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1. Introduction  

In 1952, Harry Markowitz [1] developed the basic techniques for portfolio 
optimisation- usually referred to as mean-variance analysis 

 
that is still in 

widespread use today. In 1964, Bill Sharpe simplified and extended this analysis 
with the publication of the capital asset pricing model (CAPM), a linear model of 
financial assets [2]. According to the CAPM differences in premium of certain 
assets are due to differences in the riskiness of the returns of the assets. The model 
asserts that correct measure of riskiness is the beta [3]. In CAPM, investment 
choice is reduced to two assets 

 

the entire market and some risk free asset. 
Portfolio construction consists only of deciding the proportions of a portfolio 
invested in each, depending only on the investor s risk appetite.   

In 1976 an alternative approach to price financial assets was developed by Ross 
[4]. In this approach a linear relationship between the asset returns and a given 
factor model is derived

 

this model was called the arbitrage pricing theory (APT). 
In an economy, for example, the returns of the assets are generated by factors such 
as inflation, oil price, interest rate, etc. The APT attempts to relate the return as a 
linear combination of these factors. 

Some of these theories have also been used to measure investment performances- 
a direct measure of reward-to-risk. The Sharpe Ratio is calculated by taking a 
fund s annualised rate of return minus the risk-free rate divided by the fund s 
standard deviation. The difference in returns represents the fund s excess returns 
beyond that of a risk free investment, also known as risk premium Jensen s alpha 
[5] is a risk-adjusted performance measure that represents the average return on a 
portfolio over and above that predicted by the CAPM, given the portfolio's beta 
and the average market return.  

There have been plenty of criticisms of these models over the intervening years, 
but it should be recognised that they offered profound insights, albeit at the cost of 
great abstraction from reality. The main criticisms being that these theories use 
only the first two moments of the distribution of the returns 

 

which in effect 
assumes that the distribution of the returns are normal. This makes the Sharpe 
ratio open to gaming . Lowering the skewness by mechanically writing ordinary 
calls, for example will raise the Sharpe ratio substantially.   

A number of extensions to these theories already exist. In 1994 Sharpe revisited 
this measure to provide more generality and to cover a broader range of 
applications [6]. In [7], a generalization of the traditional Sharpe ratio is 
developed to evaluate non-normal return distributions. They use this measure in 
benchmarking and evaluating funds. A number of optimisation routines have also 
been developed to account for transaction costs, taxes, or complicated trading 
strategies or horizons. Some of these routines will also draw an entire efficient 
frontier. See [8] for a review. In [9] a number of omega functions are described. 
The omega function allows for comparing funds with different risk profiles by 
using all the information about the distribution of the returns. At its simplest it can 
be expressed as a ratio of the sum of the amounts considered as wins, relative to a 
threshold multiplied by their corresponding probabilities divided by the sum of the 
amounts considered as losses, multiplied by their corresponding probabilities. A 
behavioural CAPM was proposed in [10] and in [11] a robust mathematical 
approach is used for evaluating and compensating traders.  
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In this paper we look a new paradigm for developing strategies for building a 
portfolio. We look at dynamic strategies at different time horizons and based on 
stochastic simulation we show that there exists a risk frontier that is independent 
of the investor s apriori risk or return performances. This paradigm can be used to 
explain some of the anomalies of the financial markets, which up to now have 
been the domain of behavioural finance [12]. This theory can be used in portfolio 
construction [12,13] We also explore some extensions of the idea to wider 
disciplines such as insurance company management, game theory, genetic 
mutation and humour [16].  

The remainder of the paper is organised as follows: in section two we explain the 
risk ridge by means of an example. In section three we analyse the factors which 
lead to its emergence. In section four we consider areas where the results may be 
applied. Section five concludes.  
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2. The Risk Ridge  

2.1 The problem 
The risk ridge paradigm is first introduced by means an example [13,14,15]. 

The pensions fund management industry in the UK is organised in the following 
way: trustees of a pension fund give a mandate to a manager to manage the 
pension fund s assets for a certain mid-range time period, say three years. The 
fund manager is given a benchmark; say the FTSE All share, which he is expected 
to match.  

At the end of the three-year period,  if the cumulative return of the pension fund is 
within a predetermined range of the corresponding return of the benchmark, the 
trustees might extend the manager s mandate for a further three years. The 
purpose of handing out these three year mandates is putatively to avoid managers 
focusing on the short term, and thus taking sub-optimal investment decisions for 
very long term funds.  

