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abstract

In this paper we consider reserving and pricing methodologies for a pensions-type contract
with a simple form of guaranteed annuity option. We consider only unit-linked contracts, but our
methodologies and, to some extent, our numerical results would apply also to with-profits
contracts.
The Report of the Annuity Guarantees Working Party (Bolton et al., 1997), presented the

results of a very interesting survey, as at the end of 1996, of life assurance companies offering
guaranteed annuity options. There was no consensus at that time among the companies on how
to reserve for such options. The Report discussed several approaches to reserving, but concluded
that it was unable to recommend a single approach. This paper is an attempt to fill that gap.
We investigate two approaches to reserving and pricing. In the first sections of the paper we

consider quantile, and conditional tail expectation, reserves. The methodology we adopt here is
very close to that proposed by the Maturity Guarantees Working Party in its Report to the
profession (Ford et al., 1980). We show how these policies could have been reserved for in 1985,
and what would have been the outcome of using the proposed method.
In a later section we consider the feasibility of using option pricing methodology to

dynamically hedge a guaranteed annuity option. It is shown that this is possible within the
context of the model we propose, but we submit that, in practical terms, dynamic hedging is not
a complete solution to the problem since suitable tradeable assets do not in practice exist.
Finally, we describe several enhancements to our models and methodology, which would

make them even more realistic, though generally they would have the effect of increasing the
required contingency reserves

keywords

Guaranteed Annuity Options; Contingency Reserves; Quantile Reserves; Conditional Tail
Expectations; Charging for Contingency Reserves; Mortality Improvements; Quanto Options;
Option Prices; Hedging Proportions; Dynamic Hedging; Empirical Hedging; Hedging Errors;
Transaction Costs; Practicability of Hedging; Fat-tailed Innovations; Stochastic Mortality
Models; Stochastic Hypermodels; Stochastic Bridges; Brownian Bridges; Ornstein-Uhlenbeck
Bridges

contact address

A. D. Wilkie, Department of Actuarial Mathematics and Statistics, Heriot-Watt University,
Riccarton, Edinburgh EH14 4AS, U.K. E-mail: A.D.Wilkie@ma.hw.ac.uk and InQA Limited,
Dennington, Ridgeway, Horsell, Woking GU21 4QR, U.K. E-mail: david.wilkie@inqa.com

# Institute of Actuaries and Faculty of Actuaries



". Introduction

1.1 This paper describes methods for the calculation of reserves and
charges for policies with guaranteed annuity options (GAOs). It is
substantially based on the work carried out for a doctoral thesis by the last-
named author (Yang, 2001).

1.2 We start in Section 2 by going back to early 1985, by which date the
up-to-date actuary, familiar with the then current United Kingdom actuarial
literature, should have had sufficient knowledge to have been able to attack
the problem of reserving and pricing for policies with GAOs, on the basis of
work that had been published by that date, mainly the Report of the
Maturity Guarantees Working Party (MGWP, Ford et al., 1980), and the
Wilkie investment model, whose first version had been presented to the
Faculty of Actuaries in late 1984, though not published until later (Wilkie,
1986a). In Section 3 we widen the discussion, to consider certain problems
that arise with the MGWP methodology.

1.3 In Section 4 we continue the historical approach by showing how
this methodology would have fared for new business in the years since then
(up to the end of 2001). In Section 5 we introduce the effect of new mortality
tables published since 1985, and in Section 6 the use of the 1995 version of
the ‘Wilkie stochastic investment model’. In Section 7 we consider how the
reserves on an initial tranche of new business would have altered since 1985,
allowing for both changes in interest rates and changes in the basis.

1.4 In Section 8 we review the developments in methodology that have
happened since then. In Section 9 we discuss conditional tail expectations as an
alternative to quantiles for reserving. In Section 10 we discuss the very
important topic of option pricing theory and hedging, and how far this helps to
reduce the contingency reserves that might otherwise be required. In Section
11 we discuss further extensions of our method that are desirable, but which we
have not yet implemented. Section 12 provides a summary and conclusion.

1.5 Our overall methodology is quite similar to that of Boyle & Hardy
(1997), though they are dealing with maturity guarantees on unit-linked
policies.

1.6 The subject of GAOs has proved controversial, and has been settled
in part in the courts. We do not discuss the legal aspects of these cases, but
we do make clear our actuarial approach to this subject.

Æ. Reserving and Pricing on the Basis of Quantile Reserves in "æðä

2.1 The Position in 1985
2.1.1 We start by trying to put ourselves in the position of an actuary

who, at the beginning of 1985, was considering how to value GAOs issued by
a life office, and who was familiar with the U.K. actuarial literature that
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had been published by that date. Such an actuary would have been aware of
the work of the MGWP (Ford et al., 1980), which showed how what we
would now call quantile reserves could be calculated, both for single
policies and for a portfolio of policies, by stochastic, or ‘Monte Carlo’,
simulation of a large number of possible future outcomes, and then by
choosing to reserve on the assumption that the 99% (say) most costly
outcome occurred.

2.1.2 The problem faced by the MGWP was that many life offices had
written unit-linked life policies, typically endowment assurances, which
included a guarantee that the maturity value would be not less than some
fixed amount, for example the sum of the premiums paid. As share prices
rose during the 1960s and early 1970s it had seemed that such a guarantee
would be very unlikely to be of value, and therefore needed to be neither
reserved for nor charged for. The sharp drop in stock market values in the
mid-1970s showed that such an assumption was mistaken, and after a great
deal of discussion and investigation the MGWP set out a methodology for
reserving for such policies with guarantees. The methodology was based on a
stochastic model, which modelled share prices as the ratio of a dividend
index and a dividend yield.

2.1.3 We can now see that the problem faced by the MGWP was
essentially the same as the valuation of a put option on shares, but in the
1980s option pricing methodology was only just becoming known, and the
MGWP was not convinced of its applicability to their problem. We shall see
the same in relation to GAOs. See Ford et al. (1980), Section 6.
2.1.4 The MGWP had developed a stochastic model for share prices.

This would not have been enough for the consideration of GAOs, whose
value depends also on interest rates. However, Wilkie was one of the
members of the MGWP, and in the following years he considered how a
more comprehensive model could be constructed. This resulted in the first
version of ‘the Wilkie model’, presented to the Faculty of Actuaries in
November 1984 (Wilkie, 1986a). This included stochastic models both for
shares, on the same lines as the MGWP, and for long-term interest rates,
‘consols’, linked by a model for retail price inflation, which was assumed to
influence both share dividends and nominal interest rates. It might have been
nicer to have had a model for short-term interest rates, and indeed a
complete yield curve too, but it would have been possible to value GAOs
simply by assuming a flat yield curve with all yields at the consols rate.

2.1.5 The MGWP had been asked to consider only how to reserve for
polices with maturity guarantees. It was not necessary to consider how to
charge for the option included in the policies, since the existing policies had
included the guarantee without any charge. However, in the discussions about
guarantees that took place during the late 1970s, Wilkie had written a note
(Wilkie, 1978), making suggestions about how a pricing methodology could be
devised.We shall explain and use thismethodology in the course of this paper.
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2.1.6 Wilkie was not the only one to take an interest in maturity
guarantees. Besides Wilkie (1976), other authors in the U.K. included
Benjamin (1976), Scott (1976) and Corby (1977). In North America, Brennan
& Schwarz (1976) had shown how to apply option pricing methodology to
the problem

2.2 The GAO Model
2.2.1 The model that would almost certainly have been chosen in 1985

for assessing the cost of GAOs would have been on the following lines. We
assume pension contracts written as unit-linked savings policies. These could
have been either single premium or annual or monthly premium policies.
For simplicity in this paper we shall consider only single premium policies.
(See Yang, 2001, for a similar treatment of annual premium policies.) At
maturity the policyholder would have had the choice of taking the maturity
proceeds either as cash which, under the ‘open market option’, could be
applied to purchase a pension annuity with any life office, and thus be at
‘market annuity rates’ at the time, or as an annuity from the original life
office at the guaranteed rate. For simplicity we assume that the annuity
would be paid annually in advance. This can be thought of as something of a
compromise between the more realistic pension paid monthly and one
guaranteed for five years. We shall ignore any joint life benefits.

2.2.2 In our specimen calculations we shall consider only males, and
assume that all policies mature at age 65. We shall use a guaranteed annuity
rate of »111 per annum per »1,000 purchase price. According to Bolton et al.
(1997) this was the most common GAO rate used by life offices. It
presumably derives from the one for nine conventional rate of turning cash
into pension, which in turn may come from the assumed equivalence of a
pension based on 1/60ths and one based on 1/80ths along with a lump
sum of 3/80ths (all of final salary times years’ service).

2.2.3 To calculate the value of an annuity we need to make some
mortality assumptions. In 1985 the latest tables published by the C.M.I.
Bureau for pensioners were the PA(90) tables. These are often treated as a
single entry table, but the actuary of 1985 should have been aware that the
same tables could also be treated as the base tables of 1967-70, forecast for
each future calendar year by assuming an age reduction of one year of age
per 20 calendar years. Using the C.M.I.’s more recent notation, these double-
entry tables could have been described as the ‘68 series’ tables. We shall
assume that the actuary of 1985 would have used tables from this series
appropriate to each policyholder’s year of birth, what might now be called
the PMA68Byyyy tables, where the annuitant was born in year yyyy. If
calculations are being carried out as at year zzzz, using the mortality table
appropriate for the year of birth of each life, this is denoted as PMA68Uzzzz
(where U stands for ‘year of use’).

2.2.4 We need also to make assumptions about mortality before age 65,
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though this may be of less significance. For convenience we shall assume
the same mortality as after age 65, i.e. PMA68Byyyy for a life born in year
yyyy.

2.2.5 We shall ignore expenses. Of course an actuary dealing with the
policies of a real life office would need to take into account expenses, as well
as the actual guaranteed annuity rates offered by the office, the method of
payment of the annuity, the mortality experience of the office’s own insured,
and the investment policy of the office.

2.2.6 We shall assume 100% investment in a share portfolio, which
performs exactly in line with the shares in the Wilkie model. In practice many
life offices attached GAOs to with-profits policies, for which the investment
portfolio might be less than 100% shares, and for which the maturity
proceeds might not be precisely the ‘asset share’ derived from the office’s
portfolio, but some smoothed version of this. With-profits policies are
discussed further by Yang (2001), but we shall consider in this paper only
unit-linked policies, linked to the total return (gross of tax) on shares. In
practice, as we shall demonstrate, the initial cost of the guarantee and the
subsequent contingency reserves do not depend on the investment portfolio
at all, though the outcome of dynamic hedging does.

2.2.7 There are other possible types of guaranteed annuity benefit that
might have been issued. In particular, a with-profits policy might have been
written with a guarantee that the minimum annuity obtained might be not
less than some annual amount. This might be equivalent to applying some
guaranteed minimum rate to the original sum assured, applying the current
market rate to the full policy proceeds, and taking the larger annuity. In
another type of policy a guaranteed rate might have applied to the sum
assured and reversionary bonus (strictly the better of the guaranteed rate and
the current market rate), with the market rate being applied to the terminal
bonus. In order to attack such types of policy one would need to make some
assumptions about the size of the basic sum assured in relation to the initial
premium and about the office’s bonus declaration strategy. However, apart
from this, the principles to be used would be the same as we describe in this
paper.

2.3 The Formal Model
2.3.1 We now introduce some notation and give a formal description of

our methodology. Assume a male born in year y, who is therefore aged
x ¼ 1985ÿ y in 1985. He will reach age 65 in year yþ 65, so the term of his
policy is T ¼ 65ÿ x ¼ yÿ 1920 years. He pays a single premium of »100,
which is invested in share units, whose unit value at time t is S(t). S(t) is
derived from the value of shares, with dividends reinvested, gross of tax,
according to the Wilkie model, in which:
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ö D(t) is the dividend received at time t;
ö Y(t) is the dividend yield at time t; and
ö PðtÞ ¼ DðtÞ=YðtÞ is the share price at time t;

so that:

SðtÞ ¼ Sðtÿ 1Þ:ðPðtÞ þDðtÞÞ=Pðtÿ 1Þ:

At this stage we can assume that no tax is payable on dividend income.
2.3.2 We can put t ¼ 0 in 1985, and choose, arbitrarily, Pð0Þ ¼ 1:0, and

Sð0Þ ¼ 100, so the value of the policy at time t is S(t). Although we can
choose P(0) and S(0) arbitrarily, the Wilkie model requires initial conditions
for the other features. We discuss all these together in Section 2.4.

2.3.3 We assume that deaths may occur between 1985 and maturity in
1985þ T. We assume that on death the only benefit is a return of the value of
the fund; or at least that any other death benefits are covered elsewhere.
Thus a proportion of only Tpx policies, where Tpx is calculated using
PMA68Byyyy mortality, survive to maturity, to be potential claimants of any
GAO.

2.3.4 We assume that at maturity current interest rates, for all terms,
are the same as the value of the ‘consols’ yield in the Wilkie model, C(T). The
policy proceeds at maturity, when t ¼ T, are S(T). The guaranteed annuity
rate is g ¼ 0:111 per unit, or »111 per »1,000 cash. The value of this, using
forecast mortality and market interest rates, is g:aðTÞ, where a(T) is the value
of an annuity of 1 per annum, payable in advance, to a life aged 65 in year
1985þ T, using interest rate C(T). The value of the policy proceeds applied
to the guaranteed annuity is therefore SðTÞ:g:aðTÞ.

2.3.5 The value of the policy proceeds at maturity is S(T). If this is
applied to purchase an annuity at market rates, the annuity that could be
purchased is S(T)/a(T), and the value of this annuity is just S(T)/a(T).a(T) ¼
S(T). The GAO has value if g > 1=aðTÞ, i.e. if SðTÞ:g:aðTÞ > SðTÞ, and in
that case the value is SðTÞ:ðg:aðTÞ ÿ 1Þ.

2.3.6 Since only those who survive to age 65 can receive any value from
their GAO, we can reduce the value of the GAO by multiplying by Tpx to give
SðTÞ:ðg:aðTÞ ÿ 1Þ:Tpx per initial life. We also need to discount this to the
start of the policy. We consider that how we discount depends on what we
assume that any reserves to meet the cost of the GAO are invested in. It
would have seemed correct in 1985 for these reserves to have been invested in
shares, because these would most tidily match the amount of the liability.
The better shares perform, the higher the value of S(T), and the higher the
liability. Shares are likely to be more volatile than interest rates, so it would
seem appropriate to match the share element rather than the interest rate
element of the cost of the guarantee. To meet the cost of the GAO at time T
of SðTÞ:ðg:aðTÞ ÿ 1Þ:Tpx, we would have needed to reserve at time 0 an
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amount of SðTÞ:ðg:aðTÞ ÿ 1Þ:Tpx:Sð0Þ=SðTÞ ¼ Sð0Þ:ðg:aðTÞ ÿ 1Þ:Tpx, which we
shall denote V0. Calculated in this way, the initial value of the guarantee
does not depend on the investments in which the premium is invested, but
this does assume that the amount reserved to meet the guarantee is invested
in the same assets as the premium.
2.3.7 In the expression V0 ¼ Sð0Þ:ðg:aðTÞ ÿ 1Þ:Tpx, S(0) and g are fixed,

and we assume (at this stage) deterministic mortality, so Tpx is also fixed.
However, the value of a(T) depends on C(T), so it is not known until time T,
and at time 0 is unknown. Thus V0 is a random variable, with a
complicated distribution that depends on the movement of interest rates
between 0 and T. Our method is to simulate say J ¼ 10; 000 values of the
variables in the Wilkie model, calculate the value of a(T) in each simulation,
and hence the value of V0 in each simulation. We then sort the values of V0
into an increasing sequence, so that V0jÿ1 < V0j. We then choose a
percentage security level, say 99% or 99.9%, so that there is a chance of 1 in
100 or 1 in 1,000 that the reserve will be insufficient, and find V09901 or
V09991 as required. (We could have taken e.g. V09900 or the average of V09900
and V09901, but there is a small advantage in using the slightly higher value,
V09901, which we explain in Section 9 when we discuss conditional tail
expectations (CTEs).)
2.3.8 We denote the security level by a, e.g. a ¼ 0:99 or 0.999,

equivalent to a chance of 1 in 1=ð1ÿ aÞ of having insufficient reserves at time
n (conditional, we should note, on conditions at time t ¼ 0). Then we
choose V0ðJaþ1Þ as the desired initial reserve, denoting it Qa.

2.3.9 The initial ‘quantile (contingency) reserve’ required is Qa, but how
should this be financed? It is immediately reasonable that the policyholder
should pay, in addition to his invested »100, an extra premium for the benefit
of the guarantee, at least equal to the expected value of the extra benefit
under the policy. We estimate the expected value of the benefit by the mean
of the J simulated values of V0, denoted A ¼ E[V0]. Thus we start by
assuming that the policyholder pays A and the shareholders (or with-profits
policyholders generally, if the office is a mutual one) put up Qa ÿA to give
an initial contingency reserve of Qa.

2.3.10 But the shareholders’ money is at risk. Their amount Qa ÿA is
initially invested in shares, or at least in the same way as the
policyholders’ funds, but they are not certain to receive the return of
investment of that amount. They may get back either more or less,
depending on the outcome of the policy. Their upside risk is limited,
because at the best the GAO costs nothing, and they get back all of the
proceeds of the investment of Qa. Their downside risk is generally much
greater, because interest rates may go down to very low levels, and shares
might go up to very high ones. Although the interest rate risk is limited
by a downside of 0%, so that a(T) is calculated as just the expectation of
life, shares might still go to very high values. In that case the invested Qa
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would also rise, but there is still a chance of 1ÿ a that the reserve will
not be enough, and funds intended for other purposes may have to be
called on. There may be a final limit on the liability of the shareholders if
the life office becomes insolvent, but one hopes that affairs can be
managed so as to avoid that contingency.

2.3.11 The method suggested by Wilkie (1978), and followed by Hare et
al. (2000), is to assume that the shareholders wish to earn on their invested
funds an extra h per annum more than they will earn from the normal
investment proceeds. The value of h might be say 0.01 or 0.02, equivalent to
an extra 1% or 2% return. One way of providing this is to charge the
policyholder in year t an amount equivalent to hðQa ÿAÞ:SðtÞ=Sð0Þ. This
could be done by making an extra charge on the units of k per annum, where
k ¼ hðQa ÿAÞ. If, for example, for a »1 single premium, Qa ¼ 0:22,
A ¼ 0:02, and h ¼ 0:02, then k would equal 0:02� ð0:22ÿ 0:02Þ ¼ 0:004, or
an extra charge of 0.4% of the unit value.

