference pattern.  Gluck suggested the

possibility of using the paid claims development pattern when projecting

incurred claims.

6.3.8 Including an alternative variance pattern, equation 6.3.2 becomes:

where
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� Ê(LR) is the expected loss ratio for year of origin j

� LTDi is the current evaluation of losses for year of origin i

� TFij is the trend factor from year of origin i to year of origin j

� DFi is the development factor to ultimate for year of origin i

� VFi is the variance factor for year of origin i

� Ei is a measurement of the relative exposure for year of origin i

� D is the exponential decay factor, assuming a value between 0 and 1,

inclusive.

6.3.9 The ultimate estimated losses can be determined by applying the

Bornhuetter-Ferguson equation to blend the development-based projection

and the expected loss ratio as follows:

where

� Ê(LR) is the expected loss ratio for year of origin j

� LTDi is the current evaluation of losses for year of origin i

� TFij is the trend factor from year of origin i to year of origin j

� DFi is the development factor to ultimate for year of origin i

� VFi is the variance factor for year of origin i

� Ei is a measurement of the relative exposure for year of origin i

� iTLU ˆ  is the estimated ultimate losses for year of origin i.

6.3.10 An example showing the use of alternative variances with the Generalised

Cape Cod method is shown in section 6.7.

6.4 Practical Considerations
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6.4.1 As with many other methods, there are some situations when it is prudent

not to use the Generalised Cape Cod method, for example high excess

layers with no claims reported.

6.4.2 Struzzieri and Hussian suggested a number of reasons, however, why the

Generalised Cape Cod method could be the preferred method to estimate

ultimate losses:

� information from all origin years is used when estimating the a priori

loss ratio for a particular year

� more weight is given to surrounding years, which is preferable since:

� insurance is subject to underwriting cycles

� pricing and underwriting changes are usually implemented

gradually

� imprecision of using one year to make projections

� less weight is given to immature years

� less weight is given to low-volume years

� the a priori loss ratio estimate is optimal under certain constraints (as

determined by Gluck)

� internal or external changes can be systematically reflected through

exposure base adjustments

� generalised case of loss development and traditional Cape Cod

methods.

The inclusion of the exponential decay factor is particularly useful since it allows

the actuary to vary the weight given to the loss development projections in the

blending algorithm. In many situations the Bornhuetter-Ferguson method gives

excessive weight to the loss development projections, which can be overcome

with the use of the Generalised Cape Cod method.



6.5 Example of traditional Cape Cod method

The following data are available for origin years 1992 to 2001, inclusive:

Cumulative incurred claim amounts

1 2 3 4 5 6 7 8 9 10

1992 1,792,798 1,909,210 1,922,547 1,928,577 1,902,838 1,883,939 1,887,271 1,880,739 1,882,227 1,887,796

1993 1,871,855 1,985,941 1,990,172 1,974,750 1,967,028 1,958,514 1,942,655 1,943,831 1,944,657

1994 2,001,820 2,107,168 2,104,298 2,125,908 2,115,309 2,090,456 2,080,043 2,077,725

1995 2,138,686 2,290,017 2,305,967 2,294,540 2,274,294 2,264,598 2,259,433

1996 2,381,205 2,575,848 2,579,848 2,595,063 2,563,442 2,555,219

1997 2,530,821 2,733,345 2,738,086 2,745,514 2,753,200

1998 2,756,916 3,020,781 3,047,314 3,037,936

1999 3,046,380 3,244,523 3,240,900

2000 3,306,631 3,562,098

2001 3,455,161



Cumulative paid claim amounts

1 2 3 4 5 6 7 8 9 10

1992 1,041,391 1,432,010 1,541,077 1,638,158 1,715,111 1,771,338 1,810,952 1,939,088 1,855,220 1,867,005

1993 1,043,712 1,439,455 1,556,512 1,665,090 1,750,317 1,815,040 1,858,740 1,893,833 1,912,635

1994 1,073,184 1,494,802 1,641,730 1,775,523 1,881,630 1,947,711 1,997,867 2,028,776

1995 1,143.520 1,633,759 1,789,949 1,927,919 2,037,936 2,117,859 2,172,802

1996 1,297,185 1,848,145 2,027,654 2,200,467 2,340,330 2,420,412

1997 1,410,213 1,993,082 2,198,251 2,383,230 2,533,690

1998 1,576,499 2,243,986 2,468,201 2,656,864

1999 1,90,849 2,379,622 2,634,131

2000 1,771,627 2,556,548

2001 1,755,208

Example of Generalised Cape Cod method including decay

Development factors based on last 4 years data

2/1 3/2 4/3 5/4 6/5 7/6 8/7 9/8 10/9 tail

Incurred 1.077 1.004 1.000 0.994 0.994 0.997 0.999 1.001 1.003 1.020

Paid 1.424 1.102 1.081 1.061 1.036 1.025 1.016 1.010 1.006 1.050



Cape Cod method of estimating the ultimate losses (Bornhuetter-Ferguson method)

Exposure
(1)

Paid LTD
(2)

Incd LTD
(3)

Trend
Factor

(4)

Trended
Paid
(5)

Paid    CDF
(6)

E/DF
(7)

  LTD*DF/E
(9)

E(LR)
(10)

  E(ULT)
(11)

ULT
(12)

1992 10,038 1,867,005 1,887,796 1.5513 2,896,337 1.0500 9,560 303 180 1,809,053 1,953,150

1993 20,709 1,912,635 1,944,657 1.4775 1,825,833 1.0567 10,135 279 189 2,026,627 2,021,324

1994 11,315 2,028,776 2,077,725 1.4071 2,854,691 1.0668 10,606 269 199 2,248,270 2,169,643