However, an examination of trustees behaviour will show that if their fund 
manager underperforms excessively in the short term, they will end the mandate 
and find a new manager. 

In this example we assume that the trustees put in place a mandate with a fund 
manager as follows: 

 

Achieve a cumulative return of 3% above the benchmark over 3 years  

 

Avoid 4% underperformance return relative to the benchmark in any 
rolling year  

 

Performance is monitored quarterly 

Of course, we are examining a stylised situation here, but the setup will be 
realistic to those involved in the pensions industry.   
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2.2 The dynamics 

Let us examine the dynamics of the system. The fund manager has the goal of 
maximising his management fees by maximising the return on the fund, and 
winning a mandate for a further three years. To achieve this goal he has to take on 
risk 

 
i.e. diversify away from the benchmark (remember, if he only tracks the 

benchmark he still loses the mandate because he doesn t outperform).   

First we need to consider a measure of skill for a fund manager, say the ability to 
turn risk into return, commonly referred to as the information ratio. For this we 

use I, where I , so given an information ratio of 1/3, you would expect the 

manager to transform a third of their risk into return. 

Secondly we will assume that returns are normally distributed.  According to our 
assumptions, if returns are normally distributed with variance 2, then a fund 
manager with an information ratio of I will produce returns with mean I , i.e. 
returns are distributed ~N(I , 2). Quarterly risk is the annual risk multiplied by 

4

1
 . 

Simulating 20,000 paths allows us to calculate the probability of achieving the 
objectives as the number of successful paths divided by 20,000.  Using this 
methodology we determined the probability of achieving the upside for different 
levels of risk and plotted the results below.  We can see that the more risk the 
manager takes on, the higher his chances of outperforming, shown in yellow in 
Figure 1 below.   

Fig 1. A plot of the probability of upside for different levels of risk.          

Prob of achieving ob jectives for a fund manager
Inf Ratio = 1/3; 20,000 simulations
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However, he must also, in the interim, avoid getting sacked by underperforming 
during the three-year period. Clearly the further away from the benchmark he is, 
the higher the variance of returns, and the lower the chances of escaping short 
term downside, shown in Figure 2 below.   

Figure 2. The probability of upside and downside for different levels of risk.           

The optimal level of risk is clearly the one which minimises the chances of being 
sacked at any point and maximises the chances of outperforming

 

the highest 
point of the curve shown in green above.  

One of the results of the Capital Asset Pricing Model states that investor choice 
can be reduced to creating a portfolio invested partly in the risk free asset and 
partly in the market portfolio 

 

the capital market line. We can now see the 
application to CAPM  rather than considering utility indifference curves, or other 
arcane methods of choosing a point on the capital markets line to target, the fund 
manager simply diversifies away from the benchmark until he achieves the 
optimal level of risk. 

Prob of achieving ob jectives for a fund manager
Inf Ratio = 1/3; 20,000 simulations
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2.3 The Risk Ridge itself 

We now consider another influence on the system: variation in the investment 
manager s ability to turn risk into return.   

To examine this we calculated the probability of achieving the objectives for 16 
different levels of risk and 12 different levels of information ratio.  We used 
20,000 paths to calculate the probabilities at each risk and information ratio 
combination.  This gave us a grid of probabilities, which we then converted into a 
contour plot shown below.  

Figure 3.  A contour plot of risk against information ratio  

 

The contours on Figure 3 join all the combinations of risk and information ratio 
that give the same probability of achieving the objectives.  For example the 
contour labelled 0.5 indicates all combinations of risk and information ratio that 
give a 50% chance of achieving the objectives.  An investment manager would 
want their risk/ information ratio combination to give them a greater than 50% 
chance of achieving their objectives, and to be in the region to the right of the 0.5 
contour. 

The green circle on the chart indicates a point estimate of risk and information 
ratio.  In this case an investment manager with an information ratio of 0.4 and a 
risk of 3.5%.  The manager has approximately a 52% chance of achieving the 
objectives (calculated here from 40,000 simulations). 

If the manager increased their risk to 8% holding their information ratio constant 
(red circle), then the probability of achieving objectives falls to around 35%.  The 
manager is far more likely to hit the downside than the upside.   