2.3.12 Calculated as an annual charge, the amount paid to service the
shareholders’ funds varies from simulation to simulation. However, the
present value of it is in fact the same for all simulations. This can be shown
by the following rationale. If the policyholder is charged an extra k per unit
of the value of his funds per annum, then his investment declines, relative to
making no charge, by an annual factor v ¼ 1=ð1þ kÞ. At the end of n years
his investment is reduced by a factor of vT, and is therefore worth vT:SðTÞ
instead of S(T). The charge has therefore accumulated to ð1ÿ vTÞ:SðTÞ,
provided that it has been invested in the same assets as the policyholder’s
fund. The value of this at the start of the policy is ð1ÿ vTÞ:Sð0Þ, which is the
same for all simulations.

2.3.13 Now let us assume that, instead of making an annual charge to
service the policyholders’ funds, we charge the policyholder the present value
of the charge, calculated as just shown, i.e. ð1ÿ vTÞ:Sð0Þ. Denote this as B.
The policyholder therefore contributes an extra premium of Aþ B initially.
But then the shareholders need to provide Qa ÿ ðAþ BÞ instead of Qa ÿA.
This has an influence on the value of k, which now equals hðQa ÿ ðAþ BÞÞ,
which in turn affects B. We need to use a simple recursive calculation to
find the equilibrium value of B, such that B ¼ ð1ÿ vTÞ:Sð0Þ, where
v ¼ 1=ð1þ hðQa ÿ ðAþ BÞÞÞ.

2.3.14 It can be observed that we have ignored mortality in the
discussion in the last two paragraphs. However, this is the correct approach.
The value of the GAO has already been reduced by a factor of Tpx, as
described in {2.3.6. Thus the reserve of Qa needs to be held for the full
duration of an assumed group of identical policies, and is not reduced as
policyholders die. No refund is made on this account to policyholders who do
die, and who therefore cannot collect the benefit of the GAO. Since the
reserve of Qa is to be held for the full duration, the charge at the rate of
k ¼ hðQa ÿ ðAþ BÞÞ needs to made for the full duration, and should not be
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reduced as deaths occur. When we calculate its capitalised value we can
therefore ignore deaths. One could make other, more complicated
assumptions, which would require the value of k to be increased to allow for
deaths, but this should have no effect on the initial capital value.

2.4 The 1984 Wilkie Model
2.4.1 For the calculations in this part of the paper we use the Wilkie

model as presented in 1984 (Wilkie, 1986a), using the ‘full basis’ and the
corresponding parameters described therein. For the record, we repeat the
formulae, without explanation.

2.4.2 The retail price index in year t is denoted Q(t), the dividend yield
Y(t), the dividend index D(t), and the ‘consols’ yield C(t). The innovations,
QZðtÞ, YZðtÞ, DZðtÞ, and CZðtÞ are all independent unit normal random
variates. The formulae to move the model from year to year can be expressed
as:

QEðtÞ ¼ QSD:QZðtÞ
IðtÞ ¼ QMUþQA:ðIðtÿ 1Þ ÿQMUÞ þQEðtÞ

QðtÞ ¼ Qðtÿ 1Þ: expðIðtÞÞ

YEðtÞ ¼ YSD:YZðtÞ
YNðtÞ ¼ YA:YNðtÿ 1Þ þYEðtÞ

YðtÞ ¼ expðYW:IðtÞ þ lnYMUþYNðtÞÞ

DMðtÞ ¼ ð1ÿDDÞ:DMðtÿ 1Þ þDD:IðtÞ
DEðtÞ ¼ DSD:DZðtÞ

KðtÞ ¼ DW:DMðtÞþð1ÿDWÞ:IðtÞþDMUþDY:YEðtÿ1ÞþDB:DEðtÿ1ÞþDEðtÞ
DðtÞ ¼ Dðtÿ 1Þ: expðKðtÞÞ

CMðtÞ ¼ ð1ÿ CDÞ:CMðtÿ 1Þ þ CD:IðtÞ
CEðtÞ ¼ CSD:CZðtÞ

CNðtÞ ¼ CA1:CNðtÿ1Þ þ CA2:CNðtÿ2Þ þ CA3:CNðtÿ3Þ þ CY:YEðtÞþCEðtÞ
CRðtÞ ¼ CNðtÞ þ lnCMU
CðtÞ ¼ CMðtÞ þ expðCRðtÞÞ:

2.4.3 The parameter values used are taken from Wilkie (1986a) and are:
QMU ¼ 0:05, QA ¼ 0:6, QSD ¼ 0:05, YW ¼ 1:35, YMU ¼ 0:04, YA ¼ 0:6,
YSD ¼ 0:175, DD ¼ 0:2, DW ¼ 0:8, DMU ¼ 0:0, DY ¼ ÿ0:2, DB ¼ 0:375,
DSD ¼ 0:075, CD ¼ 0:045, CMU ¼ 0:035, CA1 ¼ 1:2, CA2 ¼ ÿ0:48,
CA3 ¼ 0:2, CY ¼ 0:06, CSD ¼ 0:14.
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2.4.4 The simulations require initial conditions at t ¼ 0, and also for
t ¼ ÿ1, and t ¼ ÿ2. Some are arbitrary, such as Q(0), taken as 1.0. The
important ones depend on market conditions at 31 December 1984, and
previous years. Some can be observed directly from market indices; others
depend on the model parameters, and are derived by calculations with the
model for many past years. They are as in Table A1 in Appendix A, but the
values for 31 December 1984 are shown in Table 2.4.1.

2.4.5 A small feature of the Wilkie model should be noted. If the
initial ‘carried forward’ value of inflation, CM(0) is too large in comparison
with the value of the ‘consols’ yield C(0), the value of CR(0) can be negative
or small. In practice CR(0) is set at a minimum value of 0.005, i.e. 0.5%,
and the value of CM(0) is adjusted downwards. This occurs in both the 1984
model and the 1995 model (see Section 6) in some years after 1993. In the
1984 model it may be necessary to make this adjustment for years ÿ1 and ÿ2
from the start. A further constraint may be necessary: if inflation is
negative for some years, the value of CM(t) may be negative, so the
calculated value of C(t) may also be negative. If this happens the value of
C(t) is also set to a minimum value, also 0.005 or 0.5%. This happens very
rarely, at the most for one year each in four simulations out of the 10,000
carried out.

2.5 Numerical Results
2.5.1 In Table 2.5.1 we show some of our first results. The economic

basis is the 1984 Wilkie model, with initial conditions as at the end of
December 1984. The mortality basis is denoted as PA68U1985, that is the
mortality for each policyholder is based on his own year of birth, assuming
that the policy commences in 1985 (i.e. ‘year of use’ 1985). We show for
single policies of terms 10, 15, 20, 25, 30, 35 and 40, and also for our
standard portfolio of policies with one each of terms 10, 11, 12, ... 40, all per
»100 single premium (for the portfolio a premium of »100/31 per policy, or
»100 overall), the following statistics:
ö the percentage of simulations in which the discounted present value

(DPV) of the cost of the GAO was non-zero, denoted NZ%;

Table 2.4.1. Values of initial conditions for the 1984 Wilkie model as at 31
December 1984

Initial condition Value Initial condition Value

I(0) 0.044781 DM(0) 0.086785
Iðÿ1Þ 0.051785 DE(0) 0.102978
Iðÿ2Þ 0.052669 CM(0) 0.067536
Y(0) 4.42% C(0) 9.90%
Yðÿ1Þ 4.62% Cðÿ1Þ 9.71%
Yðÿ2Þ 5.26% Cðÿ2Þ 10.25%
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ö the mean cost of the DPV;
ö the quantile reserves for 90%, 95%, 97.5%, 99%, 99.5% and 99.9%,

denoted Q90, Q95, etc. Q90 is calculated, for example, as the 9,001th
largest result out of the 10,000 simulations.

2.5.2 In the last line we show the sum of the quantile reserves for each
policy (divided by 31). These are calculated by adding the sorted values of the
results for each simulation. They indicate by how much the portfolio
quantiles are less than the sums of the individual quantiles.

2.5.3 We can see at once that, although the mean values of the DPV of
the GAO are not enormous, they are not negligible; further, the quantiles are
considerable, sometimes very much so. The costs increase with the term to
go (a result which depends on the initial conditions; it is not always true).
The DPVs for the portfolio are intermediate between the results for different
terms. Even for the shortest term, there is a chance of 6.57% that the GAO
will ‘bite’, a 99% reserve would be 7.84 per »100 single premium and a 99.9%
reserve would be 13.69. For the longest term these figures rise to 29.74%,
and 23.69 and 41.29 per »100. There is a 59.65% chance that, for the whole
portfolio, the GAO will cost something, even if not for all policies in the
same simulation.

2.5.4 If the mortality basis of PA(90) males, which was perhaps the
standard table in use in 1985, had been used, then the results would have
been as shown in Table 2.5.2.

2.5.5 The costs are lower on this heavier mortality basis, especially for
longer terms where the mortality is not projected to improve. The quantile
reserves, however, remain quite significant.
2.5.6 Following the rationale of our charging methodology, as set out in
{{2.3.12 - 2.3.14, we show, in Table 2.5.3, the values of the policyholder
charges ‘A’, ‘B’ and C ¼ Aþ B, using the 99% and 99.9% quantiles, with a
1% and 2% extra return to shareholders. We revert to the mortality basis
PMA68U1985.

Table 2.5.1. Present value of cost of GAO per »100 single premium: 1984
Wilkie model, initial conditions of 31 December 1984, mortality

PMA68U1985

Term NZ% Mean Q90 Q95 Q97.5 Q99 Q99.5 Q99.9

10 6.57 0.26 0.00 1.00 3.91 7.84 10.16 13.69
15 11.94 0.59 0.90 4.47 7.82 11.96 15.02 21.16
20 16.51 0.99 3.36 7.52 11.03 15.36 19.26 26.87
25 20.72 1.34 4.94 9.50 13.36 18.15 22.79 29.80
30 24.05 1.74 6.69 11.37 16.17 21.08 26.09 35.39
35 27.01 2.02 7.70 12.44 16.92 23.57 28.06 37.15
40 29.74 2.30 8.69 13.70 18.05 23.69 28.88 41.29
Portfolio 59.65 1.33 4.25 6.72 9.27 12.43 15.44 20.95
Sum 29.74 1.33 4.67 8.74 12.66 17.78 21.72 29.84
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2.5.7 For the portfolio we have calculated A and B assuming that an
equal charge is made on policies of each duration, and in the calculation of B
that an equal amount of reserve is released at the end of each duration as the
polices for that duration expire. This does not take into account the different
risks contributed by policies of different durations. We discuss the distribution
of charges to different policyholders further in Sections 3.3 and 9.

2.5.8 The row marked ‘Sum’ shows the sum of the charges for the
individual durations, assuming 1/31 of a unit effected at each duration. The
mean is the same as for the portfolio, but the values of A, B and C are the
sums of the values for the individual terms, each divided by 31.

2.5.9 The charges to the policyholder do not seem to us to be excessive,
except perhaps for the longer terms. It is interesting to speculate, however, on
how many proposers for insurance would have chosen to purchase the
option at these prices, if they had had the choice of whether or not to add the
option to the contract.

Table 2.5.2. Present value of cost of GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1984,

mortality PA(90) males

Term NZ% Mean Q90 Q95 Q97.5 Q99 Q99.5 Q99.9

10 4.55 0.17 0.00 0.00 2.37 6.12 8.34 11.70
15 8.29 0.37 0.00 2.39 5.54 9.42 12.28 18.01
20 11.38 0.60 0.86 4.70 7.93 11.90 15.47 22.40
25 13.52 0.76 1.81 5.93 9.41 13.71 17.86 24.10
30 15.36 0.94 2.86 7.01 11.25 15.56 19.93 28.01
35 16.72 1.01 3.23 7.35 11.23 16.94 20.78 28.49
40 17.49 1.06 3.57 7.84 11.52 16.27 20.62 30.90
Portfolio 44.80 0.71 2.27 4.18 6.13 8.90 11.25 16.08
Sum 17.49 0.71 1.77 5.16 8.67 13.23 16.74 23.89

Table 2.5.3. Charge to policyholders per »100 single premium: different
combinations of a and h; 1984 Wilkie model, initial conditions of

31 December 1984, mortality PMA68U1985

Term 99%, 1% 99%, 2% 99.9%, 1% 99.9%, 2%
A ¼Mean B C B C B C B C

10 0.26 0.69 0.94 1.26 1.51 1.21 1.47 2.22 2.47
15 0.59 1.47 2.06 2.60 3.19 2.65 3.24 4.66 5.25
20 0.99 2.37 3.36 4.04 5.03 4.23 5.22 7.19 8.18
25 1.34 3.32 4.65 5.50 6.83 5.56 6.90 9.18 10.51
30 1.74 4.38 6.12 7.08 8.82 7.53 9.27 12.11 13.84
35 2.02 5.47 7.48 8.63 10.65 8.79 10.81 13.83 15.85
40 2.30 5.97 8.28 9.25 11.55 10.69 12.99 16.46 18.76
Portfolio 1.33 2.20 3.52 3.65 4.98 3.85 5.18 6.38 7.70
Sum 1.33 3.42 4.75 5.57 6.89 5.82 7.14 9.43 10.76
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â. Problems with the Methodology

3.1 Unanswered Questions
The methodology that we have described in Section 2 leaves some questions

unanswered. What should the value of a be? What should the value of h be? Are
these connected? Next, how should one actually charge the policyholder?
Should the charge to the policyholder depend on the total portfolio of the
office, or depend only on the circumstances of the one policy? How should the
initial contingency reserve be updated from year to year? Is the method for this
that was suggested by the MGWP satisfactory, or not? Many of these points
were not considered by theMGWP.We discuss them in turn.

3.2 The Values of a and h
3.2.1 We have indicated that the value of a might be for example 0.99

(99% security or 1 in 100 chance of failure) or 0.999 (99.9% security or 1 in
1,000 chance of failure), and we have quoted results in Section 2.5 on these
two bases. The MGWP indicated that 99% seemed a reasonable security
level. A 1% chance of failure seems reasonably small. We should note that
the probabilities of sufficiency or failure are over the whole policy term,
starting at the issue of the policy, or for a whole portfolio until the last policy
matures (or is converted to an annuity), and are not, like a banking ‘Value
at Risk’, the probabilities of success or failure over some short period. Yet
they are analogous to the value at risk concept.

3.2.2 The level of security required is a matter for judgement, rather
than calculation. Yet we have seen little discussion in the literature of the
‘right’ probability level. We would be disturbed by the idea that either life
assurance companies or banks were regulated so that as many as 1% of them
failed during the course of a year, and we would expect others to agree with
us. Yet we would not be so concerned by the idea that 1% of existing life
assurance companies might fail at some time in the future. Indeed, as few as
that might be a rather good outcome.

3.2.3 The event that the contingency reserve for a single policy or for a
portfolio proves to be insufficient is very different from the insolvency of the
office. If the reserve falls to too low a level during the currency of the
policy, it may mean that the shareholders (or the with-profits policyholders)
have to allocate more capital to that reserve. We discuss this further in
Section 3.5. However, the initial security level is more a matter of the
probability that more capital will be required during the currency of the
policy. Therefore, it may be reasonable for it to be at a rather weaker level,
such as 95%.

3.2.4 What then about the values of the excess return, or premium for
risk h, expected by the shareholders? We have indicated possible values of
h ¼ 0:01 (1%) or 0.02 (2%), and Hare et al. (2000) used these same values.
Yet the appropriateness of these values has not, we believe, been discussed.
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Perhaps the value of h should be higher if the value of a is lower. Thus, if
there is a 5% chance of the contingency reserves being insufficient, the
shareholders may expect a higher premium for risk, because the risk may
appear greater. If the chance of failure is much lower, say 0.1%, the premium
for risk could be lower. One could suggest a sort of scale, where the
probability of failure and the premium for risk increase together, as in the
table below, but we do not know whether these numbers would be acceptable
to shareholders, or to ‘the market’.

Probability of failure Premium for risk
0.1% 1%
1% 2%
5% 3%

3.2.5 It might be argued by some that the premium for risk should
depend on the ‘beta’, the regression coefficient of returns on the portfolio
versus returns on ‘the market portfolio’, as in the Capital Asset Pricing
Model. While this concept may have some uses in the context of a share
portfolio, we do not think that it is of general applicability, because there is
no agreement among investors as to what assets form ‘the market portfolio’,
nor in what currency returns should be considered, nor whether real or
nominal returns should be considered, nor over what time period one should
look, nor what effect the different liabilities of investors have.

3.2.6 A further argument that might be put is that certain types of risk
are independent of others, so are ‘diversifiable’, and so should require no
premium for risk. This does not apply to the risks of GAOs, because they are
dependent on both investment returns and interest rates, so are not wholly
independent of other investments, whereas it could be argued that mortality
risks are independent of investment markets. But even if the risks were
independent we believe that shareholders in practice are not willing to invest
in a more risky undertaking without the hope of some extra reward, whether
or not the risks are independent of others.

3.2.7 All this could be thought of as a matter for ‘the market’ to decide.
It would be an interesting experiment for a portfolio of policies with GAOs
to be securitised, with a known level of contingency reserves, in such a way
that they could be sold on the market independently. One might then
discover what price investors were willing to pay for a given level of risk. Yet
we doubt whether this would be really practicable.

3.2.8 We conclude that the levels of a and h remain a matter for the
judgement of the management or the directors of the particular company
writing the business. We shall continue to quote values on the basis of 99%
and 99.9% for the one, 1% and 2% for the other.

3.3 Charging the Policyholder
3.3.1 We have suggested in Section 2 that the policyholder could be
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charged for the guarantee in the first place by an initial premium of A,
followed by an annual management charge of so much per cent on the
policyholder’s funds, or by capitalising the latter into a further initial single
premium, which we denoted as B. A further way of charging those
policyholders with with-profits polices could be through a reduction in the
annual bonus. For policies already written where the benefit has been
granted free, it is of course too late to make an initial charge to each
policyholder, and the office may have to consider how any losses should be
met from other sources. However, our comments about charging apply to
any benefit that would require contingency reserves to be set up.