1995 11,899 2,172,802 2,259,433 1.3401 2,911,763 1.0844 10,973 265 209 2,482,485 2,365,966

1996 12,616 2,420,412 2,555,219 1.2763 3,089,127 1.1111 11,355 272 219 2,763,762 2,696,711

1997 12,497 2,533,690 2,753,200 1.2155 3,079,716 1.1514 10,854 284 230 2,874,591 2,911,707

1998 12,704 2,656,864 3,037,936 1.1576 3,075,652 1.2218 10,398 296 242 3,068,273 3,213,822

1999 13,186 2,634,131 3,240,900 1.1025 2,904,129 1.3203 9,987 291 254 3,344,068 3,445,473

2000 14,097 2,566,548 3,562,098 1.0500 2,694,875 1.4550 9,689 278 266 3,753,748 3,740,429

2001 14,302 1,755,208 3,455,161 1.0000 1,755,208 2.0719 6,903 254 280 3,998,625 3,823,857

28,087,332 100,457 28,342,082

Notes
(4) Trend Factor to 2001 calculated at 5% pa which can also reflect other adjustments to losses
(5) Trended paid claims = (2) x (4)
(7) Reported exposure = (1) / (6)
(8) Expected ultimate loss ratio = (total col. 5) / (total col. 7)
(9) Reported loss ratio = (5) / (7)
(10) Detrended expected ultimate loss ratio = (8) / (4)
(11) Expected ultimate losses = (10) x (1)
(12) Estimated ultimate losses = (2) + [1 – 1/(6)] x (11)



6.6 Example of Generalised Cape Cod method including decay

Exposure
(1)

Paid LTD
(2)

Incd
LTD
(3)

Trend
factor

(4)

Trended
Paid
(5)

Paid
CDF
(6)

E/DF
(7)

LTD*DF
/E
(8)

Decay
(9)

   *D/DF
(10)

Iterated
E(LR
(12)

  E(LR)
(13)

     E(ULT)
(14)

  ULT
(15)

1992 10,038 1,867,005 1,887,796 1.5513 2,896,337 1.050 9,560 303 0.075 718 282 182 1,826,417 1,953,977

1993 10,709 1,912,635 1,944,657 1.4775 2,825,933 1.057 10,135 279 0.100 1,015 280 189 2,027,844 2,021,389

1994 11,315 2,208,776 2,077,725 1.4071 2,854,691 1.067 10,606 269 0.133 1,416 278 198 2,235,212 2,168,825

1995 11,899 2,172,802 2,259,533 1.3401 2,911,763 1.084 10,973 265 0.178 1,953 277 207 2,463,538 2,364,492

1996 12,616 2,420,412 2,555,219 1.2763 3,089,127 1.111 11,355 272 0.237 2,695 278 218 2,751,775 2,695,513

1997 12,497 2,533,690 2,753,200 1.2155 3,079,716 1.151 10,854 284 0.316 3,434 280 230 2,879,259 2,912,321

1998 12,704 2,656,864 3,037,936 1.1576 3,075,652 1.222 10,398 296 0.422 4,387 281 243 3,087,678 3,217,345

1999 13,186 2,634,131 3,240,900 1.1025 2,904,129 1.320 9,987 291 0.563 5,618 281 255 3,361,540 3,449,712

2000 14,096 2,556,548 3,562,098 1.0500 2,694,875 1.455 9,689 278 0.750 7,266 279 266 3,750,672 3,739,467

2001 14,302 1,755,208 3,455,161 1.0000 1,755,208 2.072 6,903 254 1.000 6,903 277 277 3,964,741 3,806,327

2,791 35,403 28,329,368



Notes
(4) Trend Factor to 2001 calculated at 5% pa which can also reflect other adjustments to losses
(5) Trended paid claims = (2) x (4)
(7) Reported exposure = (1) / (6)
(8) Reported loss ratio = (5) / (7)
(9) Decay factor = 0.75  abs (2001 – I)

The table shows the decay factor for the 2001 origin year, but will vary depending on which origin year is being considered.  An iterative
process is followed whereby the decay factor is calculated for each origin year and the results of (11) are recorded in column (12)

(10) Weight assigned to indicated ultimate loss ratio = (7) x (9)
(11) Expected loss ratio for origin year under consideration, in this case 2001, = [total of (8) x (10)] / total col. 10)
(12) Iterated expected loss ratio = results of (11) for each origin year
(13) Detrended expected ultimate loss ratio = (12) / (4)
(14) Expected ultimate losses = (13) x (1)
(15) Estimated ultimate losses = (2) + [1 – 1/(6)] x (14)



6.7 Example of Generalised Cape Cod method including alternative variance factors

Exposure
(1)

Paid
LTD
(2)

Incd
LTD   (3)

Trend
factor

(4)

Trended
Incurred

(5)

Incurred
CDF
(6)

E/DF
(7)

LTD*DF/E
(8)

Decay
(9)

VF
(10)

E*D/VF
(11)

Iterated
E(LR)
(13)

E(LR
) (14)

E(ULT)
(15)

ULT
(16)

1992 10,038 1,867,005 1,887,796 1.5513 2,928,592 1.0200 9,841 298 1.0000 1.0500 9,559.544 276 178 1,782,867 1,918,758

1993 10,709 1,912,635 1,944,657 1.4775 2,873,144 1.0230 10,468 274 0.7500 1.0567 7,601.188 273 185 1,977,864 1,988,799

1994 11,315 2,028,776 2,077,725 1.4071 2,923,568 1.0236 11,053 264 0.5625 1.0668 5,965.770 271 192 2,176,410 2,129,942

1995 11,899 2,172,802 2,259,433 1.3401 3,027,857 1.0223 11,639 260 0.4219 1.0844 4,629.112 269 201 2,392,810 2,316,292