If the manager reduced their risk to 1.5% holding their information ratio constant 
(blue circle) then the probability of achieving their objectives falls to around 30%.   
However the manager is more likely to fail to outperform than hit the downside 
restrictions. 
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So the green circle where a manager with an information ratio of 0.4 is running at 
a risk level of around 3.5% seems to be an optimal balance between upside and 
downside. 

The optimum level of risk for a given level of skill can be described 
mathematically as: 

  RiskSkillfSkillkOptimumRis Happiness ,maxarg)( .   

Where Happiness is the probability of the manager achieving the objectives.  
Using the chart we can do this by drawing a vertical line on the chart where the 
information ratio is 0.4, and reading off the highest probability of happiness for a 
given level of skill.  The optimum level of risk given an information ratio of 0.4 is 
around 3.5%. 

The thick grey line is a simple straight-line fit of the optimum risk level for any 
given information ratio.  Obviously the line will vary slightly from simulation to 
simulation.  Nevertheless on left hand side of the contour chart at an information 
ratio of 0 the optimum risk to achieve the objectives is around 3.5%.  To the right 
of the chart where the information ratio is 1, the optimum risk to achieve the 
objectives is a little over 3%.  This illustrates that the optimum level of risk lies in 
a narrow band for a wide range of information ratio.  It follows from these 
observations that the risk level to adopt is broadly independent of manager skill.  
This is the risk ridge. 

For completeness we show a plot of this function below, the ridge can be seen as 
the spine of the three-dimensional plot. 

Figure 4.  A surface plot of the probability of achieving objectives. 
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2.4 Consequences and evidence  

The optimal level of risk for a fund manager may not be the optimal level of risk 
for the client. However, if the benchmark chosen is appropriate, the mismatch 
may not be too bad. 

It is interesting to note that in the UK institutional fund management industry 
large investment houses tend to centre on a level of active risk from the FTSE All 
Share index that is consistent with the risk ridge theory. Risk ridge theory would 
dictate that those running at the incorrect level of risk would shed clients (and 
funds under management), a kind of Darwinian selection on fund managers. 

We are aware of at least one large, highly skilled manager who was taking low 
levels of risk, and had difficulty in outperforming. This proved to be a 
contributory factor to the manager shedding clients. 

In addition there is the example of one of the largest investment houses in the mid 
90 s who adopted a strong value investment style.  As the market s growth stocks 
outperformed during the late 90 s, the value manager s tracking error from the 
benchmark kept on increasing.  Eventually clients could not stomach the short-
term underperformance and sold the fund manager.  When the bull market finally 
turned, and quality of earning returned to the fore, there were few clients left in 
the fund to benefit from the long-term positive returns. 
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2.5 Summary  

To summarise the system above 

 
a participant has to achieve a goal over one 

time horizon, whilst avoiding a pitfall on another. These goals conflict, and lead to 
an optimal strategy, which is largely independent of the participant s skill. 

While some of our assumptions are clearly violated (e.g. normal distribution of 
asset returns, etc), we believe that the framework is robust.    
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3. An examination of the fundamentals  

We now consider what aspects of the system described above lead to the 
emergence of the risk ridge, and so generalise the result. We frame the following 
in terminology which is more suited to game theory or agent based modelling than 
financial economics, indeed, we believe that the risk ridge sits most easily within 
these discipline.  

3.1 Requirements  

3.1.1 Participants  

Clearly you need at least one participant. In the case of the fund, it is the fund 
manager and the market (or other fund managers). A card player needs an 
opponent and a comedian is nothing without his audience competing with him.  
However there may be circumstances when you have a participant in isolation.  To 
model the game you need to identify some key objectives of the participant.  You 
don t need to understand all the participant s objectives; just two conflicting 
objectives are enough to reveal a truth about the participant s behaviour.  

3.1.2 Uncertainty or risk 

There are uncertain outcomes in the game.  Sometimes uncertainty or financial 
risk can be specified by a diffusion process, whereas an asset s risk is defined by 
its standard deviation.  Otherwise, and in most cases, uncertainty cannot be 
defined succinctly.  In this case it can only be described in wider terms; we might 
describe uncertainty as a situation in human relations, or use a phrase like 
uncharted water to describe a space. We shall assume that the uncertainty is 

described by the distribution of the outcomes, which is specified a priori. 