3.3.2 However, the charge for each policyholder should depend on the
circumstances at the time the policy is issued, in particular on market interest
rates at that time, as well as on the term to maturity of the policy (and also
on the level of the guaranteed annuity rate and the age of the policyholder at
maturity if these can vary). It would be administratively very inconvenient
to make the annual management charge vary for each particular policy, and
equally difficult to make any annual bonus depend on the circumstances of
each particular policy. We therefore suggest that the only practicable and fair
way of making a charge to policyholders is for an additional premium at
the inception of a single premium policy, which can take into account the
circumstances of the policy at issue. For an annual or monthly premium
policy the charge could be an addition to the periodic premium, the amount
of which is determined at issue.

3.3.3 The question can then be raised as to whether the charge for a
particular policy should depend only on the circumstances of that policy, or
also on the total portfolio issued by the life office. We have seen in Section
2.5 that the contingency reserve for a portfolio of policies with different
durations is less than the sum of the contingency reserves for the single
policies (with the same values of a and h), and this might be more
pronounced if the portfolio of policies already in force were to be considered.
Note that there is no ‘averaging out’ for policies with the same dates of
starting and maturing, but there is some averaging across maturity dates,
even though the outcomes are correlated. It may be appropriate for the office
to hold contingency reserves on a portfolio basis, yet for policyholders to be
charged on an individual basis.

3.3.4 We suggest that one way of achieving this result is to use different
levels of a, one, a1, for portfolio reserving and other, a2, for policyholder
charging, choosing two values that are compatible. The value of a2 should be
less than the value of a1. If, for example, the office wished to reserve for the
portfolio at a 99.5% level, and its portfolio of new business were to be the
same as we have used in Section 2.5 (which is only a specimen and not
intended to be realistic), then the quantile reserve for the portfolio (see Table
2.5.1) would be 15.44%. The sum of the quantile reserves for the individual
policies on a 99.5% basis is larger, at 21.72%. At a 97.5% level it is 12.66%,
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and at a 99% level it is 17.78%. Given the results for all simulations, one can
calculate that the sum of the individual quantile reserves at a 98.5% level is
15.45, close to the portfolio reserve. Alternatively, one could choose, say, a
95% charging level, for which the sum of the individual quantile reserves is
8.74% and calculate that this corresponds to a portfolio reserving level of
about 97.2%. Note that all these results are based on simulations, and so are
subject to simulation sampling error.

3.3.5 The exact balance between the two reserving levels depends on the
composition of the portfolio, and also on all the other elements of the
calculation basis, market interest rates, guarantee level, and so on. However,
we believe the method described might have been a suitable ad hoc way of
charging policyholders individually on a fair basis, and having an
appropriate level of portfolio reserve. We consider this further in Section 9,
where we describe another, much sounder, method, which has only recently
been proposed.

3.4 Reserving from Year to Year
3.4.1 The calculations discussed in Section 2 indicate how an initial

reserve at the start of the policy could be calculated. We now need to
consider how we move forward during the currency of the policy. A year
after the policy has been written market conditions, including interest rates,
may well have changed (indeed they may have changed after only a day). If
interest rates have fallen, then the probability of a future claim on the
guarantee will generally have increased. The amount of the initial reserve for
a comparable policy, a year of age older and a year shorter duration, may
well be different from the amount of the initial reserve on the one-year-old
policy, even allowing for the investment return on the initial reserve.

3.4.2 The MGWP considered this problem. They felt (Ford et al., 1980,
p110) that itwas desirable that the initial reserve for apolicy shouldbe ‘coherent’
(or ‘robust’), in the sense that there should preferably be no requirement for
additional reserves during the currency of the policy. If the initial quantile
reserve that had been set up had a sufficiently small probability of being
insufficient, then that initial probability remained unchanged, although, as
events unfolded, the conditional probability of the reserve being insufficient
might change. On this argument the initial reserve should remain unchanged.

3.4.3 An alternative might be to adjust the reserves to the same
probability level each year, taking account of the current circumstances, in
particular current interest rates, doing what would now be called ‘marking-
to-market’. However, it was felt that this would involve an uncomfortable
instability of the reserves, with movements to and from free capital rather
frequently. Further, as the policy approached the option date, it was surely
unnecessary to keep a reserve at all times, even in the last few days, so that
the probability of having insufficient capital remained small, say at 1 in 100
or 1 in 1,000.
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3.4.4 The compromise suggested by the MGWP was to establish a band
of permissible probability levels, with defined lower and upper limits.
Assume that the initial reserve was at the 99%, or 1 in 100 level. If the reserve
at any year end was below the lower probability level, say 98%, or 1 in 50
level, then it should be strengthened to the original 1 in 100 level. If the
reserve at any year end was above the upper probability level, say 99.9% or 1
in 1,000 level, then it could be reduced to the 1 in 100 level. This method
would make movements to and from free capital less frequent, though of
course they might be larger when they occurred than if the adjustments had
been made more frequently.

3.4.5 The two methods, ‘marking-to-market’, and keeping within a
band, have different consequences. If it were required, for example by the
regulatory authority, that the office should at all times (or at least on each
valuation date) have sufficient reserves that the probability of their being
insufficient was always less than 1 in 100, then a prudent actuary might wish
to see initial reserves set up so that this regulatory barrier was never
breached, or rather that the probability of its being breached was suitably
small. It is clear that, normally, the level of initial reserves then required
would be much higher, probably very much higher, than the initial 1 in 100.
It is difficult to see how the initial reserves corresponding to the actuary’s
chosen probability level could be calculated without simulations within
simulations, for each possible course of future events as at time 0, and for
each possible future course as at each future time, conditional on where we
have reached by that time. Such calculations are not yet easily practicable.

3.4.6 Even if this problem cannot be solved easily, it is clear that, if the
marking to market approach is used, the initial reserve could reasonably be
on a weaker basis than if initial reserves had to be set up large enough so that
an increase was unlikely to be needed in future. Thus if the office was
comfortable with a 1 in 1,000 probability overall, then an initial reserve of 1
in 100 or even 1 in 50, with marking-to-market, might give a similar level of
comfort, even though the numerical effect was unknown.
3.4.7 Where would the extra capital come from each year (or go to, if it

were released), if marking to market were used, or if a band were used and
extra capital were required? This could in the first place be a charge on the
annual profits, simply altering the annual profits or losses, each year if
marking to market were used, or in occasional years if a band were used.
This in turn would come from the ‘free reserves’; if absolutely necessary it
could come from an increase in the share capital. Unless circumstances had
moved very unfavourably, the portfolio of business would still appear likely
to be profitable, and it would normally be worthwhile the shareholders
continuing to finance it. Only if the reserves had fallen below the expected
cost of the guarantees, or below a level so that there was the chance of some
profit from the reserves, albeit a small one, would it be worth considering
the consequences of closing the business.
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ª. Progress since "æðä of our "æðä Model

4.1 Introduction
4.1.1 We now turn to considering the progress of our 1985 model since

that date. In the first place we consider what the outcome would have been
if there had been no change of valuation basis. In later sections we
introduce changes that might have taken place in the basis and in the
methodology.

4.1.2 In Appendix A, Tables A.1 and A.2 we show the market
conditions as at 31 December for each year from 1984 to 2001. The initial
conditions for the Wilkie model include some values from previous years,
back to 1982, which are also shown.

4.1.3 It is obvious that interest rates have reduced over the 17 years
since the end of 1984. The required reserves must therefore almost certainly
have risen. We can approach this analysis in two ways. First we can see what
the results would have been for new policies entering in each of the years
from 1985 onwards; this we consider in Section 4.2. Then we can look at how
the original portfolio of policies, written in 1985, would have fared during
the years since then; we consider this in Section 7 after we have introduced
possible changes in the basis since 1985.

4.2 New Policies since 1985
4.2.1 We start by repeating the calculations shown in Tables 2.5.1 and

2.5.3, in which we used the market investment conditions as at the end of
1984, and assumed mortality on the basis of PA68U1985. For comparison we
show the results for 1984 in Table 4.2a (for fewer terms than shown in
Table 2.5.1). Then in Tables 4.2b to 4.2r we show similar figures for policies
entering in years 1986 to 2002. For policies entering in year zzzz we use
mortality PA68Uzzzz and market investment conditions as at 31 December
of year zzzzÿ 1. We show the quantile reserves (Q) for 95%, 97.5%, 99% and
99.9%, and we show the proposed policyholder charge (C) for combinations
a ¼ 99% and 99.9%, h ¼ 1% and 2%.

Table 4.2a. Statistics for GAO per »100 single premium: 1984 Wilkie
model, initial conditions of 31 December 1984, mortality PMA68U1985

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 6.57 0.26 1.00 3.91 7.84 13.69 0.94 1.51 1.47 2.47
20 16.51 0.99 7.52 11.03 15.36 26.87 3.36 5.03 5.22 8.18
30 24.05 1.74 11.37 16.17 21.08 35.39 6.12 8.82 9.27 13.84
40 29.74 2.30 13.70 18.05 23.69 41.29 8.28 11.55 12.99 18.76
Portfolio 59.65 1.33 6.72 9.27 12.43 20.95 3.52 4.98 5.18 7.70
Sum 29.74 1.33 8.74 12.66 17.78 29.84 4.75 6.89 7.14 10.76
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Table 4.2b. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1985,

mortality PMA68U1986

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 7.42 0.29 1.47 4.41 8.23 14.19 1.01 1.60 1.54 2.58
20 17.12 1.03 7.78 11.30 15.68 27.21 3.45 5.15 5.31 8.30
30 24.52 1.78 11.55 16.36 21.30 35.67 6.20 8.92 9.36 13.96
40 30.08 2.34 13.85 18.20 23.88 41.55 8.36 11.65 13.09 18.89
Portfolio 60.39 1.37 6.89 9.45 12.71 21.29 3.61 5.09 5.28 7.84
Sum 30.08 1.37 8.99 12.92 18.07 30.17 4.83 7.00 7.24 10.88

Table 4.2c. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1986,

mortality PMA68U1987

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 11.06 0.46 3.26 6.24 10.25 16.33 1.34 2.08 1.89 3.07
20 19.84 1.23 8.87 12.52 17.00 28.80 3.83 5.66 5.73 8.88
30 26.18 1.95 12.30 17.14 22.21 36.77 6.54 9.36 9.73 14.46
40 31.14 2.48 14.36 18.73 24.51 42.36 8.63 12.00 13.40 19.29
Portfolio 63.82 1.55 7.59 10.20 13.70 22.62 3.95 5.53 5.68 8.38
Sum 31.14 1.55 9.98 13.98 19.24 31.54 5.18 7.46 7.62 11.39

Table 4.2d. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1987,

mortality PMA68U1988

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 12.34 0.53 3.85 6.87 10.94 17.12 1.46 2.25 2.02 3.26
20 20.91 1.32 9.33 13.02 17.56 29.49 4.00 5.88 5.92 9.13
30 26.91 2.04 12.66 17.55 22.66 37.36 6.71 9.58 9.93 14.71
40 31.83 2.56 14.65 19.05 24.87 42.86 8.79 12.19 13.59 19.54
Portfolio 65.09 1.63 7.89 10.50 14.16 23.19 4.11 5.74 5.86 8.62
Sum 31.83 1.63 10.40 14.44 19.75 32.17 5.34 7.67 7.80 11.64
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Table 4.2e. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1988,

mortality PMA68U1989

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 10.68 0.44 3.11 6.10 10.08 16.20 1.31 2.04 1.86 3.04
20 19.82 1.23 8.88 12.53 17.04 28.87 3.84 5.67 5.74 8.90
30 26.37 1.98 12.41 17.28 22.37 37.01 6.59 9.43 9.80 14.55
40 31.49 2.53 14.54 18.93 24.75 42.71 8.73 12.12 13.53 19.46
Portfolio 63.86 1.56 7.65 10.27 13.75 22.70 3.97 5.56 5.71 8.41
Sum 31.49 1.56 10.03 14.04 19.32 31.67 5.21 7.51 7.66 11.45

Table 4.2f. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1989,

mortality PMA68U1990

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 7.85 0.31 1.70 4.68 8.70 14.68 1.07 1.70 1.61 2.68
20 18.04 1.11 8.27 11.86 16.29 28.08 3.61 5.37 5.51 8.59
30 25.54 1.90 12.14 17.04 22.06 36.72 6.47 9.28 9.68 14.41
40 31.20 2.50 14.47 18.91 24.67 42.67 8.69 12.07 13.50 19.43
Portfolio 62.03 1.47 7.28 9.89 13.28 21.99 3.80 5.34 5.49 8.12
Sum 31.20 1.47 9.49 13.49 18.73 31.08 5.04 7.28 7.49 11.23

Table 4.2g. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1990,

mortality PMA68U1991

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 5.62 0.22 0.40 3.27 7.16 13.07 0.85 1.37 1.38 2.34
20 16.29 0.98 7.52 11.06 15.53 27.26 3.38 5.07 5.28 8.28
30 24.61 1.81 11.74 16.65 21.64 36.23 6.31 9.07 9.51 14.18
40 30.78 2.45 14.28 18.73 24.47 42.47 8.60 11.96 13.41 19.32
Portfolio 59.97 1.37 6.83 9.49 12.61 21.17 3.59 5.06 5.26 7.80
Sum 30.78 1.37 8.87 12.85 18.05 30.32 4.85 7.03 7.29 10.96
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Table 4.2h. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1991,

mortality PMA68U1992

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 10.85 0.45 3.18 6.25 10.25 16.50 1.34 2.07 1.90 3.09
20 20.47 1.29 9.28 12.94 17.50 29.52 3.96 5.84 5.90 9.12
30 27.24 2.08 12.88 17.86 22.97 37.88 6.81 9.72 10.08 14.92
40 32.53 2.66 15.05 19.52 25.38 43.63 9.00 12.47 13.87 19.91
Portfolio 64.95 1.64 7.94 10.59 14.17 23.22 4.12 5.75 5.87 8.64
Sum 32.53 1.64 10.41 14.49 19.82 32.40 5.38 7.72 7.87 11.73

Table 4.2i. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1992,

mortality PMA68U1993

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 15.75 0.74 5.34 8.47 12.74 19.04 1.82 2.71 2.38 3.74
20 23.92 1.58 10.56 14.37 19.07 31.38 4.56 6.48 6.44 9.82
30 29.13 2.30 13.76 18.76 24.05 39.16 7.22 10.24 10.52 15.50
40 33.81 2.83 15.62 20.12 26.09 44.54 9.31 12.86 14.23 20.37
Portfolio 69.03 1.89 8.78 11.42 15.25 24.80 4.53 6.27 6.37 9.30
Sum 33.81 1.89 11.58 15.73 21.21 34.00 5.81 8.29 8.34 12.35

Table 4.2j. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1993,

mortality PMA68U1994

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 54.37 3.79 15.03 18.06 22.39 29.92 5.46 6.84 6.13 8.06
20 40.77 3.18 15.88 19.90 25.15 37.04 6.78 9.31 8.68 12.50
30 36.90 3.12 16.42 21.62 27.33 42.91 8.59 11.94 11.98 17.32
40 37.61 3.28 17.03 21.73 27.71 46.33 10.08 13.80 15.03 21.35
Portfolio 84.65 3.26 12.42 15.59 19.51 30.41 6.46 8.56 8.55 11.99
Sum 54.37 3.26 15.99 20.32 26.08 39.44 7.75 10.61 10.36 14.79
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Table 4.2k. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1994,

mortality PMA68U1995

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 12.23 0.55 4.03 7.21 11.59 18.09 1.55 2.37 2.13 3.43
20 22.86 1.54 10.54 14.36 19.29 31.86 4.46 6.51 6.48 9.92
30 29.46 2.39 14.11 19.34 24.59 40.08 7.41 10.49 10.79 15.87
40 34.65 2.96 16.09 20.75 26.70 45.55 9.58 13.19 14.59 20.85
Portfolio 68.67 1.89 8.78 11.54 15.34 24.77 4.55 6.30 6.37 9.29
Sum 34.65 1.89 11.57 15.81 21.36 34.49 5.87 8.37 8.45 12.52

Table 4.2l. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1995,

mortality PMA68U1996

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 36.07 2.17 11.27 14.52 18.88 25.95 3.68 4.92 4.31 6.06
20 33.86 2.51 14.04 18.15 23.24 35.63 5.91 8.30 7.90 11.64
30 34.49 2.90 15.86 21.08 26.67 42.13 8.26 11.56 11.63 16.91
40 37.11 3.25 16.96 21.70 27.75 46.64 10.07 13.79 15.09 21.46
Portfolio 78.75 2.71 11.16 14.19 18.13 28.52 5.75 7.74 7.74 11.02
Sum 37.12 2.71 14.61 18.95 24.71 38.04 7.08 9.85 9.69 14.05

Table 4.2m. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1996,

mortality PMA68U1997

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 26.95 1.53 9.22 12.50 17.19 23.89 2.94 4.11 3.54 5.19
20 30.88 2.24 13.19 17.27 22.24 35.13 5.52 7.83 7.59 11.31
30 33.58 2.82 15.65 20.86 26.43 42.10 8.15 11.42 11.56 16.85
40 36.99 3.25 17.02 21.69 27.81 47.32 10.09 13.82 15.15 21.55
Portfolio 76.24 2.49 10.61 13.52 17.59 28.00 5.47 7.42 7.47 10.71
Sum 37.00 2.49 13.95 18.30 24.05 37.44 6.80 9.53 9.43 13.75

22 Reserving, Pricing and Hedging for



Table 4.2n. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1997,

mortality PMA68U1998

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 52.97 3.75 15.12 18.38 22.67 30.48 5.46 6.86 6.15 8.12
20 40.97 3.27 16.30 20.41 25.83 38.04 6.97 9.56 8.92 12.84
30 37.87 3.31 17.09 22.41 28.19 44.05 8.92 12.36 12.36 17.83
40 38.93 3.50 17.74 22.48 28.58 47.77 10.48 14.29 15.57 22.05
Portfolio 84.90 3.38 12.78 16.11 20.12 30.58 6.68 8.84 8.69 12.13
Sum 52.97 3.38 16.50 20.91 26.84 40.49 8.00 10.93 10.66 15.21

Table 4.2o. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1998,

mortality PMA68U1999

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 81.41 8.89 24.23 27.96 33.04 42.09 11.06 12.84 11.86 14.28
20 56.05 5.51 21.82 26.34 32.37 45.85 9.90 12.96 12.04 16.54
30 46.37 4.53 20.58 26.24 32.41 49.44 10.80 14.63 14.47 20.45
40 43.97 4.27 19.97 24.94 31.34 51.28 11.78 15.88 17.04 23.89
Portfolio 94.64 5.43 17.19 20.71 25.03 36.78 9.28 11.80 11.52 15.46
Sum 81.41 5.43 21.31 26.09 32.52 47.39 10.67 14.01 13.53 18.59

Table 4.2p. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1999,

mortality PMA68U2000

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 72.88 7.19 22.01 25.93 31.15 39.94 9.35 11.11 10.12 12.51
20 51.84 4.98 20.87 25.48 31.29 45.32 9.28 12.28 11.50 16.01
30 45.01 4.39 20.31 26.03 32.14 49.08 10.64 14.45 14.29 20.24
40 43.89 4.26 19.99 25.00 31.42 51.58 11.80 15.91 17.12 24.01
Portfolio 92.60 4.96 16.33 19.90 24.25 36.10 8.75 11.23 11.01 14.92
Sum 72.88 4.96 20.56 25.39 31.79 46.70 10.16 13.47 13.03 18.07
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4.2.2 A number of general remarks can be made on the basis of the
results in Tables 4.2, some of which can be confirmed by separate
experiments:
(a) As the years progress the costs drift upwards because of the assumption

of steadily improving mortality rates.
(b) The costs are higher when the initial ‘consols’ yield is lower, because

there is then a greater chance that future interest rates will also be lower;
this is probably the most important single factor affecting the results
from year to year.