1996 12,616 2,420,412 2,555,219 1.2763 3,261,179 1.0188 12,383 263 0.3164 1.1111 3,592.689 270 211 2,663,995 2,609,335

1997 12,497 2,533,690 2,753,200 1.2155 3,346,532 1.0129 12,337 271 0.2373 1.1514 2,575.606 270 222 2,778,477 2,787,477

1998 12,704 2,656,864 3,037,936 1.1576 3,516,791 1.0073 12,612 279 0.1780 1.2218 1,850.580 271 234 2,972,972 3,044,196

1999 13,186 2,634.131 3,240,900 1.1025 3,573,092 1.0074 13,089 273 0.1335 1.3203 1,333.113 271 246 3,237,403 3,258,299

2000 14,097 2,566,548 3,562,098 1.0500 3,740,203 1.0119 13,931 268 0.1001 1.4550 969.947 270 257 3,625,991 3,611,404

2001 14,302 1,755,208 3,455,161 1.0000 3,455,161 1.0902 13,119 263 0.0751 2.0719 518.292 270 270 3,854,362 3,812,066

2,715 38,595.842 27476,467



Notes
(4) Trend Factor to 2001 calculated at 5% pa which can also reflect other adjustments to losses
(5) Trended incurred claims = (2) x (4)
(7) Reported exposure = (1) / (6)
(8) Reported loss ratio = (5) / (7)
(9) Decay factor = 0.75 abs (1992 – i)

The table shows the decay factor for the 1992 origin year, but will vary depending on which origin is being considered.  An iterative
process is followed whereby the decay factor is calculated for each origin year and the results of (11) are recorded in column 12.

(10) Alternative variance factor, in this case the paid claim development factors are used
(11) Weight assigned to indicated ultimate loss ratio = (7) x (9)
(12) Expected loss ratio for origin year under consideration, in this case 1992, = [total of (8) x (10)] (total col. 10)
(13) Iterated expected loss ratio = results of (12) for each origin year
(14) Detrended expected ultimate loss ratio = (13) / (4)
(15) Expected ultimate losses = (14) x (1)
(16) Estimated ultimate losses = (2) +[1 – 1/(10)] x (15)



7. Standard Linear Actuarial Reserving Methods

7.1 Introduction

In this section, the models we discuss are based on a triangle of cumulative data Ci,j where

i represents the origin period and j is the development period since the start of the origin.

Our aim is to produce a model capable of estimating each of the Ci,js where j>1.  In order

to estimate the parameters in our model we have, at time t, a triangle of data Ci,j for all  i +

j � t+1.

We illustrate the ideas here using the following incurred loss data triangle.

Devt 1 Devt 2 Devt 3 Devt 4 Devt 5 Devt 6 Devt 7 Devt 8 Devt 9

1993 24 378,203 1,138,355 1,657,239 1,742,723 2,005,301 2,130,884 2,205,691 2,234,437

1994 3,901 279,487 1,263,809 1,950,588 2,106,054 2,376,390 2,513,937 2,601,627

1995 38,863 316,975 1,498,175 2,293,172 2,601,832 2,920,168 2,992,439

1996 28,848 800,798 1,778,722 2,623,833 2,981,742 3,354,018

1997 37,227 645,216 1,774,319 2,487,082 3,291,414

1998 29,421 831,025 1,931,249 3,159,232

1999 2,451 460,993 2,104,527

2000 32,807 679,917

2001 40,381

These data are taken from genuine Lloyd’s US casualty data grouped by underwriting

year and in a disguised form.  Using our notation we have, for example, C1993,2 = 378,203.

To construct our model, we first assume that Ci,j+1 is a function of Ci,j.

The second assumption is that this relationship is linear and so most common actuarial

models are of the form:

Ci,j+1 = ai,j + Ci,j Ri,j + �i,j,

where ai,j and Ri,j are “intercept” and “slope” parameters and �i,j is a random error term.

The models examined here all have the simplifying assumptions that ai,j and Ri,j are

independent of i, that is



ai,j  = aj  and Ri,j  = Rj for all i.

This assumption should not be blindly accepted but it is usually sufficient to proceed on

the basis that this assumption holds and, at the end of the analysis, to form a judgement as

to whether or not this assumption holds.  We will discuss methods for making this

assessment in section 7.3.

An alternative, and entirely analogous, notation is preferred by some practitioners.  This

is based on incremental developments which we shall denote using lower case letters.

The incremental developments are defined as

ci,j+1 = Ci,j+1-Ci,j,

and the associated incremental slope parameters are

ri,j = Ri,j+1 - 1

    =ci,j / Ci,j.

7.2 Slope only Models (aka Chain Ladder or Link Ratio Models)

7.2.1 Theory

The models in this section are of the form

Ci,j+1 = Ci,j Rj + �i,j.

In full, these models can all be described as multiple regression models and solved using

standard mathematical techniques.  This has the advantage that the variance of the

parameters, rj, can be found and the significance of the results tested.

In practice, it is often informative for the actuary to follow a more pragmatic route.  In the

next sub-section, we describe the steps that are commonly followed and, by following this

procedure, further insight into the analysis can be gained.  This insight is considered

useful when applying judgement to the final selection.  There is of course no reason why



the pragmatic model described below can not be followed by a more rigorous regression

based analysis.

It is worth noting that the resulting Rj may be referred to as development factors; link

ratios; cumulative link ratios (as opposed to the incremental rj); age-to-age factors; report-

to-report factors or by a variety of similar terms.  In this section, we will use the

expression “age-to-age” factors.

7.2.2 Practice

7.2.2.1 We can apply the multiplier-only methods to the derivation of a “pattern”.

The resulting "pattern" of age-to-age factors is used as the basis for several reserving

methods such as the Chain Ladder, Bornhuetter-Ferguson and (Generalised) Cape Cod

methods.