For the risk ridge to be of use as a decision tool a participant will need to exert 
some control over their levels of uncertainty or risk. 
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3.1.3 Goal 

We need to be able to describe a measurable quantifiable goal for the participant, 
where the goal is made up of two conflicting parts:  

An upside 

An outcome, over one or more time periods.  The upside needs to increase with 
uncertainty.  A zero risk strategy will not result in achievement of the upside!  

A downside 

An outcome, which is measured over one or more time periods. 

The downside increases with increasing uncertainty.  A zero risk strategy may lead 
to avoiding the downside.  

In our manager example the upside and downside were binary events 

 

outcomes are either achieved or not. In general we may consider a situation where 
degrees of success are possible. 

The upside and downside objectives do not need to be symmetric, for example, 
the upside could be over a longer period than the shorter-term downside. 

We could describe the goal through a utility function which is then used to 
determine the probability of a participant being happy at the end of the game. 

A rational participant will always prefer a higher utility to a lower utility. 

This will automatically lead to the following behaviour: 

 

Where the participant perceives no downside and only upside, they will 
maximise risk, ie reckless. 

 

Where the participant perceives no upside and only downside participants will 
minimise risk, ie ultra conservative.   

3.1.4 Skill 

The participant has skill.  This is the ability of the participant to transform 
uncertainty into an objective.   

In our manager example, skill could be described as the ability to transform risk 
into return, such as the information ratio measure.    
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3.2 How the Risk Ridge emerges  

3.2.1 Happiness (Utility) 

We will define happiness as achieving upside while avoiding downside .  
Arguably happiness is a somewhat woolly term, however it s quite easy to 
communicate to a layperson or a participant, you simply ask are you happy, yes 
or no?  The answer is a binary outcome, and it gets around the problem of 
generating difficult to communicate utility functions.  Generally the probability of 
a participant being happy will vary as uncertainty changes, where the setup in 
section 3.1 holds. 

To illustrate this we consider the manager problem in more detail below.  

Figure 5. The probability of achieving upside and downside   

Prob of achieving ob jectives for a fund manager
Inf Ratio = 1/3; 20,000 simulations
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Region (B):  In a region of medium uncertainty the probability of achieving 
upside becomes balanced by the probability of the participant incurring downside. 
The happiness function is at an optimum at this point.  

.0
yUncertaint

Happiness

,0
yUncertaint

Happiness

2

2

  

Region (C): Increasing uncertainty from this point leads to a reduction in 
happiness because the downside objective bites.  So, 

,0
yUncertaint

Happiness

   

3.2.2 Holding uncertainty constant 

So far we have ignored a participant s level of skill.  However, for a given level of 
uncertainty we would expect that a participant with more skill is more likely to 
achieve their objectives and be happy.   

,0
Skill

Happiness

 

This relation holds up to the point when you have a 100% chance of achieving 
your objectives, at which point there is no additional benefit from additional skill.  



 

15

 
3.2.3 The ridge 

   
The two charts below show the shape of this function in uncertainty, risk, 
happiness space. On the left hand chart I have labelled the axes, and on the right 
hand chart I have highlighted the ridge using tramlines.  Between the tramlines 
this definition holds: 

Skill

Happiness

yUncertaint

Happiness
 .   

Fig 5. 
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The first thing that we can draw out is that the optimal level of risk is broadly 
independent of skill.  Whether you have lots of skill or none at all you should be 
taking similar levels of risk.   We add a note of caution here because the optimum 
does move with changing skill, just very slowly, and it is of second order to the 
impact of upside and downside tolerances.  
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3.3 Markowitz portfolio optimisation  

The risk ridge points towards an optimum level of risk that is broadly independent 
of skill.  However is it possible to produce an integrated model that draws together 
Markowitz portfolio optimisation and the risk ridge?   

Harry Markowitz defined portfolio optimisation as a process that would lead to an 
efficient set of portfolios.  By efficient we mean a portfolio with the highest return 
for a given level of risk.  The set of efficient portfolios is referred to as an efficient 
frontier. 

The problem that the investment community face is how to pick off a point on this 
efficient frontier.  Utility functions are one approach which would allow a point to 
be chosen, however, rarely do you come across practitioners using utility 
functions. This is largely because utility functions are an unnatural fit to general 
human thought (if not behaviour).  How many people can describe their marginal 
utility to an additional unit of risk? 