(c) The costs are higher when the initial inflation rate is lower, because a
low inflation rate in one year implies, according to the Wilkie model,
lower inflation and also lower interest rates in future years.

(d) The costs for shorter terms vary much more when the initial conditions
change than do the costs for longer terms.

(e) When interest rates are high the costs increase with term; when interest
rates are lower the costs may reduce with term, or reduce first and
increase later (see for example Table 4.2r), though this effect varies with
the different measures that are shown.

Table 4.2q. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 2000,

mortality PMA68U2001

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 88.95 11.36 27.48 31.36 36.55 45.67 13.62 15.48 14.43 16.93
20 65.00 7.03 24.62 29.28 35.36 49.24 11.66 14.88 13.85 18.55
30 54.04 5.68 23.08 28.81 35.10 52.40 12.29 16.32 16.00 22.21
40 50.93 5.28 22.25 27.25 33.76 54.02 13.18 17.48 18.50 25.58
Portfolio 97.40 6.88 19.77 23.33 27.74 39.73 10.97 13.64 13.25 17.37
Sum 88.95 6.88 23.99 28.87 35.40 50.57 12.43 16.04 15.27 20.62

Table 4.2r. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 2001,

mortality PMA68U2002

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 74.04 7.49 22.54 26.52 31.86 40.69 9.68 11.48 10.46 12.88
20 52.93 5.16 21.35 26.03 31.87 46.10 9.53 12.58 11.79 16.35
30 45.99 4.54 20.74 26.51 32.69 49.80 10.87 14.74 14.56 20.58
40 44.70 4.40 20.38 25.43 31.92 52.27 12.04 16.20 17.40 24.36
Portfolio 93.03 5.14 16.75 20.34 24.77 36.74 8.99 11.52 11.28 15.24
Sum 74.04 5.14 21.02 25.90 32.37 47.45 10.42 13.77 13.32 18.42
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(f) The values of C99,2 and C99.9,1, the calculated policyholder’s
contributions on two different bases, are often quite close; sometimes one
is the greater, sometimes the other.

(g) The sum of the costs for individual policies always exceeds the costs
when the portfolio is treated as a unit.

(h) Over the whole period the costs have increased, but the effect has been
proportionately different for different measures of cost; thus for term 10
between 1984/85 and 2001/02 (compare Tables 4.2a and 4.2r) the
average has multiplied by 28.8, whereas the 99.9% quantile has multiplied
by only 2.97; the value of C99,1 has multiplied by 10.3, but the value of
C99.9,2 has multiplied by 5.2.

4.2.3 Some of these results can be seen from Figure 4.1, which shows
values of Q99 for term 10, term 40 and the portfolio, mortality PMA68, 1984
Wilkie model, along with values of 100/consols yield%.

4.3 ‘At the Money-ness’
4.3.1 When a traded option is purchased, it is common to consider

whether an option is ‘in the money’ or ‘out of the money’, which depends on
whether the current price of the security on which the option is written is
above or below the exercise price. The same would apply to guaranteed
annuity options. However, although the current price of the annuity
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Figure 4.1. Values of Q99 for term 10, term 40 and the portfolio,
1984 Wilkie model, mortality PMA68, and of 100/consols yield%
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obviously depends on market interest rates, it also depends on projected
mortality rates. We therefore have to use a hypothetical current price for the
annuity, based on the projected mortality for the policyholder as at the
retirement age (of 65), together with current interest rates. No annuities
would be on the market at these rates, because the policyholders now aged 65
would be assumed to have different mortality, but we can assume, in effect,
that these are the rates that would apply if the projected mortality were still
the same when the policyholder reaches age 65, and if the then current
interest rates were the same as they are now.
4.3.2 In Table 4.3.1 we show the annuity rate per mille, using, for each

year the interest rates at the preceding 31 December, and the projected
mortality for contracts with terms to retirement of 10, 20, 30 and 40 years,
i.e. for policyholders aged 55, 45, 35 and 25 at the time of purchase. We show
the rates per »1,000 purchase price, as usual for annuities paid annually in
advance with no guaranteed periods, which should be compared with the rate
of »111 per »1,000 which we have assumed for the guaranteed rate. If the
rate shown is above »111 the guarantee is out of the money and if it is less
than »111 it is in the money.

Table 4.3.1. At the money annuity rates per »1,000, calculated using the
noted mortality basis (PMA68Uyyyy or PA(90)M),

and the specified consols yield

Interest
rates at 31
December

Policies
entering
yyyy

Consols
yield %

PMA68Uyyyy

Term in years

PA(90)M

10 20 30 40

1984 1985 9.90 129.9 128.6 127.3 126.1 131.6
1985 1986 9.80 129.1 127.8 126.5 125.3 130.9
1986 1987 10.06 130.8 129.4 128.2 127.0 132.7
1987 1988 9.21 124.8 123.5 122.2 121.0 126.9
1988 1989 8.99 123.2 121.9 120.6 119.4 125.4
1989 1990 9.66 127.6 126.3 125.1 123.9 130.0
1990 1991 10.48 133.1 131.8 130.6 129.4 135.5
1991 1992 9.71 127.7 126.4 125.2 124.0 130.3
1992 1993 8.83 121.6 120.3 119.0 117.8 124.4
1993 1994 6.52 105.6 104.3 103.0 101.8 108.7
1994 1995 8.53 119.2 117.9 116.7 115.5 122.3
1995 1996 7.78 114.0 112.7 111.4 110.2 117.2
1996 1997 7.74 113.6 112.3 111.0 109.8 117.0
1997 1998 6.39 104.2 102.9 101.6 100.4 107.9
1998 1999 4.55 91.6 90.3 89.0 87.8 95.5
1999 2000 4.89 93.8 92.5 91.2 89.9 97.8
2000 2001 4.62 91.8 90.5 89.2 88.0 96.0
2001 2002 5.04 94.5 93.2 92.0 90.7 98.8
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4.3.3 It can be observed that the annuity rates reduce as the term to go
until retirement increases; and are lower for all the PA68U rates than for
PA(90)M, and that, of course, the rates are higher the higher the interest
rate. The rates in 1984 are such that »111 per »1,000 is well out of the money,
but they all get into the money by 1993, when the consols yield drops to
6.52%, but go out again for the next few years; that the rates move back
below »111 by 1996 for the longer terms, and for all terms from 1997
onwards. The increasing cost of the guarantee annuity options that we have
shown in Section 4.2 is therefore not surprising.

ä. New Mortality Tables since "æðä

5.1 The C.M.I. Experience
5.1.1 In Section 2 we assumed that the actuary had used the projected

tables from which the PA(90) tables were constructed, for each age using the
mortality table appropriate to the year of birth of the policyholder, which
we described as the PMA68Byyyy tables. We now consider how the
contingency reserves would have changed as the actuary took into account
the latest experience published by the C.M.I. Bureau and the subsequent
sets of mortality tables in the ‘80 series’ and ‘92 series’, denoted the
PMA80Byyyy and PMA92Byyyy tables.

5.1.2 The actuary who followed with care the C.M.I. Reports might
have observed that, from 1977-79 onwards, the experience rates fell steadily
below those forecast on the basis of the 1967-70 experience. Table 3.1.2 of a
report in C.M.I.R. 8 (1986), p34, shows the mortality experience of
pensioners insured by life offices, on the basis of amounts, as a percentage of
the rates expected under the projected tables which we have described as the
PMA68 tables. The percentages for all ages, for males and females, are as
shown in Table 5.1.1. It can be seen that, by 1982, the rates were around 90%

Table 5.1.1. Experience of life office pensioners who retired at or after the
normal retirement age: actual deaths, on the basis of amounts, expressed as

a percentage of those expected on the PA(90) projected rates, all ages

Year Males Females

1975 100 102
1976 105 103
1977 101 98
1978 101 97
1979 92 96
1980 93 94
1981 91 93
1982 91 90
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of those forecast for that date, and in fact were not too far away from the
level of PA(90), which it had not been expected would be reached until 1990.

5.1.3 New tables, with a basis for projection, based on the experience of
1979-82, the ‘80 series’ tables, were published in C.M.I.R. 10 in 1990. Even if
our hypothetical actuary had not altered his basis on the evidence shown
above, it is reasonable to suppose that he might have revised the calculations
described in Section 4.2 to use the new mortality basis. This is discussed
further in Section 5.2.

5.1.4 Further C.M.I. Reports should have altered our actuary’s opinion.
The reports in C.M.I.R. 14 (1995) and C.M.I.R. 16 (1998) show the
experience of pensioners in insured group pension schemes as compared with
the rates projected on the ‘80 series’ for the corresponding calendar year.
The percentages for all ages (ages 61-100 from 1987 onwards), for males and
females, are as shown in Table 5.1.2. It can be seen that the mortality of
males was improving much faster than expected, though the mortality of
females was improving rather more slowly than expected.

5.1.5 Further new tables, based on the experience of 1991-94, the ‘92
series’ tables, were published in C.M.I.R. 16 (1998) and a new basis for
projection was published in C.M.I.R. 17 in 1999. Again it is reasonable to
suppose that the actuary would have revised his calculations to use this new
mortality basis. This is discussed further in Section 5.3.

5.1.6 In C.M.I.R. 19 (2000) a further four years’ data are made available
for pensioners in insured group pension schemes. The percentages for ages
61-100, for males and females, as compared with the rates projected on the

Table 5.1.2. Experience of life office pensioners who retired at or after the
normal retirement age: actual deaths, on the basis of amounts, expressed as
a percentage of those expected on the PMA80 and PFA80 tables for the

corresponding year

Year Males Females

1983 97 108
1984 97 105
1985 96 103
1986 92 88
1987 91 110
1988 90 102
1989 92 107
1990 85 101
1991 78 100
1992 84 115
1993 83 92
1994 79 120
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‘92 series’ for the corresponding calendar year are as shown in Table 5.1.3.
Yet again the mortality, this time of both sexes, was improving faster than
projected. This would perhaps justify reconsidering the basis once again.
However, we have not carried out any further calculations on these lines.

5.1.7 Guaranteed annuity options have often been added to self-
employed retirement annuities or to personal pensions, and it may be thought
that the mortality of such groups of policyholders would be more relevant
to them than is the mortality of group pensioners. The first set of standard
tables published by the C.M.I. Bureau for retirement annuitants, in the
vested section of the investigation, were in the ‘92 series’, the RMV92 and
RFV92 tables (C.M.I.R. 17, 1999). The projection factors recommended for
use with them are the same as for group pensioners.

5.1.8 The mortality rates of retirement annuitants in the vested section
are relatively high at younger pensioner ages (i.e. 50 to 70), presumably
because those in ill health start to draw their pensions rather than continue
working. The mortality of a healthy retirement annuity policyholder retiring
at age 65 might be rather lighter than the published table, just as the
mortality of pensioners who retire at or after the normal pension age (on
which the Pxx92 tables are based) is rather lighter than that of the combined
pensioners (including early retirements) reflected in the PCxx92 tables (see
C.M.I.R. 19, 2000). The mortality table based on the combined experience of
both deferred and vested retirement annuitants is perhaps more appropriate.
We make use of this, denoting it as the RMC92 table, even though it is not a
standard C.M.I. table. We discuss this further in Section 5.4.

5.1.9 Figures 5.1 to 5.3 show the values of qx for various calendar year
and year of birth mortality tables, all for males ages 65 to 119, and all expressed
as relative to the values of qx for PMA68Base. Figure 5.1 compares the
various base tables, PMA68Base, PMA80Base, PMA92Base and RMC92Base,
as well as PA(90)Males. One can observe that the overall level of PMA80Base

Table 5.1.3. Experience of life office pensioners who retired at or after the
normal retirement age: actual deaths, on the basis of amounts, expressed as
a percentage of those expected on the PMA92 and PFA92 tables for the

corresponding year

Year Males Females

1991 103 109
1992 103 101
1993 100 96
1994 95 93
1995 94 98
1996 89 90
1997 84 85
1998 86 85
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is not very different from that of PA(90)Males, but with a different shape;
remember that it is applicable to 1979-82, not to 1990. The levels of
PMA92Base and RMC92Base, applicable to 1991-94, are considerably lower
than PMA80Base, but have similar levels, and, again, different shapes.

5.1.10 Figure 5.2 compares projected year of birth tables for a male
born in 1930 (who was therefore 55 in 1985, and is the oldest life we have
considered), again relative to the values of qx for PMA68Base. One can see
how the rates generally reduce as the base year increases. Figure 5.3 shows
the same for a male born in 1977 (who was therefore 25 in 2002, and is the
youngest life we have considered). The same results can be observed.

5.1.11 One can calculate the ‘at-the-money’ annuity rates for each of
these tables, on the same basis as in Section 4.3. We show results in Table
5.1.4a, for term 10 (age 55 at entry), and Table 5.1.4b, for term 40 (age 25 at
entry). One can observe how substantial the improvements in mortality
have been, and how a rate of »111 per »1,000, which might have seemed
tolerably out of the money in 1985, had become very much in the money by
2002, both because of the reduction in interest rates and because of the
improvement in mortality. Thus for term 10 the at-the-money annuity rate
fell from »129.9 per »1,000 in 1985 to »94.5 in 2002, but fell further to »77.9
because of the change from PMA68 to RMC92 projected mortality. For
term 40 the comparable figures are »126.1, »90.7 and »74.3.
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Table 5.1.4a. At the money annuity rates per »1,000, for term 10 years,
i.e. aged 55 at entry, calculated using the noted mortality basis

(PMA68Uyyyy, PMA80Uyyyy, PMA92Uyyyy and RMC92Uyyyy,
and the specified consols yield

Interest rates at
31 December

Policies entering,
yyyy

Consols
yield %

PMA68 PMA80 PMA92 RMC92

1984 1985 9.90 129.9 122.6 116.7 115.9
1985 1986 9.80 129.1 121.7 115.7 114.8
1986 1987 10.06 130.8 123.3 117.2 116.3
1987 1988 9.21 124.8 117.4 111.1 110.1
1988 1989 8.99 123.2 115.7 109.3 108.2
1989 1990 9.66 127.6 120.1 113.5 112.6
1990 1991 10.48 133.1 125.5 118.8 118.0
1991 1992 9.71 127.7 120.2 113.3 112.3
1992 1993 8.83 121.6 114.1 107.0 106.0
1993 1994 6.52 105.6 98.4 91.2 89.8
1994 1995 8.53 119.2 111.8 104.5 103.4
1995 1996 7.78 114.0 106.6 99.1 97.9
1996 1997 7.74 113.6 106.2 98.6 97.4
1997 1998 6.39 104.2 97.1 89.3 87.9
1998 1999 4.55 91.6 84.8 77.0 75.3
1999 2000 4.89 93.8 86.9 79.0 77.3
2000 2001 4.62 91.8 85.1 77.0 75.3
2001 2002 5.04 94.5 87.7 79.6 77.9

Table 5.1.4b. At the money annuity rates per »1,000, for term 40 years,
i.e. aged 25 at entry, calculated using the noted mortality basis

(PMA68Uyyyy, PMA80Uyyyy, PMA92Uyyyy and RMC92Uyyyy,
and the specified consols yield

Interest rates at
31 December

Policies entering,
yyyy

Consols
yield %

PMA68 PMA80 PMA92 RMC92

1984 1985 9.90 126.1 119.4 110.2 109.2
1985 1986 9.80 125.3 118.7 109.4 108.4
1986 1987 10.06 127.0 120.4 111.0 110.0
1987 1988 9.21 121.0 114.6 105.1 104.0
1988 1989 8.99 119.4 113.1 103.5 102.4
1989 1990 9.66 123.9 117.6 108.0 106.9
1990 1991 10.48 129.4 123.1 113.5 112.5
1991 1992 9.71 124.0 117.8 108.1 107.1
1992 1993 8.83 117.8 111.9 102.0 100.8
1993 1994 6.52 101.8 96.3 86.3 84.9
1994 1995 8.53 115.5 109.8 99.7 98.6
1995 1996 7.78 110.2 104.7 94.6 93.3
1996 1997 7.74 109.8 104.4 94.2 92.9
1997 1998 6.39 100.4 95.3 85.1 83.6
1998 1999 4.55 87.8 83.2 72.9 71.3
1999 2000 4.89 89.9 85.4 75.0 73.4
2000 2001 4.62 88.0 83.6 73.2 71.6
2001 2002 5.04 90.7 86.3 75.8 74.3
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5.2 Results using the PMA80 Projected Mortality
Tables 5.2f to 5.2r show the same results as Tables 4.2f to 4.2r, but

using PMA80 projected mortality. For policies entering in year zzzz we
use mortality PA80Uzzzz and market investment conditions as at 31
December of year zzzzÿ 1. The subscript letters (f to r) allow one to
match up results for corresponding years. Comparison of Tables 4.2f and
5.2f shows that the change in mortality basis caused the mean value of
the GAO at term 10 to increase from 0.31 to 1.30 and for the portfolio
from 1.47 to 3.50; the quantile reserves at a 99% level increased for the
portfolio, from 13.28 to 21.52. The increases were proportionately greater
for shorter terms than for longer terms, and also proportionately greater
for lower quantiles than for higher ones. The same remarks are true for
other entry years.