In the models described here, our aim is to calculate estimators for each of the Rj based on

the triangular data.  Having done this, the simplest reserve estimation method, known as

the Chain Ladder method, is to multiply the latest developed amount for each origin by

each Rj that represents a future development.  Some further notation is useful.  Firstly, the

“age-to-ultimate” factor is defined as:

�
�

�

jk
kj RS

 all

and, as the name suggests, is the expected ratio of the developed amount at ultimate to the

developed amount at time j.  Many practitioners refer to Sj as the cumulative link ratio

when the cumulative (Rj) or incremental nature (rj) of the model is not in question.  The

reciprocal of this,

j
j S

D 1
�

is then the proportion of the ultimate amount that is expected at time j.  For example, the

fitted model may say that incurred losses are expected to be 10% of ultimate after 1 year,

20% after 2 years and so on.  A complete set of these development percentages or the

underlying (cumulative) link ratios is generally referred to as a “pattern”.



As a first step, we calculate the set of observed cumulative link ratios Ci,j+1 / Ci,j.  Using

our example data, we get

Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 Ratio 7 Ratio 8

1993  16,080.04          3.010          1.456          1.052          1.151          1.063          1.035          1.013

1994       71.647          4.522          1.543          1.080          1.128          1.058          1.035

1995        8.156          4.726          1.531          1.135          1.122          1.025

1996       27.759          2.221          1.475          1.136          1.125

1997       17.332          2.750          1.402          1.323

1998       28.246          2.324          1.636

1999     188.064          4.565

2000       20.725

It is often useful to examine any patterns arising here.  For example we would wish to see

whether, for each development period, the ratios are increasing or decreasing over time as

this may suggest a speeding up or slowing down of the claims process (this and other

effects that should be investigated are discussed in Section 2).   If this were the case then

our assumption that Ri,j  = Rj for all i cannot hold true and an alternative model should be

used.  One such two-dimensional model is described by Sherman. If we believe that the

simple models are appropriate, or if we wish to fit a simple model and then assess its

ability to describe the data, then we next need to assign values to each Rj.   There are

several methods for doing this. Some of the more common, simple methods are to look at

the simple average of the development ratios (SAD) shown above, the (loss) weighted

average (WAD) or the geometric average (GAD).

Murphy proposes that each of the different averaging methods can be considered “Best

Linear Unbiased Estimators” of the model under different assumptions for the error term

�i,j.  It is unlikely that all data triangles are best described by any one assumption over the

error term, but the most commonly used estimators are the weighted averages.  From a

practical viewpoint, WAD estimates are preferred as they give most weight to the origin

years that have the most data and as such are least likely to be heavily distorted by

random fluctuations (although the cells with the most data are most likely to be those

distorted by catastrophes or large losses). This is consistent with the generally accepted



wisdom that weighted averages are often the most appropriate method for estimating

parameters to be used when predicting future events.

A common extension to these simple average methods is to look at averages (WAD, SAD

or GAD) for the last n years only in order to better reflect recent experience.  Common

sense tells us that this should be done if there are reasons to think that development

factors will have changed over time but that in the absence of such changes we should use

the full triangle.

Some calculated averages for our example data are shown below.

Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 Ratio 7 Ratio 8

WAD 25.312 3.095 1.510 1.155 1.130 1.046 1.035 1.013
SAD 2,055.25 3.446 1.507 1.145 1.132 1.048 1.035 1.013
GAD 42.953 2.525 1.313 1.076 1.056 1.016 1.008 1.001
WAD last 8 25.312 3.095 1.510 1.155 1.130 1.046 1.035 1.013
WAD last 6 22.020 3.104 1.510 1.155 1.130 1.046 1.035 1.013
WAD last 4 25.682 2.772 1.513 1.174 1.130 1.046 1.035 1.013
WAD last 2 32.359 3.124 1.524 1.227 1.124 1.040 1.035 1.013

The WAD averages for the last 2, 4, 6 and 8 periods are not materially different to the full

WAD figures.  This is especially true when we bear in mind that for the restricted periods

we have far less data and so the estimators are more prone to being distorted by

randomness within the data.  Therefore we select the WAD figures as our preliminary

estimates.

Simple models would stop at this stage.  We have a set of age-to-age factors for each of

developments 1 through 8 and as such could construct a pattern and go on to make

reserve estimate calculations.  However, there are a number of potential problems here

that can be resolved by extending the analysis through curve fitting.

Firstly, the averaging processes used so far may not have sufficiently removed the

randomness from the data.  It is sometimes desirable to graduate the selected age-to-age

factors to ensure that we do not project future randomness.   This can be especially true

for classes with few claims and a volatile development history.  The smoothing process



can also be useful for the latest developments in a triangle which have little or no reliable

data and the age-to-age factors calculated above, probably based on only one or two data

items, are clearly questionable.

The second important case when curve fitting is desirable is when the data does not

appear to be fully run off within the triangle (the earliest origin period has not finished

developing) as in our example.  In these cases we can use a curve fitted to our model in

order to calculate age-to-age factors beyond the most developed point.

Our example here uses simple techniques that can be easily programmed into a

spreadsheet package.  The curves that we consider are as follows:

� Exponential Curve – the incremental age-to-age factors are modelled by rj = exp(a +

b t).  Taking natural logs, gives ln rj = a + b t.  Therefore, we can estimate a and b by

regressing ln rj against t.

� Weibull Curve – the cumulative age-to-age factors are modelled by                    Rj =

1/(1 - exp(-a tb)).  This can be manipulated into a form suitable for regression as

follows:

1 - 1/Rj = exp(-a tb)

ln (1 - 1/Rj) = -a tb

ln( -ln (1 - 1/Rj) ) = ln a + b ln t.