However the risk ridge approach gives a far more communicable way of picking a 
point on an efficient frontier. It considers the probability of achieving your 
objectives as a third dimension over the mean variance framework.  

Fig 6. Efficient frontier overlaid over an optimal portfolio allocation  

  

The red line on Fig 6 illustrates a traditional efficient frontier for a mix of 4 
notional assets. The blue dots represent 20 portfolios that have been generated 
along this frontier.  Behind the frontier we show an area chart, this illustrates the 
asset allocation at each point on the frontier.  The lowest risk/return (0% & 0%) 
point is associated with 100% in the black asset, and the highest risk/return 
portfolio (12% & 4%) is 100% invested in the white asset.    
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Using the same upside and downside objectives as in the first case study we can 
take the risk and information ratio for each of the 20 portfolios, and calculate the 
probability of achieving objectives.  

Fig 7. Probability of achieving objectives at each point on the efficient frontier.   

We can see from this chart that 
picking a portfolio from the efficient 
frontier where the risk is between 
3%-3.5% will lead to the highest 
probability of achieving the 
objectives, in this case a probability 
of over 60%.         

The efficient frontier on its own could be criticised for being a little fatalistic, it 
assumes that the risks and returns will be borne out.  By contrast, adding the risk 
ridge dimension includes a probabilistic dimension communicating the uncertainty 
of the outcomes.   

In terms of sensitivity a different set of asset assumptions will shift the curve up or 
down, and keep the optimum broadly in the same place.  However a different set 
of objectives will shift the position of the optimum left or right.  For example if 
you had more headroom on the downside the optimum shifts to a higher risk on 
the right, and if you had less headroom on the downside the optimum shifts to the 
left into a lower risk position. 

Fig 8. Optimal portfolio allocation and efficient frontier together     

Fig 8 shows the risk ridge as a third 
dimension to the portfolio 
optimisation problem.       

 



 

18

 
3.4 Poker  

It is with care that the casual observer writes anything regarding the game of 
poker. A quick search on Google will reveal a large volume of research on the 
subject, some of it involving high-powered probability, game theory and 
psychology  much like the game itself. 

With this in mind we consider an interesting result from the game. We see several 
similarities between the game of poker and the investment fund industry. Both 
involve the redistribution of wealth, with players ranging from the keen amateur 
to the hardened professional. Both involve the weighing up of probabilities, the 
use of judgement, and above all, the taking of risks in order to make profit. 

First, a brief recap for those who have never played the game, or who played it 
last at university. All players are dealt a number of cards (five or seven, depending 
on flavour), some of which may be revealed to all players, but at least some of 
which are only seen by the player to whom they are dealt. Each player in turn 
makes the decision to call , raise or fold . These decisions revolve around 
how much money to place in the central pot 

 

essentially each player makes a bet 
on that they hold the strongest hand.  

A player who calls simply matches the last bet in the pot, and challenges the other 
players to reveal their hands. He may instead decide to raise, which means he 
matches the previous bet, and increases the stakes. A player who folds retires, and 
has no further financial interest in the round (beyond anything he has already put 
into the pot). 

Clearly the decision to call, raise or fold depends on the strength of one s hand, 
and the amount of money in the pot. If you calculate that the amount of money 
you might win, as a return on the amount you must stake, is greater than the 
probability that you hold the highest hand (i.e. you make an expected positive 
return), you should raise or call as appropriate, otherwise you should fold. The 
situation is complicated by the fact that players after you may raise or call, 
changing the odds. 

Finally, when all players have called or folded, the hands are revealed, with the 
highest ranking hand winning the pot. If all but one player folds, that player wins 
without having to reveal his hand. 

The key point is this: since the other players do not know your full hand, it is 
possible to bluff 

 

backing a weak hand which has no chance of winning, in the 
hope that all other players will fold. A risky strategy, yet one which is essential to 
success in the game. For consider this: if a player is playing against an opponent 
who never bluffs, he will fold on a marginal hand if the opponent bets strongly, 
knowing he can t win. Conversely, against a frequent bluffer he will call 
frequently, even with a marginal hand, knowing that on average, he will make 
money. 