Table 5.2f. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1989,

mortality PMA80U1990

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 22.51 1.30 8.51 12.10 16.98 24.23 2.72 3.88 3.36 5.06
20 35.90 3.01 16.43 20.84 26.30 40.89 6.83 9.50 9.15 13.40
30 41.96 4.26 20.62 26.60 32.74 50.70 10.66 14.57 14.53 20.69
40 46.49 4.99 22.49 27.81 34.70 56.27 13.22 17.69 18.86 26.27
Portfolio 82.03 3.50 13.59 17.00 21.52 32.89 7.04 9.37 9.22 12.93
Sum 46.49 3.50 17.52 22.40 28.79 43.89 8.59 11.79 11.53 16.49

Table 5.2g. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1990,

mortality PMA80U1991

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 17.89 0.98 6.96 10.43 15.14 22.32 2.26 3.31 2.90 4.48
20 33.17 2.71 15.47 19.82 25.33 39.82 6.42 9.02 8.73 12.90
30 40.61 4.07 20.05 26.04 32.11 49.96 10.37 14.23 14.22 20.32
40 45.77 4.87 22.15 27.47 34.32 55.83 13.02 17.46 18.66 26.02
Portfolio 80.12 3.25 13.00 16.26 20.82 31.83 6.71 8.97 8.82 12.43
Sum 45.77 3.25 16.72 21.56 27.89 42.87 8.24 11.37 11.16 16.04
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Table 5.2h. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1991,

mortality PMA80U1992

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 27.85 1.73 10.03 14.05 18.91 26.51 3.28 4.56 3.96 5.79
20 38.89 3.40 17.59 22.09 27.71 42.56 7.38 10.16 9.74 14.12
30 43.64 4.53 21.36 27.42 33.64 51.83 11.07 15.06 14.98 21.25
40 47.41 5.17 22.95 28.29 35.27 57.01 13.50 18.03 19.18 26.66
Portfolio 83.92 3.82 14.44 17.91 22.50 34.28 7.49 9.90 9.74 13.58
Sum 47.49 3.82 18.53 23.49 29.99 45.32 9.06 12.36 12.04 17.12

Table 5.2i. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1992,

mortality PMA80U1993

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 36.82 2.53 12.97 16.76 21.95 29.63 4.28 5.72 4.96 6.95
20 42.93 3.98 19.13 23.81 29.59 44.79 8.17 11.09 10.58 15.13
30 45.98 4.90 22.33 28.40 34.84 53.23 11.62 15.72 15.56 21.96
40 48.59 5.40 23.52 28.88 35.96 57.88 13.85 18.45 19.58 27.14
Portfolio 86.81 4.31 15.66 19.19 23.87 36.08 8.15 10.67 10.48 14.47
Sum 48.83 4.31 19.90 24.94 31.60 47.18 9.74 13.15 12.75 17.97

Table 5.2j. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1993,

mortality PMA80U1994

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 81.00 9.03 24.75 28.45 33.73 42.94 11.25 13.07 12.07 14.54
20 62.31 7.04 25.61 30.55 37.02 51.70 11.93 15.33 14.25 19.20
30 54.67 6.33 25.46 31.77 38.70 57.63 13.57 17.99 17.62 24.37
40 52.38 6.08 25.07 30.64 37.73 59.78 14.83 19.58 20.57 28.29
Portfolio 95.86 6.93 20.73 24.66 29.40 42.77 11.33 14.20 13.86 18.32
Sum 79.92 6.93 24.92 30.16 37.13 44.08 12.88 16.64 15.98 21.61
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Table 5.2k. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1994,

mortality PMA80U1995

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 28.84 1.93 11.39 15.24 20.56 28.46 3.61 5.00 4.32 6.27
20 41.08 3.81 19.00 23.67 29.73 45.21 8.05 11.01 10.51 15.12
30 45.92 4.95 22.57 28.89 35.24 54.02 11.75 15.89 15.77 22.25
40 49.10 5.51 23.84 29.34 36.37 58.63 14.05 18.68 19.85 27.50
Portfolio 85.70 4.20 15.43 18.96 23.68 35.22 8.03 10.53 10.23 14.13
Sum 49.20 4.20 19.74 24.88 31.60 47.53 9.66 13.09 12.73 18.00

Table 5.2l. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1995,

mortality PMA80U1996

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 63.67 5.87 20.16 24.11 29.43 38.06 7.99 9.72 8.75 11.10
20 54.01 5.72 23.22 28.26 34.50 49.74 10.42 13.69 12.83 17.71
30 51.40 5.83 24.59 30.88 37.63 56.32 12.96 17.30 16.95 23.60
40 51.45 5.92 24.73 30.32 37.45 59.69 14.63 19.36 20.43 28.15
Portfolio 92.58 5.82 18.79 22.66 27.39 40.34 10.05 12.81 12.50 16.81
Sum 63.67 5.82 23.37 28.62 35.59 51.73 11.61 15.36 14.61 20.22

Table 5.2m. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1996,

mortality PMA80U1997

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 53.03 4.41 17.66 21.64 27.35 35.52 6.48 8.17 7.20 9.48
20 50.24 5.16 22.12 27.10 33.18 49.02 9.74 12.93 12.24 17.11
30 50.08 5.64 24.22 30.50 37.21 56.09 12.71 17.02 16.75 23.40
40 51.08 5.86 24.68 30.16 37.36 59.73 14.57 19.30 20.40 28.14
Portfolio 90.93 5.34 17.94 21.70 26.53 39.34 9.49 12.21 11.93 16.18
Sum 53.03 5.34 22.49 27.74 34.67 50.85 11.10 14.74 14.21 19.71
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Table 5.2n. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1997,

mortality PMA80U1998

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 79.02 8.85 24.80 28.77 34.00 43.53 11.11 12.96 11.96 14.48
20 61.40 7.03 25.83 30.87 37.50 52.47 12.00 15.45 14.35 19.39
30 54.85 6.43 25.84 32.23 39.18 58.25 13.76 18.22 17.83 24.64
40 52.80 6.21 25.39 30.95 38.09 60.54 15.01 19.80 20.86 28.66
Portfolio 95.65 6.95 20.87 24.76 29.68 42.61 11.40 14.31 13.85 18.29
Sum 79.02 6.95 25.49 30.81 37.96 54.42 12.99 16.80 16.13 21.82

Table 5.2o. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1998,

mortality PMA80U1999

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 94.45 16.51 35.85 40.40 46.61 57.69 19.21 21.41 20.18 23.16
20 74.88 10.59 32.48 38.00 45.39 61.91 16.24 20.17 18.83 24.46
30 63.07 8.30 29.91 36.69 44.08 64.51 16.29 21.14 20.62 27.94
40 57.59 7.28 27.86 33.67 41.15 64.38 16.61 21.68 22.63 30.78
Portfolio 98.85 10.10 26.22 30.47 35.67 49.87 15.10 18.34 17.77 22.68
Sum 94.45 10.10 31.22 36.98 44.73 62.64 16.75 20.96 20.12 26.33

Table 5.2p. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1999,

mortality PMA80U2000

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 89.82 13.99 33.11 37.88 44.24 54.99 16.70 18.92 17.65 20.61
20 70.87 9.66 31.24 36.85 43.94 61.09 15.23 19.09 17.91 23.55
30 61.57 8.02 29.46 36.29 43.60 63.85 15.96 20.78 20.25 27.53
40 57.15 7.21 27.75 33.59 41.06 64.47 16.54 21.60 22.60 30.77
Portfolio 98.25 9.31 25.07 29.32 34.54 49.03 14.23 17.44 16.96 21.87
Sum 89.82 9.31 30.21 36.01 43.70 61.60 15.92 20.10 19.29 25.47

36 Reserving, Pricing and Hedging for



5.3 Results using the PMA92 Projected Mortality
Tables 5.3o to 5.3r show the same results as Tables 4.2o to 4.2r and

Tables 5.2o to 5.2r, but using PMA92 projected mortality. For policies
entering in year zzzz we use mortality PMA92Uzzzz and market investment
conditions as at 31 December of year zzzzÿ 1. Comparison of Tables 5.3o
and 5.2o again shows that the change in mortality basis caused all the values
to increase again. For this year the increases were proportionately greater
for longer terms than for shorter terms, but as before were proportionately
greater for lower quantiles than for higher ones.

Table 5.2q. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 2000,

mortality PMA80U2001

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 95.02 17.35 37.05 41.71 47.98 59.27 20.10 22.34 21.09 24.12
20 75.94 10.99 33.22 38.81 46.28 63.01 16.72 20.70 19.34 25.03
30 63.79 8.52 30.36 37.20 44.65 65.24 16.58 21.47 20.94 28.32
40 58.10 7.40 28.14 33.98 41.49 64.85 16.80 21.89 22.84 31.04
Portfolio 98.96 10.46 26.80 31.09 36.33 50.66 15.51 18.79 18.20 23.16
Sum 95.02 10.46 31.86 37.68 45.50 63.60 17.18 21.43 20.57 26.84

Table 5.2r. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 2001,

mortality PMA80U2002

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 90.32 14.34 33.64 38.47 44.97 55.74 17.08 19.32 18.03 21.02
20 71.36 9.84 31.60 37.28 44.38 61.70 15.45 19.35 18.16 23.84
30 62.00 8.12 29.70 36.56 43.91 64.25 16.12 20.96 20.42 27.74
40 57.38 7.28 27.91 33.76 41.26 64.75 16.64 21.72 22.72 30.92
Portfolio 98.34 9.47 25.36 29.63 34.88 49.46 14.42 17.66 17.17 22.11
Sum 90.32 9.47 30.52 36.36 44.10 62.12 16.12 20.33 19.51 25.73

Table 5.3o. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1998,

mortality PMA92U1999

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 98.94 27.35 51.69 57.47 65.39 79.65 30.74 33.51 31.99 35.72
20 90.28 20.47 50.28 57.61 67.48 89.86 28.04 33.23 31.46 38.84
30 82.84 17.65 48.80 58.04 68.21 96.79 28.79 35.45 34.62 44.47
40 79.28 16.52 47.44 55.49 65.96 99.15 29.92 37.09 38.12 49.28
Portfolio 99.96 19.86 42.74 48.42 55.48 74.80 26.75 31.19 30.30 36.88
Sum 98.94 19.86 49.34 57.07 67.56 92.24 29.01 34.71 33.53 41.80
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Table 5.3p. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1999,

mortality PMA92U2000

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 97.40 24.18 48.46 54.53 62.65 76.49 27.62 30.40 28.82 32.56
20 87.75 19.11 48.82 56.29 65.77 89.05 26.63 31.78 30.19 37.62
30 81.56 17.23 48.34 57.67 67.74 96.12 28.35 35.01 34.15 43.97
40 78.91 16.44 47.40 55.51 65.98 99.50 29.87 37.05 38.15 49.35
Portfolio 99.88 18.76 41.39 47.24 54.29 73.87 25.63 30.06 29.23 35.83
Sum 97.40 18.76 58.19 55.99 66.42 74.34 27.91 33.60 32.44 40.71

Table 5.3q. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 2000,

mortality PMA92U2001

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 99.09 28.78 53.72 59.68 67.74 82.40 32.26 35.09 33.54 37.36
20 90.92 21.30 51.65 59.12 69.18 91.99 29.00 34.28 32.49 39.99
30 83.63 18.16 49.73 59.09 69.39 98.35 29.44 36.18 35.34 45.30
40 79.71 16.85 48.07 56.19 66.75 100.27 30.37 37.60 38.64 49.89
Portfolio 99.98 20.59 43.86 49.60 56.71 76.36 27.57 32.07 31.17 37.85
Sum 99.09 20.59 50.54 58.39 69.05 94.12 29.87 35.64 34.44 42.83

Table 5.3r. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 2001,

mortality PMA92U2002

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 97.61 24.95 49.61 55.79 64.15 78.13 28.45 31.29 29.67 33.46
20 88.27 19.61 49.70 57.29 66.84 90.49 27.21 32.43 30.82 38.35
30 82.03 17.56 48.98 58.38 68.56 97.20 28.79 35.50 34.63 44.54
40 79.22 16.68 47.86 56.01 66.57 100.32 30.20 37.42 38.52 49.79
Portfolio 99.89 19.20 42.11 48.00 55.13 74.96 26.15 30.62 29.78 36.45
Sum 97.61 19.20 48.96 56.84 67.39 92.39 28.44 34.18 33.01 41.36
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5.4 Results using the RMC92 Projected Mortality
Tables 5.4o to 5.4r show the same results as Tables 4.2o to 4.2r, Tables

5.2o to 5.2r, and Tables 5.3o to 5.3r, but using RMC92 projected mortality.
For policies entering in year zzzz we use mortality RMC92Uzzzz and
market investment conditions as at 31 December of year zzzzÿ 1.
Comparison of Tables 5.4o and 5.3o again shows that the change in
mortality basis caused all the values to increase, but this time by a relatively
small amount. Observe, however, that for terms 30 and 40 in 1999 and
later the 99.9% quantile reserve now exceeds »100 per »100 single premium,
and that in 2000 and later the possible extra premium on a 99.9%, 2%
basis exceeds »50.

Table 5.4o. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1998,

mortality RMC92U1999

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 99.12 29.07 54.50 60.59 68.99 84.17 32.64 35.52 33.96 37.88
20 91.28 21.75 52.64 60.31 70.69 94.41 29.62 35.01 33.23 40.92
30 84.43 18.81 51.11 60.78 71.47 101.78 30.39 37.29 36.54 46.79
40 80.90 17.66 49.80 58.24 69.25 104.50 31.61 39.06 40.87 51.87
Portfolio 99.98 21.14 44.89 50.81 58.21 78.56 28.30 32.90 32.02 38.87
Sum 99.12 21.14 51.73 59.83 70.87 97.06 30.66 36.57 35.43 44.04

Table 5.4p. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1999,

mortality RMC92U2000

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 97.89 25.78 51.11 57.51 66.09 80.83 29.38 32.30 30.66 34.58
20 89.07 20.34 51.14 58.96 68.92 93.58 28.16 33.51 31.91 39.65
30 83.20 18.37 50.66 60.42 71.01 101.11 29.94 36.85 36.05 46.28
40 80.56 17.58 49.78 58.27 69.29 104.89 31.56 39.03 40.29 51.96
Portfolio 99.93 19.99 43.52 49.57 56.96 77.66 27.14 31.72 30.92 37.79
Sum 97.89 19.99 50.55 58.71 69.69 95.90 29.51 35.42 34.29 42.91
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Table 5.4q. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 2000,

mortality RMC92U2001

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 99.31 30.59 56.66 62.97 71.52 87.16 34.24 37.20 35.60 39.62
20 91.91 22.63 54.12 61.96 72.55 96.76 30.65 36.14 34.33 42.15
30 84.88 19.36 52.13 61.93 72.77 103.52 31.09 38.09 37.32 47.69
40 81.40 18.01 50.49 59.00 70.11 105.74 32.10 39.61 40.82 52.53
Portfolio 99.98 21.91 46.09 52.09 59.62 80.26 29.19 33.87 32.96 39.91
Sum 99.31 21.91 53.04 61.27 72.50 99.14 31.58 37.58 36.41 45.15

Table 5.4r. Statistics for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 2001,

mortality RMC92U2002

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 98.11 26.61 52.35 58.87 67.72 82.62 30.27 33.25 31.57 35.55
20 89.50 20.88 52.10 60.05 70.11 95.19 28.79 34.21 32.61 40.45
30 83.67 18.74 51.36 61.21 71.92 102.33 30.42 37.39 36.58 46.90
40 80.86 17.84 50.28 58.83 69.95 105.83 31.92 39.44 40.80 52.44
Portfolio 99.94 20.47 44.28 50.41 57.91 78.87 27.70 32.35 31.53 38.48
Sum 98.11 20.47 51.39 59.66 70.77 97.31 30.09 36.06 34.92 43.62
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Figure 5.4. Values of Q99 for the portfolio, 1984 Wilkie model, different
mortality tables and of 100/consols yield %
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5.5 Comparison of Mortality Effects
A comparison of the effects of different mortality rates can be seen

from Figure 5.4, which shows values of Q99 for the portfolio, on the 1984
Wilkie model, for the different mortality tables discussed in Sections 4
and 5, and also the values of 100/consols yield %. Observe how the values
of Q99 rise as each new mortality table is introduced. The overall effect
of mortality on Q99 is greater than the overall effect of the fall in interest
rates.

å. The "ææä Wilkie Model

6.1 Introduction
6.1.1 In Wilkie (1995) the parameters of his 1984 model were updated,

the structure was changed slightly, and another relevant variable, short-term
interest rates, denoted B(t), was added. Changes in the model stated in
Section 2.4 were no more than putting CA2 ¼ CA3 ¼ 0:0 and redefining CA1
as CA. The new model for B(t) can be stated as:

BEðtÞ ¼ BSD:BZðtÞ

BNðtÞ ¼ BA:BNðtÿ 1Þ þ BEðtÞ

BðtÞ ¼ CðtÞ: expðBNðtÞ þ BMUÞ:

6.1.2 The new parameter values, including those for B(t), are taken
from Wilkie (1995) and are: QMU ¼ 0:047, QA ¼ 0:58, QSD ¼ 0:0425,
YW ¼ 1:8, YMU ¼ 0:0375, YA ¼ 0:55, YSD ¼ 0:155, DD ¼ 0:13,
DW ¼ 0:58, DMU ¼ 0:016, DY ¼ ÿ0:175, DB ¼ 0:57, DSD ¼ 0:07,
CD ¼ 0:045, CMU ¼ 0:0305, CA ¼ 0:9, CY ¼ 0:34, CSD ¼ 0:185,
BA ¼ 0:74, BMU ¼ ÿ0:23, BSD ¼ 0:18.