Therefore, we can estimate ln a and b by regressing ln( -ln (1 - 1/Rj) ) against    (ln t).

� Power Curve: the cumulative age-to-age factors are modelled by Rj = a(b^t). where b^t

means bt. Taking natural logs twice, gives

 ln (ln Rj) = ln (ln a) + (ln b) t.  Therefore, we can estimate ln (ln a) and ln b by

regressing ln (ln Rj) against t.

� Sherman Curve: also known as the Inverse Power curve: the incremental age-to-age

factors are modelled by rj = a (t + c)b.  Since this is a three-parameter curve, we



cannot use linear regression to fit the parameters.  However, for a given value of c, we

can regress ln rj against ln (t + c) to estimate ln a and b.  Using such a routine, we

then need to find the value of c that minimises the standard error in order to fully fit

the curve.

Note that in Excel “Solver” can be used to derive the parameters, by minimising weighted

sums of square differences between actual and fitted values. This can be done with

“actual” values being the selected averages or using the original link ratios. Lower

weights would probably be given to earlier development periods which have much larger

development factors.

The functions described above usually fit the loss development factors well over part of

the development history but often not the entire history.  Of the functions we describe, the

inverse power curve will generally be seen to fit over a wider range simply because it has

three parameters instead of two.  Typically, the two-parameter curves are less able to

describe the large development factors commonly seen during the first few development

periods.  A practical solution to this problem is to use the average-based age-to-age

factors, as calculated above, for the early development periods and fit the curves only to

the factors that can reasonably be described by a formula.

For our example data, we have:

7.2.2.2 Selection of initial age-to-age factors:

This is based on simple averaging techniques or after applying some judgement.  We

mentioned above that the WAD averages seem appropriate.

Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 Ratio 7 Ratio 8

Initial
selection 25.312 3.095 1.510 1.155 1.130 1.046 1.035 1.013

7.2.2.3 Fitting each of the curve formulae to the selected factors:

The results for each curve are shown below.



Exponential Curve

Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 Ratio 7 Ratio 8

X= t 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000
Y= ln rt 3.191 0.739 -0.673 -1.861 -2.042 -3.081 -3.353 -4.340
Fitted 1.930 0.971 0.011 -0.948 -1.907 -2.867 -3.826 -4.785

a 17.9820
b -0.9593

Weibull Curve
Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 Ratio 7 Ratio 8

X=ln t 0.000 0.693 1.099 1.386 1.609 1.792 1.946 2.079
Y=ln(-ln(1-
1/rt)) -3.211 -0.941 0.082 0.696 0.772 1.140 1.220 1.471

Fitted -2.714 -1.214 -0.337 0.285 0.768 1.162 1.495 1.784

a 17.3706
b -0.1054

Power Curve

Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 Ratio 7 Ratio 8

X= t 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000
Y= ln(ln Rt) 1.173 0.122 -0.886 -1.935 -2.104 -3.103 -3.370 -4.347
Fitted 5.252 5.725 6.198 6.671 7.143 7.616 8.089 8.562

a 119.0244
b 0.4728

Sherman curve

Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 Ratio 7 Ratio 8

X=ln (t+c) -0.111 0.639 1.063 1.360 1.588 1.774 1.931 2.066
Y=ln(t) 3.191 0.739 -0.673 -1.861 -2.042 -3.081 -3.353 -4.340
Fitted 3.225 0.731 -0.677 -1.663 -2.423 -3.041 -3.561 -4.011



a 17.3706
B -3.3231
C -0.1054

7.2.2.4  Assessing the goodness of fit:
We have now produced several sets of estimators and we must now assess how well they

describe the data.  There are several methods of doing this before we calculate reserve

estimates.  Firstly, we could simply plot the historic age-to-age factors against the

estimators, as shown below.

From this plot, we can see that the fitted averages look reasonable but the scales involved

prevent us from using this plot to decide which curve is best.  To get around this problem,

we plot a similar graph but of the log-incremental factors (ln rj) against development

period, as below.
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This plot has the added advantage that the Exponential Curve appears as a straight line,

the other curves being slightly curved.  From this plot we can see that most curves would

over-estimate the development from four to five years (R4), the Sherman appearing to be

better here.  At the extreme right, we see that the Sherman and Power curves fit closest to

the data but the Exponential and Weibull may underestimate the age-to-age factors.

A more sophisticated method that that gives far more information on the goodness of fit is

to examine the residuals. Residuals are taken to be the difference between actual and

expected values but the diagnostics are improved by looking at standardising the

residuals.  This is achieved by dividing each residual by an estimate of the standard error.

There are several alternatives for the estimate of standard error, �, as discussed by Venter

but of these we opt for the most common:

�
�

�

�

data all

2
2

parameters  points data
)expectedactual(s

The standardised residuals for the Sherman curve fitted above are shown below by origin

year, development period, calendar year (this being origin year plus development period).