When presented with situations of conflict between players we may turn to game 
theory, and it is here that we find the result of interest to us: for the reasons above, 
there is an optimal frequency of bluffing, and this is independent of the skill of the 
players involved. Repeating the full argument would require more game theory 
than the average reader may have, the result can be found in, for example, [19]. 
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We note (as does Sklansky) that game theory assumes that both players will 
pursue an optimal strategy, and success in poker can largely be attributed to 
identifying your opponents sub-optimalities, and exploiting them. So the 
theoretical result may not hold in your monthly college reunion game (but 
probably does in the world championships!). 

To conclude 

 
if we consider bluffing in poker analogous to taking of risk in 

investment, the optimal level of risk to take is independent of player (or 
investment manager) skill. It is not immediately clear to us how the poker result 
could be derived from a risk ridge framework, but it may be a fruitful line of 
enquiry.   
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3.5 Humour 

In [17] John Vorhaus describes the need for individuals to be prepared to take the 
will to risk and attempt a comic revelation to a listener.  In addition he expresses 

the point that in identifying a comic revelation the comic will not be successful 
every time.  Indeed the levity hit rate for a novice comic is very low.  Vorhaus 
defines levity as the following: 

 In other words a comic revelation involves both truth, and pain. 

Truth is that a statement must be true, and that the listener shares that truth.  No 
truth, no upside.  The downside is that it must hurt a listener at the same time; too 
much pain and the listener will be offended.  Take an old example: 

How do you know you are talking to an extrovert actuary

 

He looks at your shoes when he talks to you

 

Actuaries who share the truth that they have a grey reputation, and that they are 
therefore tarnished with this image would, find it amusing. 

The conflict between upside and downside will form a risk ridge [19], where the 
skill dimension is in the delivery of the truth & pain, or revealing a new comic 
truth.   

Figure 9: Suggested graph of the probability of achieving levity for different 
participants 
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Based on the risk ridge principle we would expect that a comic genius and an 
actuary should take similar levels of will to risk in order to maximise the 
probability of connecting with people as seen in Figure 9.  However the comic 
genius has a higher probability of connecting with his listeners.      

ComedyPainTruth
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4. Applications in other fields  

As stated above, we believe the risk ridge to be an application of game theory 
rather than financial economics, and hence expect to find similar results, or see 
applications, in far wider fields. Some examples may include: 

 
A gene may mutate by a stable optimum amount from generation to generation.  
An organism needs to survive long enough to produce progeny without dying 
in the short term.  Too much or too little mutation will reduce the chances of 
survival to the next generation due to internal or external influences.  The risk 
ridge suggests that the mutation rate should be independent of an organism s 
efficiency in a particular environment. 

 

Could the accident hump in mortality tables be driven by an inherited urge in 
individuals to take sufficient risk with their life  and some individuals take too 
much? 

 

Neurons in a brain transform inputs from other neurons into a useful output 
[18].  In addition, neuron firings are noisy.  Too much noise leads to confusion, 
and too little noise restricts the ability of neurons to make wide associations in 
thought.  Is there some optimum level of noise for a neuron to take, regardless 
of the neurons processing of it s neighbours inputs?    
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5. Conclusion 
In this paper we have presented what we believe to be a novel and important concept. 
By considering a system where a participant has conflicting objectives, we uncover a 
remarkable result linking risk, skill and reward. Our result can be seen to extend the 
framework provided by classical finance paradigms such as the Capital Asset Pricing 
Model, as well as having links with game theory and behavioural finance. 

Moving forward we see room for further research 

 

perhaps replicating the risk ridge 
using option pricing techniques, and other analytical or algorithmic approaches such 
as Nash equilibria. 

Have you ever undertaken actions that led to you feeling pain?  Were those actions in 
pursuit of happiness, perhaps some long harboured desire or hope?  If you answered 
yes to both these questions then you already know what the risk ridge feels like. We 
hope this paper will add illumination to what you ve already experienced first hand.  
Perhaps you will be inspired to have another go at achieving happiness where 
previously you failed.  

Long may you pursue your dreams at your own private, optimum, level of risk. 
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Appendix A.  

In the following pages we include screen shots of risk ridge models with varying 
objectives using the assumptions from section 2. Practitioners in the field of portfolio 
construction may find these a useful input to discussions on risk. 
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Sample contour charts of the risk ridge: Downside 3% in rolling year  
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Sampled contour charts of  the risk ridge: Downside 4% in rolling year 
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Sampled contour charts of  the risk ridge: Downside 5% in rolling year  
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