6.1.3 Because a short-term interest rate, B(t), is modelled, it is possible
to allow for the effects of a yield curve in the calculation of reserves for
GAOs. How this is done is described in Appendix B. The values of B(t) and
the ‘consols’ yield C(t) are used, together with a parameter b, which is
explained in Appendix B. It is given the value 0.39 throughout our
calculations. Note that Yang (2001) used a value of 0.5.

6.1.4 In fact the use of a yield curve, although theoretically preferable,
makes rather little difference to the values of annuities at age 65 (though it
would affect the values of annuities at older ages more). We have calculated
the ‘at-the-money’ rates for an annuity at age 65, in the same way as in
Sections 4.3 and 5.1, but allowing for the current value of the base rate B(t)
and a value of b of 0.39, for all terms, all mortality tables, and all December
entry dates from December 1984. The differences from using the consols
yield throughout may be in either direction, depending on whether short-term
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interest rates are higher or lower than long-term ones, but for the values
calculated the differences are never more than »1.50 per »1,000 purchase
price different from those shown in Tables 4.3.1 and 5.1.4a and b. Since 1990
they have never been more than »1.00 per »1,000, and the differences are
less for the more recent, lighter, mortality tables. Of course, a different yield
curve model might make more difference.
6.1.5 We have calculated results using the 1995 model for PMA80,

PMA92 and RMC92 mortality, allowing for initial conditions as at 31
December 1994 and later years. These are discussed in Sections 6.2, 6.3 and
6.4,

6.2 Results using the 1995 Wilkie Model and PMA80 Mortality
Tables 6.2k to 6.2r show results on the same lines as before using the

1995 investment model, PMA80 mortality, and initial conditions as at 31
December for 1994 to 2001 inclusive. Careful comparison of corresponding
tables shows that the new model sometimes produces higher values,
sometimes lower.

Table 6.2k. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 1994,

mortality PMA80U1995

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 51.69 3.84 15.73 18.87 23.31 30.60 5.59 7.04 6.24 8.21
20 57.31 5.61 21.57 25.59 30.58 43.83 9.70 12.55 11.81 16.09
30 60.75 6.79 24.69 29.87 35.63 50.86 13.27 17.23 16.55 22.43
40 62.52 7.44 25.89 30.53 36.92 54.77 15.61 20.05 20.30 27.19
Portfolio 95.77 6.06 17.71 21.03 24.97 33.58 9.78 12.21 11.42 14.90
Sum 63.17 6.06 22.29 26.71 32.40 45.07 11.27 14.56 13.73 18.50

Table 6.2l. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 1995,

mortality PMA80U1996

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 60.52 4.96 17.64 20.96 25.76 33.17 6.83 8.37 7.49 9.56
20 60.73 6.16 22.60 26.69 31.78 45.47 10.35 13.28 12.48 16.84
30 62.03 7.06 25.18 30.38 36.21 51.50 13.61 17.61 16.91 22.83
40 63.20 7.59 26.16 30.82 37.24 55.13 15.80 20.26 20.50 27.42
Portfolio 96.68 6.53 18.54 21.96 25.84 34.72 10.32 12.80 12.01 15.58
Sum 63.82 6.53 23.16 27.61 33.36 46.12 11.82 15.16 14.29 19.12
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Table 6.2m. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 1996,

mortality PMA80U1997

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 62.49 5.38 18.55 21.89 26.82 34.32 7.31 8.89 7.98 10.10
20 62.04 6.48 23.29 27.42 32.54 46.12 10.74 13.72 12.90 17.33
30 62.96 7.29 25.67 30.92 36.79 52.23 13.92 17.96 17.24 23.23
40 63.73 7.44 26.49 31.17 37.63 55.62 16.01 20.52 20.74 27.71
Portfolio 97.03 6.81 19.05 22.50 26.44 35.45 10.66 13.19 12.39 16.00
Sum 64.54 6.81 23.75 28.24 34.06 46.97 12.17 15.56 14.66 19.55

Table 6.2n. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 1997,

mortality PMA80U1998

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 81.82 8.84 23.07 26.37 31.03 38.11 10.83 12.47 11.46 13.61
20 68.95 7.79 25.26 29.55 34.57 48.23 12.16 15.22 14.33 18.85
30 65.51 7.80 26.49 31.78 37.67 52.96 14.51 18.59 17.80 23.81
40 64.77 7.94 26.80 31.48 37.99 55.93 16.26 20.78 20.97 27.95
Portfolio 98.39 7.95 20.87 24.28 28.28 37.76 11.94 14.55 13.75 17.51
Sum 81.82 7.95 25.47 29.96 35.80 48.75 13.41 16.86 15.91 20.87

Table 6.2o. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 1998,

mortality PMA80U1999

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 96.73 17.63 34.63 38.56 43.51 53.20 19.95 21.86 20.81 23.40
20 82.04 11.99 32.15 36.83 42.65 57.02 16.99 20.47 19.24 24.24
30 73.26 10.06 30.60 36.31 42.52 58.66 17.33 21.75 20.78 27.21
40 69.48 9.26 29.29 34.19 41.00 59.50 18.03 22.79 22.86 30.14
Portfolio 99.79 11.67 26.48 30.15 34.56 45.11 16.15 19.08 18.15 22.34
Sum 96.73 11.67 31.36 36.25 42.58 56.63 17.66 21.45 20.33 25.72
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Table 6.2p. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 1999,

mortality PMA80U2000

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 96.06 16.46 33.09 36.92 41.78 51.27 18.74 20.60 19.58 22.11
20 80.80 11.41 31.23 35.84 41.59 55.74 16.33 19.76 18.57 23.48
30 72.23 9.74 30.03 35.69 41.86 57.84 16.93 21.31 20.36 26.72
40 68.67 9.07 28.93 33.81 40.59 58.99 17.78 22.51 22.59 29.82
Portfolio 99.67 11.16 25.74 29.36 33.69 44.16 15.57 18.45 17.56 21.69
Sum 96.06 11.16 30.56 35.39 41.66 55.54 17.07 20.82 19.72 25.05

Table 6.2q. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 2000,

mortality PMA80U2001

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 96.67 17.49 34.45 38.38 43.32 53.00 19.81 21.71 20.66 23.25
20 81.85 11.92 32.06 36.74 42.56 56.92 16.92 20.39 19.18 24.17
30 73.11 10.02 30.55 36.26 42.47 58.60 17.29 21.71 20.74 27.17
40 69.29 9.24 29.26 34.16 40.97 59.47 18.00 22.77 22.84 30.11
Portfolio 99.79 11.61 26.41 30.07 34.48 45.03 16.09 19.01 18.09 22.27
Sum 96.67 11.61 31.28 36.17 42.50 56.54 17.59 21.38 20.26 25.66

Table 6.2r. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 2001,

mortality PMA80U2002

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 95.89 16.35 32.94 36.78 41.63 51.10 18.62 20.49 19.46 21.99
20 80.63 11.35 31.15 35.76 41.51 55.66 16.27 19.69 18.50 23.42
30 72.09 9.71 29.98 35.65 41.82 57.80 16.90 21.28 20.32 26.69
40 68.61 9.05 28.91 33.78 40.56 58.96 17.76 22.49 22.57 29.80
Portfolio 99.66 11.11 25.67 26.29 33.62 44.09 15.52 18.39 17.51 21.64
Sum 95.89 11.11 30.49 35.33 41.59 55.47 17.02 20.76 19.67 25.00
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6.3 Results using the 1995 Wilkie Model and PMA92 Mortality
Tables 6.3o to 6.3r show results, again on the same lines as before, using

the 1995 investment model, PMA92 mortality, and initial conditions as at 31
December for 1998 to 2001 inclusive. Comparison of corresponding tables
shows that in general the new model produces slightly lower values for these
years than the 1984 model does.

Table 6.3o. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 1998,

mortality PMA92U1999

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 99.43 28.75 50.07 55.03 61.46 73.70 31.68 34.06 32.75 35.99
20 93.71 22.64 49.73 56.01 63.69 83.17 29.28 33.86 32.29 38.83
30 89.56 20.68 49.65 57.35 65.87 88.48 30.68 36.70 35.37 44.01
40 87.68 20.14 49.34 56.13 65.77 91.98 32.56 39.23 39.15 49.08
Portfolio 99.99 22.42 42.95 47.93 53.72 68.10 28.50 32.43 31.18 36.75
Sum 99.43 22.42 49.46 56.04 64.61 83.90 30.58 35.68 34.18 41.36

Table 6.3p. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 1999,

mortality PMA92U2000

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 99.31 27.45 48.37 53.23 59.51 71.53 30.32 32.66 31.37 34.55
20 93.19 21.94 48.70 54.90 62.50 81.72 28.50 33.03 31.48 37.94
30 89.16 20.28 49.02 56.68 65.14 87.58 30.21 36.19 34.87 43.45
40 87.41 19.91 48.97 55.74 65.34 91.44 32.27 38.91 38.84 48.74
Portfolio 99.99 21.81 42.13 47.12 52.86 67.05 27.84 31.75 30.49 36.01
Sum 99.31 21.81 48.58 55.10 63.58 82.68 29.91 34.96 33.47 40.59

Table 6.3q. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 2000,

mortality PMA92U2001

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 99.43 28.92 50.35 55.33 61.78 74.09 31.87 34.27 32.95 36.20
20 93.78 22.80 50.00 56.32 64.03 83.60 29.47 34.06 32.49 39.05
30 89.67 20.81 49.89 57.63 66.18 88.89 30.85 36.89 35.56 44.23
40 87.78 20.25 49.54 56.35 66.03 92.34 32.71 39.40 39.31 49.28
Portfolio 99.99 22.57 43.17 48.17 53.99 68.44 28.67 32.62 31.35 36.95
Sum 99.43 22.57 49.71 56.32 64.93 84.39 30.76 35.87 34.37 41.57
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6.4 Results using the 1995 Wilkie Model and RMC92 Mortality
Tables 6.4o to 6.4r show results, again on the same lines as before, using

the 1995 investment model, RMC92 mortality, and initial conditions as at 31
December for 1998 to 2001 inclusive. Comparison of corresponding tables
shows that, for this mortality table too, the new model produces lower values
for these years than the 1984 model does.

Table 6.3r. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 2001,

mortality PMA92U2002

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 99.34 27.64 48.66 53.54 59.85 71.92 30.53 32.88 31.59 34.78
20 93.24 22.10 48.98 55.20 62.84 82.16 28.69 33.23 31.68 38.17
30 89.25 20.41 49.27 56.96 65.45 87.99 30.38 36.38 35.06 43.67
40 87.48 20.01 49.17 55.96 65.59 91.79 32.42 39.08 39.00 48.93
Portfolio 99.99 21.96 42.36 47.37 53.15 67.39 28.02 31.94 30.67 36.22
Sum 99.34 21.96 48.84 55.38 63.90 83.08 30.08 35.15 33.66 40.81

Table 6.4o. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 1998,

mortality RMC92U1999

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 99.51 30.50 52.77 57.98 64.83 77.77 33.57 36.07 34.70 38.10
20 94.49 23.97 52.03 58.61 66.67 87.28 30.87 35.62 34.05 40.85
30 90.56 21.95 51.96 60.03 68.96 92.93 32.33 38.57 37.28 46.27
40 88.85 21.43 51.77 58.85 69.07 96.81 34.37 41.30 41.29 51.64
Portfolio 99.99 23.78 45.05 50.31 56.40 71.47 30.11 34.19 32.90 38.70
Sum 99.51 23.78 51.83 58.72 67.73 88.16 32.27 37.56 36.05 43.53

Table 6.4p. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 1999,

mortality RMC92U2000

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 99.43 29.15 50.99 56.10 62.78 75.47 32.16 34.61 33.27 36.60
20 94.00 23.26 50.98 57.48 65.44 85.78 30.08 34.77 33.21 39.94
30 90.26 21.54 51.34 59.35 68.21 92.00 31.86 38.05 36.77 45.70
40 88.59 21.19 51.41 58.45 68.63 96.26 34.08 40.99 40.98 51.29
Portfolio 99.99 23.16 44.22 49.47 55.54 70.34 29.44 33.50 32.18 37.93
Sum 99.43 23.16 50.93 57.76 66.67 86.89 31.57 36.82 35.33 42.75
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6.5 Comparison of the 1984 and 1995 Models
6.5.1 The 1984 and 1995 models do not produce very different results.

In general, but not always, the means under the 1995 model are higher. This
could result from a lower mean rate of inflation, QMU being 0.047 instead of
0.05, and a lower mean real consols yield, CMU being 3.05% instead of
3.5%; but the standard deviations, and also the quantiles, are generally rather
lower under the 1995 model. The values of C, the premium that the
policyholder might be charged, may be either higher or lower.

6.5.2 Figure 6.1 shows values of Q99 for the portfolio, for different
mortality tables, for both the 1984 and 1995 models and of 100/consols yield
%. It can be compared with Figure 5.4. In most cases the quantile is lower
under the more recent model.

6.6 An ARCH Model
6.6.1 In his 1995 paper, Wilkie also described a possible ARCH

(autoregressive conditional heteroskedastic) model, in which the standard

Table 6.4q. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 2000,

mortality RMC92U2001

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 99.51 30.70 53.09 58.32 65.21 78.22 33.79 36.30 34.93 38.34
20 94.56 24.16 52.36 58.98 67.08 87.82 31.09 35.86 34.29 41.12
30 90.59 22.10 52.62 60.36 69.33 93.42 32.54 38.80 37.51 46.53
40 88.91 21.56 52.01 59.12 69.39 97.24 34.54 41.50 41.49 51.88
Portfolio 99.99 23.95 45.31 50.61 56.71 71.89 30.30 34.41 33.11 38.94
Sum 99.51 23.95 52.13 59.07 68.12 88.65 32.47 37.79 36.28 43.79

Table 6.4r. Statistics for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 2001,

mortality RMC92U2002

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 99.44 29.37 51.32 56.45 63.18 75.92 32.40 34.86 33.52 36.86
20 94.02 23.44 51.31 57.85 65.86 86.32 30.30 35.02 33.45 40.21
30 90.34 21.69 51.63 59.68 68.59 92.49 32.06 38.28 36.99 45.96
40 88.67 21.32 51.65 58.72 68.94 96.68 34.25 41.18 41.18 51.52
Portfolio 99.99 23.33 44.49 49.77 55.86 70.74 29.64 33.71 32.40 38.17
Sum 99.44 23.33 51.23 58.10 67.06 87.38 31.78 37.05 35.55 43.00
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deviation of the rate of inflation varied with time. The formulae for
inflation are now:

QSDðtÞ2 ¼ QSA2
þQSB:ðIðtÿ 1Þ ÿQSCÞ2

QEðtÞ ¼ QSDðtÞ:QZðtÞ

IðtÞ ¼ QMUþQA:ðIðtÿ 1Þ ÿQMUÞ þQEðtÞ

QðtÞ ¼ Qðtÿ 1Þ: expðIðtÞÞ

with parameters: QMU ¼ 0:04, QA ¼ 0:62, QSA ¼ 0:0256, QSB ¼ 0:55 and
QSC ¼ 0:04. Because the value of QSD(t) can become extremely large, it is
convenient to limit it to 2.0 (which is a very high limit for a lognormal
distribution).

6.6.2 We have used this model only with initial conditions as at 31
December 2001 and with PMA92U2002 mortality. The results are shown in
Table 6.6r. The results show much higher quantiles than for the non-ARCH
model, but with a tiny respite at the other extreme of the distribution; there
are slightly more simulations where the guarantee does not ‘bite’.

6.6.3 Because inflation is now very variable, the problem described in
{2.4.5, with negative inflation and the value of C(t) needing to be limited to
0.05 and the problem described in Appendix B of inconsistent values for the
zero-coupon discount factors (which in practice are set to zero), occurs
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frequently. This does not seem to affect the results adversely. Although a
model with such features is uncomfortable, the assumption in the Wilkie
model (as implemented here) of normally distributed innovations is also at
variance with observations, and some model with a fatter-tailed distribution
for the innovations would be desirable. The example shown here gives some
indication of the possible effects.

æ. Reserving since "æðä

7.1 Introduction
7.1.1 In this section we consider how the individual policies and the

whole portfolio that we assumed to have entered in 1985 would have turned
out since that date. Thus we consider the same set of policies as in Section 2,
namely one each for terms of 10 to 40 years, plus the portfolio consisting of
one each of these policies, but the total divided by 31. If the policies were all
new in 1985, the first one would have reached age 65 in 1995, with one new
policy reaching the vesting date in each year thereafter. We assume that all
policies were written on 1 January 1985, and reach age 65 on 1 January in
subsequent years.

7.1.2 We consider both marking-to-market each year at a 99% level
and also the MGWP method, of starting with contingency reserves at a 99%
level, recalculating each year, strengthening back to the 99% level if the
available reserves are below the 98% level, and releasing reserves, reverting
to 99%, if the available reserves exceed the 99.9% level. We first investigate
what would have happened if the same mortality basis, namely PMA68U,
and simulation basis, namely the 1984 Wilkie model, had been used
throughout. Then we consider the effect of changes in the basis from time
to time.

7.1.3 It is convenient to work entirely in term of ‘units’ of the invested
funds, treating the ‘share’ price as a numeraire. The policyholder’s funds

Table 6.6r. Statistics for GAO per »100 single premium:
1995 Wilkie ARCH model, initial conditions of 31 December 2001,

mortality PMA92U2002

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 C99,1 C99,2 C99.9,1 C99.9,2

10 98.95 30.28 51.46 60.99 81.61 111.76 34.84 38.51 37.42 43.04
20 94.68 26.26 54.28 68.24 96.31 118.11 37.36 44.80 40.58 49.98
30 91.72 25.52 58.56 71.86 109.10 123.56 43.36 53.68 46.17 57.90
40 90.40 25.65 59.81 73.26 104.32 127.72 46.31 57.03 51.77 64.95
Portfolio 99.92 26.44 49.75 59.71 77.15 107.80 36.12 42.25 41.52 50.75
Sum 98.95 26.44 56.16 69.05 97.37 120.52 39.95 48.11 43.68 53.93
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therefore remain at 100 units throughout, and since we assume that the
contingency reserves are invested in the same units, their value remains
unchanged from year to year. This simplifies the calculations greatly. Thus a
ten-year policy, written in 1985 for a male then aged 55, has, by its
anniversary in 1986, become a nine-year policy for a male aged 56. The
required contingency reserves can therefore be assessed as if it were a new
nine-year policy in 1986, but we then need to adjust for the fact that some
policyholders have died during the year, and their policies can no longer
claim the benefit of the GAO. Over a small number of years the effect of this
is not large, and, for some of the results presented, we have, for simplicity,
ignored it.