Year Devt Calendar Previous Fitted ratio Expected Actual Error squared  Residual

1993 1 1994                 24          26.15             592          378,179 1.4257E+11            1.22
1993 2 1995         378,203            3.08      785,797          760,153 6.5760E+08 -          0.08
1993 3 1996      1,138,355            1.51      578,322          518,883 3.5330E+09 -          0.19
1993 4 1997      1,657,239            1.19      314,058           85,485 5.2246E+10 -          0.74
1993 5 1998      1,742,723            1.09      154,532          262,578 1.1674E+10            0.35
1993 6 1999      2,005,301            1.05        95,867          125,582 8.8302E+08            0.10
1993 7 2000      2,130,884            1.03        60,519           74,807 2.0416E+08            0.05
1993 8 2001      2,205,691            1.02        39,940           28,745 1.2532E+08 -          0.04
1994 1 1995             3,901          26.15        98,113          275,587 3.1497E+10            0.57
1994 2 1996         279,487            3.08      580,695          984,322 1.6291E+11            1.30
1994 3 1997      1,263,809            1.51      642,057          686,778 2.0000E+09            0.14
1994 4 1998      1,950,588            1.19      369,650          155,467 4.5874E+10 -          0.69
1994 5 1999      2,106,054            1.09      186,749          270,336 6.9867E+09            0.27
1994 6 2000      2,376,390            1.05      113,607          137,547 5.7313E+08            0.08
1994 7 2001      2,513,937            1.03        71,398           87,689 2.6540E+08            0.05
1995 1 1996           38,863          26.15      977,449          278,112 4.8907E+11 -          2.25
1995 2 1997         316,975            3.08      658,583       1,181,200 2.7313E+11            1.68
1995 3 1998      1,498,175            1.51      761,122          794,998 1.1475E+09            0.11
1995 4 1999      2,293,172            1.19      434,572          308,659 1.5854E+10 -          0.41
1995 5 2000      2,601,832            1.09      230,711          318,336 7.6782E+09            0.28
1995 6 2001      2,920,168            1.05      139,604           72,271 4.5337E+09 -          0.22
1996 1 1997           28,848          26.15      725,564          771,950 2.1516E+09            0.15
1996 2 1998         800,798            3.08    1,663,829          977,923 4.7047E+11 -          2.21
1996 3 1999      1,778,722            1.51      903,650          845,111 3.4267E+09 -          0.19



1996 4 2000      2,623,833            1.19      497,234          357,909 1.9412E+10 -          0.45
1996 5 2001      2,981,742            1.09      264,399          372,275 1.1637E+10            0.35
1997 1 1998           37,227          26.15      936,300          607,989 1.0779E+11 -          1.06
1997 2 1999         645,216            3.08    1,340,573       1,129,103 4.4720E+10 -          0.68
1997 3 2000      1,774,319            1.51      901,413          712,763 3.5589E+10 -          0.61
1997 4 2001      2,487,082            1.19      471,319          804,332 1.1090E+11            1.07
1998 1 1999           29,421          26.15      739,967          801,604 3.7991E+09            0.20
1998 2 2000         831,025            3.08    1,726,632       1,100,224 3.9239E+11 -          2.02
1998 3 2001      1,931,249            1.51      981,139       1,227,983 6.0932E+10            0.80
1999 1 2000             2,451          26.15        61,652          458,542 1.5752E+11            1.28
1999 2 2001         460,993            3.08      957,812       1,643,534 4.7021E+11            2.21
2000 1 2001           32,807          26.15      825,131          647,110 3.1692E+10 -          0.57

The sum of the squared error terms is 3,176,053,663,209 which, when divided by the

number of data items less the number of fitted parameters (36-3) and then square rooted

gives an error value of 310,232.  The standardised residuals in the final column of this

table have been calculated as the actual value (column 7) less the expected value (column

6), all divided by the error.

The error term is useful in assessing the goodness of fit without having to make

judgements regarding the graphical output: it should be minimised.   There are two other

useful statistics than can also be used.  Based on the assumption that the errors are

randomly distributed, the proportion of standardised residuals that are positive can be

calculated and should be roughly 50%.  Secondly, by further assuming that the errors are

roughly normally distributed with mean zero and variance one, the proportion of

standardised errors lying outside the range (-2,2) should be around 5%. The process can

easily be repeated for each of the curves.  The results for our example are summarised

below.

Expon Power Weibull Sherman

Error 384,877 332,880 530,313 310,232
+ve residuals 69% 58% 44% 56%
Exceptional 2.8% 2.8% 5.6% 11.1%

From these statistics, the Weibull curve looks to be the poorest fit based on the error

value.  The Exponential also appears poor owing to a high error value and a high positive

residual count.  These facts agree with our judgmental assessment of the log incremental

plot.



Of the other two curves, it is again harder to pick a clear winner.  The Sherman curve has

the lower error, is closer to a 50-50 split of positive residuals but performs badly on the

exceptional residual count.  The Power curve is worse than the Sherman on the first two

statistics, but not massively so, but is far superior based on the third statistic.  For the

third statistic, we note that based on the assumption that the standardised residuals have a

Binomial(36,0.5) distribution then a 90% confidence interval level would be the range 13-

22 (i.e. 36%-61%); therefore the Sherman’s 11.1% is significant and we need to further

investigate this problem with the Sherman curve.

This may seem surprising since the Sherman curve was by far the best looking fit to the

log increments, had the lowest standard error and a good positive/negative residual split.

This demonstrates that simply looking at plots of fitted factors against actual or even the

superior log incremental plots is not enough to assess goodness of fit- many problems can

go unnoticed.

The choice of fitted curve is an important one as can be seen when we look at the implied

tail factors from each curve.  Since we believe that the data are not fully run off within the

triangle, we must extrapolate a tail factor.  This is simply done using the fitted curves and,

in the table below, we show the fitted cumulative link ratios at each development within

the triangle and the extrapolated tail factors based on the assumption that the class stops

developing after 17 years (that is development factors for ratios 9-16 have been

estimated).

Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 Ratio 7 Ratio 8 Tail

Expon        3.929          2.321          1.596          1.269          1.121          1.055          1.025          1.011          1.009
Weibull       15.591          3.893          1.960          1.360          1.131          1.043          1.012          1.003          1.001
Power        9.581          2.911          1.657          1.270          1.120          1.055          1.026          1.012          1.011
Sherman       26.151          3.078          1.508          1.190          1.089          1.048          1.028          1.018          1.043

From this table it is clear that the Sherman curve will add around 3% extra to the ultimate

values for all years compared to the Power curve.