7.2 The 1985 Basis
7.2.1 Tables 7.2.1a and 7.2.1b show the experience for a single ten-year

policy, assuming PMA68B1930 mortality throughout. The left-hand section
of Table 7.2.1a shows the quantile reserves, on a per policy basis. Sometimes
the quantile reserve was zero; if so, we show the mean, putting the figure
into italic type; sometimes the mean was less than 0.005, and it is shown as
0.00. The next columns show selected quantile reserves reduced by survival
factors, tp55. The required reserve each year is shown in the column headed
tp55 � Q99. One can see that the initial reserve was 7.84 units per policy of 100
units invested. We do not need to consider the charge to the policyholder
for the GAO here; some of the 7.84 units should initially have been provided
by the policyholder, some by the shareholders; but thereafter profits and
losses fall to the shareholders.

7.2.2 In the next column of Table 7.2.1a we show the change in the
reserve from year to year. In many years there is a small release of reserves.

Table 7.2.1a. Experience for 10-year policy written in 1985, in units, basis:
PMA68U, 1984 model, with marking-to-market

Year
1 Jan

Q97:5 Q98 Q
99

Q99:9 tp55�Q98 tp55�Q99 tp55�Q99:9 Change in
99%

reserve

Consols
yield %

1985 3.91 4.89 7.84 13.69 4.89 7.84 13.69 9.90
1986 3.23 4.12 7.04 13.45 4.08 6.97 13.32 ÿ0.87 9.80
1987 4.32 4.97 7.15 14.63 4.87 7.00 14.33 0.03 10.06
1988 4.08 4.87 6.82 12.90 4.71 6.59 12.47 ÿ0.41 9.21
1989 2.13 2.92 4.85 10.27 2.79 4.63 9.80 ÿ1.97 8.99
1990 0.04 0.04 1.29 5.76 0.04 1.21 5.41 ÿ3.41 9.66
1991 0.00 0.00 0.00 1.08 0.00 0.00 1.00 ÿ1.21 10.48
1992 0.00 0.00 0.00 2.27 0.00 0.00 2.06 0.00 9.71
1993 0.00 0.00 0.00 2.10 0.00 0.00 1.87 0.00 8.83
1994 8.36 8.52 9.02 10.15 7.43 7.87 8.86 7.87 6.52
1995 Payoff: 0.00 0.00 ÿ7.87 8.53
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Indeed, from 1991 to 1993 the 99% quantile reserves reduce to zero.
However, by 1994 interest rates had fallen, and the reserves have to be
increased considerably, to just over their original level. By maturity
(retirement) on 1 January 1995 interest rates had risen again, so the option
would have expired out of the money, and been worth actually zero, as
shown in the last row. As an indication of interest rates, the value of the
‘consols yield’ (actually the yield on the FT-Actuaries irredeemables index)
on 31 December of the preceding year is shown in the final column.

7.2.3 In Table 7.2.1b we continue the story, repeating the selected
quantile reserves reduced by the survival factors. Then we show the reserve
under the MGWP basis. This remains at the level of the previous year
unless it is outside the range of the 98% and 99.9% reserves, in either
direction; if it is, it is altered back to the 99% reserve. Thus in 1990 there is
a considerable release, followed by another small release in 1991; but in
1994 there is a big increase in the reserve, followed by the release of all of it
in the following year when the option expires out of the money. It can be
seen that the profits or losses in total are the same under either method, but
the marking-to-market method recognises them sooner than the MGWP
method. On balance we believe that the marking-to-market method is more
realistic, and it is more in conformity with modern accounting ideas.
Neither method, however, adequately reserved for the fall in interest rates
by 31 December 1993, though keeping the original contingency reserves
unchanged would have done so.

7.2.4 Note that the tables show numbers of units, not pound amounts.
The actual cash releases from or charges to reserves would have to be
calculated by multiplying by the current unit price at each date, whatever
that was.

Table 7.2.1b. Experience for 10-year policy written in 1985, in units, basis:
PMA68U, 1984 model, MGWP method

Year
1 Jan

tp55�Q98 tp55�Q99 tp55�Q99:9 MGWP
reserve

Change in
MGWP
reserve

1985 4.89 7.84 13.69 7.84
1986 4.08 6.97 13.32 7.84 0.00
1987 4.87 7.00 14.33 7.84 0.00
1988 4.71 6.59 12.47 7.84 0.00
1989 2.79 4.63 9.80 7.84 0.00
1990 0.04 1.21 5.41 1.21 ÿ6.63
1991 0.00 0.00 1.00 0.00 ÿ1.21
1992 0.00 0.00 2.06 0.00 0.00
1993 0.00 0.00 1.87 0.00 0.00
1994 7.43 7.87 8.86 7.87 7.87
1995 Payoff: 0.00 0.00 ÿ7.87
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7.2.5 The ten-year policy expired out of the money. Not all polices would
have done so; indeed a nine-year policy would not have done so, though we
do not show that. Table 7.2.2 shows the values of the option at expiry, on the
PMA68 mortality basis at 1 January each year from 1995 to 2002, based on
interest rates on 31 December of the preceding year, and using the 1984
Wilkie model basis, i.e. using only the long-term ‘consols yield’. There is no
allowance for the fact that not all policies would have survived. The option
would have expired out of the money from 1995 to 1997.

7.2.7 In Tables 7.2.3a and 7.2.3b we show the experience for the 17-year
policy, maturing on 1 January 2002, with a value, on the basis of PMA68U
and the 1984 model, of 15.77%. The policyholder would have been aged 48 at
entry, so quantiles are multiplied by tp48. With either reserving method the
fall in interest rates by the end of 1993 would have required a big increase in
the reserve, which could have been released the following year, and reversed
the year after. The reserving in the last few years of the option’s life is rather
unstable. As it happens, the original 99% reserve would have met the final
result quite neatly.

7.2.8 Other policies would have shown similar patterns. For those
maturing on 1 January 1997 and 1998 the previous year’s reserves would not
have been enough, even at a 99.9% level. The successive reductions in
interest rates surprised the model considerably. We discuss this further in
Section 7.4. However, all other policies would have shown a release of
reserves on expiry of the option, whether the option was in or out of the
money.

7.2.9 In Table 7.2.4 we show the experience for the whole portfolio of
31 policies, one each for terms 10, 11, ... 40, and each for an amount of
100/31 units. For simplicity, we make no allowance for the benefits of
survival. The left-hand columns show the quantile reserves for the surviving
(i.e. not yet matured) policies at each date. Then the ‘payoffs’ column shows
the cost of the option (for a policy of 100/31 units). We assume that this is

Table 7.2.2. Value of GAO for contract maturing on 1 January of year
shown; basis: PMA68U, 1984 model

Year
1 Jan

Consols
yield %

Option
value %

1995 8.53 0
1996 7.78 0
1997 7.74 0
1998 6.39 5.13
1999 4.55 19.36
2000 4.89 16.66
2001 4.62 19.11
2002 5.04 15.77
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Table 7.2.3a. Experience for 17-year policy written in 1985, in units, basis:
PMA68U, 1984 model, with marking-to-market

Year
1 Jan

Q97:5 Q98 Q99 Q99:9 tp48�Q98 tp48�Q99 tp48�Q99:9 Change
in 99%
reserve

Consols
yield %

1985 9.34 10.11 13.56 22.64 10.11 13.56 22.64 9.90
1986 8.91 9.81 12.90 22.98 9.77 12.85 22.90 ÿ0.71 9.80
1987 9.61 10.81 13.98 23.45 10.73 13.87 23.27 1.02 10.06
1988 9.59 10.54 13.75 24.62 10.41 13.58 24.32 ÿ0.29 9.21
1989 8.20 9.47 12.35 22.18 9.30 12.13 21.79 ÿ1.45 8.99
1990 6.52 7.54 10.27 20.07 7.36 10.03 19.59 ÿ2.11 9.66
1991 4.33 5.15 8.09 16.12 4.99 7.84 15.63 ÿ2.18 10.48
1992 6.25 7.32 10.25 16.50 7.04 9.85 15.86 2.01 9.71
1993 7.33 8.43 11.52 18.52 8.03 10.97 17.64 1.12 8.83
1994 17.40 18.18 20.22 30.24 17.13 19.06 28.50 8.08 6.52
1995 3.76 4.57 6.86 12.80 4.26 6.39 11.92 ÿ12.67 8.53
1996 12.12 12.91 14.98 21.22 11.86 13.76 19.50 7.38 7.78
1997 8.16 8.97 10.98 15.71 8.12 9.94 14.23 ÿ3.82 7.74
1998 14.09 14.74 16.36 20.79 13.14 14.58 18.53 4.64 6.39
1999 25.08 25.48 26.87 30.90 22.33 23.55 27.08 8.96 4.55
2000 20.35 20.73 21.75 25.22 17.83 18.71 21.69 ÿ4.84 4.89
2001 25.08 25.74 25.93 27.20 21.69 21.85 22.92 3.15 4.62
2002 Payoff: 15.77 13.00 ÿ8.85 5.04

Table 7.2.3b. Experience for 17-year policy written in 1985, in units, basis:
PMA68U, 1984 model, MGWP method

Year
1 Jan

tp48�Q98 tp48�Q99 tp48�Q99:9 MGWP
reserve

Change
in MGWP
reserve

1985 10.11 13.56 22.64 13.56
1986 9.77 12.85 22.90 13.56 0.00
1987 10.73 13.87 23.27 13.56 0.00
1988 10.41 13.58 24.32 13.56 0.00
1989 9.30 12.13 21.79 13.56 0.00
1990 7.36 10.03 19.59 13.56 0.00
1991 4.99 7.84 15.63 13.56 0.00
1992 7.04 9.85 15.86 13.56 0.00
1993 8.03 10.97 17.64 13.56 0.00
1994 17.13 19.06 28.50 19.06 5.50
1995 4.26 6.39 11.92 6.39 ÿ12.67
1996 11.86 13.76 19.50 13.76 7.38
1997 8.12 9.94 14.23 13.76 0.00
1998 13.14 14.58 18.53 13.76 0.00
1999 22.33 23.55 27.08 23.55 9.78
2000 17.83 18.71 21.69 18.71 ÿ4.84
2001 21.69 21.85 22.92 21.85 3.15
2002 Payoff: 13.00 13.00 ÿ8.85
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charged to the contingency reserve. The corresponding release of reserves
on expiry is allowed for by the absence of that policy in the quantile reserves.
The following columns show the change in the 99% quantile reserve, and
the experience according to the MGWP method, in both cases after taking
the required payoffs into account. It can be seen that the experience of the
portfolio is much more stable than that of the individual policies, and
although the contingency reserve has crept upwards as interest rates have
fallen, it has not behaved unreasonably, except that perhaps the model was
‘fooled’ by the increase in interest rates by the end of 1994.

7.3 Changes of Basis
7.3.1 We now consider the effect of possible changes in the basis for

calculating the reserves since 1985. We have already discussed four mortality
bases: PMA68 from 1985, PMA80 starting in 1989/90 (i.e. 31 December
1989, 1 January 1990), and PMA92 and RMC92 starting in 1998/99. We
have discussed two simulation bases: the 1984 basis from 1985 and the 1995
basis starting in 1994/95. If we assume that changes in the reserving basis
were introduced at the earliest date we get the set of bases in Table 7.3.1, the
last two being alternatives.

Table 7.2.4. Experience for portfolio written in 1985, in units, basis:
PMA68U, 1984 model

Year
1 Jan

Q97:5 Q98 Q99 Q99:9 Payoffs Change in
99%

reserve
with

payoffs

MGWP
reserve

Change in
MGWP
reserve
with

payoffs

Consols
yield %

1985 9.27 10.00 12.43 20.95 12.43 9.90
1986 9.09 9.72 12.30 20.16 ÿ0.13 12.43 0.00 9.80
1987 9.36 10.12 12.77 20.90 0.47 12.43 0.00 10.06
1988 9.37 10.08 12.63 20.64 ÿ0.14 12.43 0.00 9.21
1989 8.64 9.36 11.94 19.22 ÿ0.69 12.43 0.00 8.99
1990 7.83 8.48 10.81 17.96 ÿ1.13 12.43 0.00 9.66
1991 7.02 7.71 9.83 16.55 ÿ0.98 12.43 0.00 10.48
1992 7.86 8.37 10.80 18.32 0.97 12.43 0.00 9.71
1993 8.47 9.10 11.22 18.32 0.42 12.43 0.00 8.83
1994 14.04 14.83 17.33 23.70 6.11 17.33 4.90 6.52
1995 7.49 8.15 9.94 16.77 0.00 ÿ7.39 9.94 ÿ7.39 8.53
1996 10.86 11.54 13.53 19.93 0.00 3.59 13.53 3.59 7.78
1997 9.19 9.86 11.61 18.13 0.00 ÿ1.92 13.53 0.00 7.74
1998 12.78 13.47 15.22 21.48 0.17 3.78 15.22 1.86 6.39
1999 18.98 19.58 21.69 28.78 0.62 7.09 21.69 7.09 4.55
2000 16.81 17.41 19.49 25.85 0.54 ÿ1.66 21.15 0.00 4.89
2001 20.16 20.75 22.89 29.36 0.62 4.02 22.89 2.36 4.62
2002 15.97 16.55 18.56 23.93 0.51 ÿ3.83 22.38 0.00 5.04
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7.3.2 The different bases give different annuity values at retirement, and
thus different payoffs for the option, which are shown in Table 7.3.2. The
difference between the 1995 and 1984 simulation models is in whether the
yield curve is or is not allowed for, as this affects the annuity values for
current annuities. Values are shown even for years prior to the introduction
of the basis. It is clear, as we already knew, that the later mortality bases are
‘stronger’ than the earlier ones, and also that the effect of the simulation
model on the payoff is small, and may be in either direction.

7.3.3 In Tables 7.3.3a and 7.3.3b we show results for the 17-year policy,
allowing for changes in basis. In any year when there is a change of basis two
lines are shown with ‘a’ and ‘b’ after the year showing the values before and
after the change, and hence the effect of the change. Mortality during the
deferred period is allowed for, but for simplicity on the PMA68 basis
throughout. As compared with the fixed basis in Table 7.2.3b the payoff
(allowing for survival) was 13.00 and is now 29.61 on PMA92 (31.84 on
RMC92), an increase of 16.61 (18.84). The two changes in the mortality basis
increase the 99% reserve by 19.31 (23.33). The change in the simulation
model adds 4.03. One cannot wholly separate the various effects of: changes

Table 7.3.1. Calculation bases, and effective dates

Date from:
31Dec/1 Jan

Date to:
31Dec/1 Jan

Mortality Simulation

1984/85 1989/90 PMA68 1984 model
1989/90 1994/95 PMA80 1984 model
1994/95 1998/99 PMA80 1995 model
1998/99 2001/02 PMA92 1995 model
1998/99 2001/02 RMC92 1995 model

Table 7.3.2. Values on different bases of GAO for contracts
maturing on 1 January of year shown

Year
1 Jan

Consols
yield %

PMA68
1984 model

PMA80
1984 model

PMA80
1995 model

PMA92
1995 model

RMC92
1995 model

1995 8.53 0 0 0 3.75 4.76
1996 7.78 0 2.68 2.95 9.10 10.36
1997 7.74 0 3.11 3.48 9.83 11.12
1998 6.39 5.13 12.79 12.57 20.49 22.37
1999 4.55 19.36 28.97 28.43 39.15 42.17
2000 4.89 16.66 25.93 25.74 36.16 38.95
2001 4.62 19.11 28.73 28.30 39.45 42.46
2002 5.04 15.77 24.93 25.25 35.92 38.62
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in interest rates, shortening of term, change in mortality basis, and change
in simulation model, because they interact. A change in interest rates may
have differing effects on different mortality bases, but it is clear that the
improvement in mortality has had a very large effect on the results.

7.3.4 In Table 7.3.4 we show results for the portfolio, also allowing for
changes in basis. We assume that policies mature in any year before any
change of basis in that year. The 99% contingency reserve was initially 12.43.
Had the basis remained unchanged, the reserve would have been 18.56.
Instead it has increased to 38.22 on PMA92 (40.30 on RMC92). The two
changes in mortality basis have added explicitly 21:62ð¼ 7:55þ 14:07Þ on
PMA92 ð23:96 ¼ 7:55þ 16:41 on RMC92). The change in simulation model
added 2.05. Further, payoffs for expiring options have taken out 5.47 (5.85)
from the reserve. Again, it is clear that the effect of improving mortality
assumptions has probably been greater than the effect of interest rate
changes over the period.