7.2.2.5  The next step is to plot the standardised residuals against



� Development period.

� Origin period.

� Calendar period.

� Fitted value (not actual value since the residuals are automatically correlated to the

data).

If our model is correct then the standardised residuals should be randomly spread around

zero and independent of the factor they are plotted against.  A common problem is non-

constant variance (“Heteroscedasticity”) which typically shows up as a cone-shaped

structure in the residual plot.

Each of the standardised residual plots for the fitted Power and Sherman curves in our

example are given below.

Residual 1. Plot standardised residuals against origin period

Power Curve: Origin Residuals
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Sherman Curve: Origin Residuals
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In these plots, each element on the x-axis refers to a different origin period (underwriting

year).  The residuals appear to be reasonably randomly spread and broadly comparable.

However, we note that for the Power curve the 1999 and 2000 year residuals are all

positive.  Statistically, the sample is too small to draw any conclusions, with 25% chance

that all three residuals have the same sign, but we may wish to bear in mind that this

seems odd.

Residual 2. Plot standardised residuals against development period

Power Curve: Development Residuals
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Sherman Curve: Development Residuals
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Each element on the x-axis here relates to an individual slope parameter, Rj, and is in

some senses comparable to the log incremental plots discussed above.  This plot shows a

more marked difference between the two curves than the origin year plot.  In comparison

to the Sherman curve, the Power curve typically underestimates R1 (since actual less

expected and therefore the residuals are predominantly positive) and overestimates R3 and

R4 (since the residuals are typically negative).  Residual plots at each other development

are broadly comparable.  In some senses the Sherman curve is now looking better

although the number of exceptional items is still far higher than for the Power curve.

Residual 3. Plot standardised residuals against calendar period



Power Curve: Calendar Residuals
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Sherman Cuve: Calendar Residuals

(2.50)
(2.00)
(1.50)
(1.00)
(0.50)

-
0.50
1.00
1.50
2.00
2.50

1994 1995 1996 1997 1998 1999 2000 2001

Each element on the x-axis relates to a period in time.  For example, the residuals

appearing for 2001 are the residuals from each origin period arising during the 2001

calendar year.

The residuals appear reasonably randomly spread but we note that both fitted curves

appear to generally underestimate the 2001 development for each origin period.  In fact,

on further investigation we find that for the Sherman curve, three of the eight residuals

are negative and for the Power curve, two of eight are negative.  Neither of these



observations is statistically significant but we again see some evidence that the Sherman

Curve better describes the data.



Residual 4. Plot standardised residuals against fitted values

Power Curve: Fitted Value Residuals
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Sherman Curve: Fitted Value Residuals
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In this plot we show the residuals against fitted values (Ci,j rj).  The plots suggest that the

largest values of Ci,j rj, those in excess of 1,000,000, tend to be over-estimated since the

residuals (actual less expected) are negative.  However, we note that only 3 of the 36

observations lie in this range.



7.2.2.6 Modifications:

Our current models do not seem conclusive: there is strong evidence that the Sherman

Curve best describes the data but there is a question mark over the number of exceptional

residuals.

We have already noted that the fitted curves are rarely appropriate over the entire range of

developments and usually are poorest for the earliest factors.  From our development

residual plots we note that the Sherman Curve has one exceptional item for development

one and three for development two with none after that.  Based on our feeling that it is

usually the earliest developments that are most difficult to fit with a curve, we start by

removing the first development rather than the one that currently appears worst.  As we

will see, this step is sufficient.

Following the same routine as before, but using the WAD average for the first

development, our fitting statistics and fitted parameters are now as follows:

Expon Power Weibull Sherman

Error 388,853 353,450 357,537 299,741
+ve residuals 67% 64% 67% 56%
Exceptional 2.8% 2.8% 5.6% 5.6%
A 6.1019 33.7053 0.1560 48.6821
B -0.7792 0.4976 1.6452 -3.7526
C 0.3277

When calculating the error values, we now have three parameters for the Exponential,

Power and Weibull Curves (the WAD average plus two curve fit parameters) and four for

the Sherman Curve (WAD plus the three curve parameters).

Compared to our previously fitted curves, we note that the Exponential is debatably no

better or worse; the Power Curve has in fact deteriorated (that is the cost of introducing an

extra parameter has not been outweighed by a sufficient improvement in fit); the Weibull



Curve has reduced its error term but become more biased; and the Sherman Curve has

improved both its error term and exceptional residual proportion.

The revised Sherman curve is now the clear favourite.  However, we should check

whether or not this model is indeed better or worse than our initially selected WAD

averages.  The fitting statistics for the 8-parameter (R1 to R8) WAD model are shown

below:

WAD
Error 331,829
+ve residuals 44%
Exceptional 8.3%

The WAD average model was never going to be usable without creating a tail factor but

we do need to check that our fitted curve model is superior to the simple model for

developments observed within the triangle.  Once again, we find that the revised Sherman

Curve appears to be the most appropriate model.  It only remains to check the residual

plots for any problems.
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The origin period residual plot is broadly similar to earlier, although with fewer residuals

outside the (-2,2) range.  Similar comments apply to the calendar period and fitted value

residual plots.



Development Period Residuals
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The development residual plot is improved especially for R1 and R2 where the residuals

are more evenly spread.

Having discovered no problems within the residual plots, we now have a clear winner: the

revised Sherman Curve, as given below.

Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 Ratio 7 Ratio 8 Tail

Age-to-age       25.312          3.044          1.535          1.199          1.091          1.048          1.028         1.017          1.037
Age-to
Ultimate     175.776          6.944          2.281          1.487          1.240          1.136          1.084          1.055          1.037
Pattern 1% 14% 44% 67% 81% 88% 92% 95% 96%

7.2.3 Reserve estimates

The Chain Ladder estimate of the ultimate developed amount, UCL,in respect of origin

year I based on data as at development J is then

UCL  = CI,J SJ
    = CI,J / DJ,

where SJ is the Age-to-Ultimate factor and DJ is the pattern, as shown above.  The Chain

Ladder logic is simple and easily communicated: if the pattern says that half the losses

should have been incurred by now and $1M have been incurred then the ultimate losses

will be $2M.



Before applying the Chain Ladder method, it is often useful to check the stability of the

projections.  In the table below we show Chain Ladder ultimate loss estimates using the

derived pattern but based on incurred losses at the latest and 3 preceding developments.

BCL @0 -BCL @1 -BCL @2 -BCL @3
1993 2,316,925 2,326,231 2,309,447 2,277,514

1994 2,743,804 2,724,600 2,698,977 2,610,580

1995 3,243,198 3,316,571 3,225,125 3,409,372

1996 3,809,314 3,696,047 3,900,982 4,058,114

1997 4,079,904 3,697,667 4,048,068 4,480,667

1998 4,696,985 4,406,101 5,771,010 5,171,446

1999 4,801,431 3,201,343 430,872

2000 4,721,647 5,766,638

2001 7,097,940

As an extension to this, we can examine the development of Chain Ladder estimates

graphically by plotting the ratio of ultimate losses calculated at each development against

the latest Chain Ladder estimate, as below:
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From this we see that the Chain Ladder estimates are volatile and up to 100% wrong at

development one and 50% wrong at development 2.  From Development 3 onwards the

estimates are relatively stable.  This pattern is typical in that the estimates based on

immature origin years can be volatile. Note that we are comparing with the latest

estimate, which may well be wrong.

To overcome this, we turn to one of the exposure-based methods referred to in Section 6.

In terms of the theory described here, these models are “Intercept only” models, although

in practice the more pragmatic Bornhuetter-Ferguson or (Generalised) Cape Cod

approaches are used in preference to generalised linear modelling techniques.

In this example we will use BF estimates based on the previous origin period’s ULR

adjusted for estimates of claims inflation and premium rate adequacy going into the next

origin period.  The table below shows the BF estimates, again calculated at the latest and

preceding 3 development periods.

Premiums Chain
Ladder

ULR

Inflation Rates BF prior BF @0 -BF @1 -BF @2 -BF @3

1993 2,659,299 87% 2,234,437 2,205,691 2,130,884 2,005,301

1994 3,181,861 86% 6% 5% 88% 2,746,644 2,730,322 2,710,886 2,646,919

1995 3,261,283 99% 6% 0% 91% 3,222,928 3,276,466 3,177,951 3,269,136

1996 3,507,538 109% 6% -3% 108% 3,807,266 3,714,626 3,865,360 3,908,741

1997 3,395,122 120% 6% -5% 121% 4,086,526 3,834,026 4,085,196 4,166,944

1998 3,776,338 124% 6% -10% 142% 4,909,064 4,933,339 5,406,147 5,343,782

1999 4,067,302 118% 6% 0% 132% 5,116,530 5,051,222 5,334,361

2000 3,874,269 122% 6% 20% 104% 4,138,135 4,049,798

2001 3,273,228 217% 6% 20% 108% 3,544,079

Therefore, out final selected ultimate loss estimates are the BF for 2000 & 2001 and the

BCL estimates for all other years, as shown below.

Premiums Incurred Estimated ILR ULR



losses ultimate
1993 2,659,299 2,234,437 2,316,925 84% 87%

1994 3,181,861 2,601,627 2,743,804 82% 86%

1995 3,261,283 2,992,439 3,243,198 92% 99%

1996 3,507,538 3,354,018 3,809,314 96% 109%

1997 3,395,122 3,291,414 4,079,904 97% 120%

1998 3,776,338 3,159,232 4,696,985 84% 124%

1999 4,067,302 2,104,527 4,801,431 52% 118%

2000 3,874,269 679,917 4,138,135 18% 107%

2001 3,273,228 40,381 3,544,079 1% 108%

One final check that is often carried out is to plot the development of incurred losses as a

percentage of the selected ultimate, as shown below.
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This plot serves several purposes. Firstly it is a simple goodness of fit check as the pattern

should be a reasonable approximation to the development of each year (it should be noted

that this “goodness of fit” assessment is far less accurate than the checks already applied).

Secondly, the historic spread of incurred loss developments around the selected pattern

indicates the volatility of the projection results and hence the inherent uncertainty in any

estimates (for example at development 2, the historic losses have varied between 10% and



20% of ultimate losses which suggests considerable uncertainty).  Thirdly, the plot can be

used to assess the reasonableness of the selected figure.  In our example, we have used the

BF estimate for 2000 and, according to the plot above, this looks reasonable since the

implied IBNR is very similar to that of 1997 and 1998 after the second development

period.

7.2.4 Slope and intercept models

So far, we have discussed “Slope only” models in detail and mentioned that the

Bornhuetter-Ferguson and (Generalised) Cape Cod methods can be described as

“Intercept only” models.  The remaining option within this framework is of course to look

at models using both Slope and Intercept terms:

Ci,j+1 = ai,j + Ci,j Ri,j + �i,j,
Models of this form can be fitted using standard generalised linear modelling techniques

and have been described in some detail by Christofides in the Institute’s Claims

Reserving Manual.

In practice, this method can be useful especially for the earliest developments where

Slope or Intercept only models do not give a good description of previous incremental

loss developments.  A full model of this kind has the considerable advantage that the user

can calculate which development periods should have slope parameters and which should

have intercept parameters, or both.  However, in order to apply this model well, it is

necessary to normalise each origin period so that they represent a consistent level of

exposure and this information may not be readily available.
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