Table 7.3.3a. Experience for 17-year policy written in 1985, in units,
bases changing as shown

Year
1 Jan

Basis Q97:5 Q98 Q99 Q99:9 tp48�Q98 tp48�Q99 tp48�Q99:9 Change
in 99%
reserve

1985 PMA68/84 9.34 10.11 13.56 22.64 10.11 13.56 22.64
1986 PMA68/84 8.91 9.81 12.90 22.98 9.77 12.85 22.90 ÿ0.71
1987 PMA68/84 9.61 10.81 13.98 23.45 10.73 13.87 23.27 1.02
1988 PMA68/84 9.59 10.54 13.75 24.62 10.41 13.58 24.32 ÿ0.29
1989 PMA68/84 8.20 9.47 12.35 22.18 9.30 12.13 21.79 ÿ1.45
1990a PMA68/84 6.52 7.54 10.27 20.07 7.36 10.03 19.59 ÿ2.11
1990b PMA80/84 14.36 15.62 18.95 30.95 15.25 18.50 30.22 8.47
1991 PMA80/84 11.72 12.71 16.29 26.08 12.32 15.79 25.28 ÿ2.71
1992 PMA80/84 14.05 15.35 18.91 26.51 14.76 18.18 25.49 2.39
1993 PMA80/84 15.37 16.69 20.44 28.93 15.90 19.47 27.56 1.29
1994 PMA80/84 27.50 28.43 30.91 43.07 26.79 29.13 40.59 9.66
1995a PMA80/84 11.09 12.06 14.79 21.90 11.23 13.77 20.39 ÿ15.36
1995b PMA80/95 16.08 16.58 19.12 21.22 15.44 17.80 19.76 4.03
1996 PMA80/95 17.40 18.07 20.55 26.86 16.60 18.88 24.68 1.08
1997 PMA80/95 17.17 17.93 20.13 25.56 16.24 18.23 23.15 ÿ0.65
1998 PMA80/95 21.86 22.43 23.95 28.26 20.00 21.35 25.19 3.12
1999a PMA80/95 35.82 36.19 37.72 42.11 31.71 33.05 36.90 11.70
1999b PMA92/95 48.93 49.41 51.23 56.62 43.30 44.89 49.62 11.84
2000 PMA92/95 43.88 44.31 45.66 48.90 38.11 39.27 42.06 ÿ5.62
2001 PMA92/95 43.84 44.06 44.87 46.84 37.13 37.82 39.48 ÿ1.46
2002 PMA92/95 Payoff: 35.92 29.61 ÿ8.20
or
1999a RMC80/95 35.82 36.19 37.72 42.11 31.71 33.05 36.90
1999b RMC92/95 52.22 52.75 54.64 60.47 46.22 47.88 52.99 14.83
2000 RMC92/95 46.95 47.42 48.78 52.28 40.79 41.96 44.97 ÿ5.93
2001 RMC92/95 47.02 47.25 48.11 50.21 39.82 40.55 42.32 ÿ1.41
2002 RMC92/95 Payoff: 38.62 31.84 ÿ8.71
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7.4 Further Observations
7.4.1 It appears that the Wilkie model, especially in the 1984 version,

leads to instability of reserves as the terms of policies shorten, and has tended
to underestimate the reductions in interest rates that have actually taken
place. There may be three reasons for this, which we now discuss.

7.4.2 First, the 1984 model includes a third order autoregressive model
for the real consols yield, i.e. net of the effect of inflation. This means that
changes in interest rates have an effect on the forecasts in the three
subsequent years. This was intended to improve the forecasts, and indeed did
so in the period over which the model was fitted, but it now appears to be
not working so well. It is possibly an example of ‘over-parameterisation’, and
the 1995 model reduced the consols yield model to a first order one, which
seems to be more stable.

Table 7.3.3b. Experience for 17-year policy written in 1985, in units,
bases changing as shown

Year
1 Jan

Basis tp48�Q98 tp48�Q99 tp48�Q99:9 MGWP
reserve

Change in
MGWP
reserve

1985 PMA68/84 10.11 13.56 22.64 13.56
1986 PMA68/84 9.77 12.85 22.90 13.56 0.00
1987 PMA68/84 10.73 13.87 23.27 13.56 0.00
1988 PMA68/84 10.41 13.58 24.32 13.56 0.00
1989 PMA68/84 9.30 12.13 21.79 13.56 0.00
1990a PMA68/84 7.36 10.03 19.59 13.56 0.00
1990b PMA80/84 15.25 18.50 30.22 18.50 4.94
1991 PMA80/84 12.32 15.79 25.28 18.50 0.00
1992 PMA80/84 14.76 18.18 25.49 18.50 0.00
1993 PMA80/84 15.90 19.47 27.56 18.50 0.00
1994 PMA80/84 26.79 29.13 40.59 29.13 10.63
1995a PMA80/84 11.23 13.77 20.39 13.77 ÿ15.36
1995b PMA80/95 15.44 17.80 19.76 17.80 4.03
1996 PMA80/95 16.60 18.88 24.68 17.80 0.00
1997 PMA80/95 16.24 18.23 23.15 17.80 0.00
1998 PMA80/95 20.00 21.35 25.19 21.35 3.55
1999a PMA80/95 31.71 33.05 36.90 33.05 11.70
1999b PMA92/95 43.30 44.89 49.62 44.89 11.84
2000 PMA92/95 38.11 39.27 42.06 39.27 ÿ5.62
2001 PMA92/95 37.13 37.82 39.48 39.27 0.00
2002 PMA92/95 Payoff: 29.61 29.61 ÿ9.66
or
1999a RMC80/95 31.71 33.05 36.90 33.05
1999b RMC92/95 46.22 47.88 52.99 47.88 14.83
2000 RMC92/95 40.79 41.96 44.97 41.96 ÿ5.93
2001 RMC92/95 39.82 40.55 42.32 41.96 0.00
2002 RMC92/95 Payoff: 31.84 31.84 ÿ10.12
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7.4.3 Secondly, the real data have ‘fatter-tailed’ changes than would
occur with a normal distribution, so larger changes occur more frequently
than expected. This suggests that an allowance for fatter-tailed innovations
should be included in the model, as we discuss further in Section 11.2.

7.4.4 Thirdly, the models pull the expected consols yield towards a mean
value, which is equal to the mean rate of inflation plus the mean consols
yield. The mean ‘forces’ of inflation (means of the logarithms of the changes)
are 0.05 and 0.47 in the two models. The mean consols yields are 0.035 and
0.0305. Thus the central consols yield (not strictly the mean) is 8.5% in the
1984 model, and 7.75% in the 1995 model. As interest rates get well below
these levels, the model expects them to move up a little, and underestimates
the probabilities of further falls. We have used the parameters from Wilkie’s

Table 7.3.4. Experience for portfolio written in 1985, in units,
bases changing as shown

Year
1 Jan

Basis Q97:5 Q98 Q99 Q99:9 Payoffs Change
in 99%
reserve,
with

payoffs

MGWP
reserve

Change
in MGWP
reserve
with

payoffs

1985 PMA68/84 9.27 10.00 12.43 20.95 12.43
1986 PMA68/84 9.09 9.72 12.30 20.16 ÿ0.13 12.43 0.00
1987 PMA68/84 9.36 10.12 12.77 20.90 0.47 12.43 0.00
1988 PMA68/84 9.37 10.08 12.63 20.64 ÿ0.14 12.43 0.00
1989 PMA68/84 8.64 9.36 11.94 19.22 ÿ0.69 12.43 0.00
1990a PMA68/84 7.83 8.48 10.81 17.96 ÿ1.13 12.43 0.00
1990b PMA80/84 14.24 15.15 18.36 27.17 7.55 18.36 5.93
1991 PMA80/84 12.89 13.73 16.78 25.24 ÿ1.58 18.36 0.00
1992 PMA80/84 14.32 15.09 18.06 26.92 1.28 18.36 0.00
1993 PMA80/84 15.26 16.21 19.01 27.99 0.95 18.36 0.00
1994 PMA80/84 23.19 24.22 27.28 35.06 8.27 27.28 8.92
1995a PMA80/84 13.34 14.37 16.72 25.74 ÿ10.56 16.72 ÿ10.56
1995b PMA80/95 15.88 16.72 18.77 24.94 0.00 2.05 16.72 0.00
1996 PMA80/95 16.82 17.61 19.52 25.63 0.10 0.84 19.52 2.90
1997 PMA80/95 16.91 17.48 19.48 25.41 0.11 0.07 19.41 0.00
1998 PMA80/95 19.62 20.19 22.04 27.44 0.41 2.97 22.04 3.04
1999a PMA80/95 27.29 27.96 29.94 36.36 0.92 8.81 29.94 7.90
1999b PMA92/95 40.53 41.44 44.02 52.46 1.26 15.34 44.02 15.34
2000 PMA92/95 37.78 38.70 41.12 48.61 1.17 ÿ1.73 42.85 0.00
2001 PMA92/95 37.79 38.73 41.05 48.39 1.27 1.20 41.58 0.00
2002 PMA92/95 35.17 35.90 38.22 45.41 1.16 ÿ1.67 40.42 0.00
or
1999a RMC80/95 27.29 27.96 29.94 36.36 0.92 8.81 29.94
1999b RMC92/95 42.71 43.65 46.35 55.26 1.36 17.77 46.35 17.77
2000 RMC92/95 39.80 40.79 43.33 51.20 1.26 ÿ1.76 45.09 0.00
2001 RMC92/95 39.87 40.85 43.29 51.05 1.37 1.32 43.72 0.00
2002 RMC92/95 37.10 37.87 40.30 47.90 1.25 ÿ1.74 42.48 0.00
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1986 and 1995 papers unchanged, since that involved no introduction of
subjective judgement on our part; but in practice we would nowadays be
much more likely to use a model with a mean rate of inflation of 2.5% or 3%.
This of course would increase the required contingency reserves and the
initial costs of GAOs even more. But it would perhaps be more realistic.

7.4.5 It is not obvious whether marking to market, the MGWP ‘bands’
method, or some other reserving method is best. On balance, we favour
marking to market, as we have explained in {7.2.3. This is a question that
deserves further discussion.

ð. Theoretical Developments since "æðä

8.1 Introduction
8.1.1 So far the theoretical model that we have used has been based on

the Report of the Maturity Guarantees Working Party (Ford et al., 1980)
and other papers of that date, although we have updated the basis of
calculation to take into account changes since then both in mortality rates
and in the investment model that we have been using. We now consider some
theoretical developments that have taken place since 1985.
8.1.2 In Section 8.2 we consider an alternative way of assessing

policyholder premiums, instead of the method described in Section 2.3; this
alternative has, we feel, certain theoretical advantages, though the numerical
results are similar. In Section 9 we discuss the use of ‘conditional tail
expectations’ instead of quantile reserves; the former have many theoretical
and practical advantages over the latter. In Section 10 we introduce the very
important topic of option pricing methodology. In Section 11 we discuss
various other enhancements that might be desirable.

8.2 An Alternative Way of Assessing Premiums
8.2.1 In Section 2.3 we described how policyholders might be charged

for a guaranteed annuity option (or indeed any other benefit that would
require significant contingency reserves). The method used the expected value
of the benefit A, and the desired quantile reserve Qa. The parameters to be
chosen were a, the security level of the quantile reserve, and h, the excess
return required by the shareholders on their investment. The resulting charge,
B, was added to A to give a total charge of Ca;h.

8.2.2 This method takes account of only two statistics of the total
distribution of the cost of the options A and Qa. It ignores the rest of the
distribution, including the shape of the distribution both below Qa and above
it. As discussed in {2.3.10, it is not, we feel, satisfactory to assume that
limited liability will cut in as soon as the costs of guarantees exceed Qa. The
costs might fall on other reserves of the insurer, perhaps the ‘free’ assets or
the estate, or on the bonus rate on all policies, or on assets of the parent
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company of the insurer, if there is one. It is therefore appropriate to
consider the total distribution.

8.2.3 We look at this from the point of view of an investment by the
‘shareholders’. We assume that a contingency reserve of Qa has to be set up,
and we assume, as before, that it is invested in the same funds as the
policyholder’s investment. At maturity, the invested amount should be
sufficient (if all our assumptions are correct) to pay for the guarantees in a large
fraction a of the outcomes. In some cases, perhaps many cases, the cost of
the guarantee will prove to be nil, and the full value of the reserve will fall to
the shareholders. In other cases the guarantee will cost less than the proceeds
of Qa and rather less will fall to the shareholders. In a small fraction, 1ÿ a, of
cases the accumulated contingency reserves will prove insufficient and the
guarantees will have to be financed by the shareholders from other funds. The
contingency reserve can be seen as a risky investment of the shareholders,
which will often have a positive return, but might have a negative one. But how
much might shareholders be willing to pay for such an investment?

8.2.4 As we have discussed in Section 3.2, some might look at the ‘beta’
of such an investment in relation to some market index; but we do not believe
that investors will readily do this. Instead we believe that the methodology
we now describe may be more acceptable. We assume that the shareholders
are happy to receive whatever returns are available on the investment of the
contingency reserve, Qa, but that they would like some extra return on any
positive amounts after the guarantee claims have been paid for, and would
value negative returns adversely.

8.2.5 We use the notation of Section 2.3. If Qa is invested till time T it
will have accumulated to Qa:SðTÞ=Sð0Þ. The claim amount is
Max(0,S(T).ðg:aðTÞ ÿ 1ÞÞ, which we denote as G.S(T)/S(0). The shareholders
receive ðQa ÿGÞ:SðTÞ=Sð0Þ if this is positive, and pay ðGÿQaÞ:SðTÞ=Sð0Þ, if
the former expression is negative. We suggest that they discount any positive
amounts at a rate per annum of j more than the normal return, and
discount any negative amounts at a rate per annum of k less than the normal
return. Thus they value their investment at:

ðQa ÿGÞ:SðTÞ=Sð0Þ:Sð0Þ=SðTÞ:1=ð1þ jÞ
T
¼ ðQa ÿGÞ=ð1þ jÞ

T if Qa > G

ðQa ÿGÞ:SðTÞ=Sð0Þ:Sð0Þ=SðTÞ:1=ð1ÿ kÞ
T
¼ ðQa ÿGÞ=ð1ÿ kÞ

T if Qa < G

which can be expressed as:Z Qa

0
ðQa ÿGÞ=ð1þ jÞ

T:pðGÞ:dGþ
Z 1
Qa

ðQa ÿGÞ=ð1ÿ kÞ
T:pðGÞ:dG

where p(G) is the density function of G. This can be denoted as VðQaÞ, and
is a function, inter alia, of a, j and k. In practice this amount can be
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calculated during the simulations by discounting relevant positive amounts
at rate j and relevant negative amounts at rate ÿk.

8.2.6 Having calculated the value to the shareholders of their
investment, we now assume that they are willing to put up an amount VðQaÞ,
leaving the policyholder to provide Qa ÿ VðQaÞ, which we shall denote Da;j;k.
It can be compared with Ca;h, noting that a has the same function, and that h
and j have a similar function; k can also be considered to have a similar
function to h, but in reverse, penalising deficits.

8.2.7 Just as we do not know what values of a and h investors would
like, we do not know what values of a, j and k they might use. We quote
figures in Tables 8.2a and 8.2b for a ¼ 99% and 99.9%, j ¼ 1% and 2% and
k ¼ 1% and 2%. We also show the values of Ca;h previously calculated, for

Table 8.2b. Policyholder’s premiums for GAO per »100 single premium:
1995 Wilkie model, initial conditions of 31 December 2001,

mortality RMC92U2002

Term Q99 C99,1 C99,2 D99,1,1 D99,1,2 D99,2,1 D99,2,2

10 63.18 32.40 34.86 32.59 32.59 35.46 35.47
20 65.86 30.30 35.02 31.13 31.15 37.36 37.38
30 68.79 32.06 38.28 33.86 33.91 42.78 42.83
40 68.94 34.25 41.18 37.04 37.13 47.49 47.57

Q99.9 C99.9,1 C99.9,2 D99.9,1,1 D99.9,1,2 D99.9,2,1 D99.9,2,2

10 75.92 33.52 36.86 33.78 33.78 37.74 37.74
20 86.32 33.45 40.21 34.78 33.79 44.01 44.01
30 92.49 36.99 45.96 39.97 39.97 53.41 53.41
40 96.68 41.18 51.52 46.07 46.07 62.55 62.56

Table 8.2a. Policyholder’s premiums for GAO per »100 single premium:
1984 Wilkie model, initial conditions of 31 December 1984,

mortality PMA68U1985

Term Q99 C99,1 C99,2 D99,1,1 D99,1,2 D99,2,1 D99,2,2

10 7.84 0.94 1.51 0.98 0.98 1.62 1.63
20 15.36 3.36 5.03 3.60 3.61 5.71 5.73
30 21.08 6.12 8.82 6.76 6.79 10.45 10.48
40 23.69 8.28 11.55 9.38 9.44 14.08 14.13

Q99.9 C99.9,1 C99.9,2 D99.9,1,1 D99.9,1,2 D99.9,2,1 D99.9,2,2

10 13.69 1.47 2.47 1.53 1.53 2.67 2.67
20 26.87 5.22 8.18 5.66 5.66 9.45 9.45
30 35.39 9.27 13.84 10.42 10.43 16.81 16.82
40 41.29 12.99 18.76 15.11 15.11 23.64 23.64

Policies with Guaranteed Annuity Options 61



a ¼ 99% and 99.9% and h ¼ 1% and 2%. We show these for 1985 entrants,
using initial conditions as at 31 December 1984, on the 1984 Wilkie model,
with mortality PMA68U1985 (see Table 4.2a) and for 2002 entrants, using
initial conditions as at 31 December 2001, on the 1995 Wilkie model, with
mortality RMC92U2002 (see Table 6.4r). We omit the portfolio and the
‘sum’.

8.2.8 One can see from these tables that the values of D vary very little
with the ‘penalty’ rate k, especially when a ¼ 99:9%. The ‘tail’ of the
distribution beyond the quantile level is necessarily small (1% or 0.1% of the
total), and the tail is not very long, because the value of a life annuity is
limited, with non-negative interest rates, to the expectation of life. In practice
we have limited the long-term interest rates to a minimum of 0.5%, which
constrains the possible tail even further.

8.2.9 One can also see that the values of D for particular values of a
and j are not very different from the values of C for the same value of a and
h ¼ j. The principles involved in the calculations are comparable, even
though the methodology is different. Thus the ‘D’ method might be just as
satisfactory as the ‘C’ method (or even more so) for calculating the premiums
that should be charged to policyholders for any risky contract that requires
substantial contingency reserves.

æ. Conditional Tail Expectations

9.1 Introduction
9.1.1 We observed in {3.2.1 that a quantile reserve was an alternative

name for the concept also described as ‘Value at Risk’ (VAR). Value at risk
has, however, been criticised, for example by Artzner et al. (1999), and by
Wirch & Hardy (1999) for being ‘incoherent’. We can, for example, observe
from Table 2.5.1 that Q90 for term ten is zero. This can occur for any risk
that is sufficiently out of the money or is so unlikely that the less extreme
quantiles are zero. Consider, as another example, a one-year term assurance
on a younger life, for whom the probability of death within one year is small,
possibly less than 0.001. The quantile reserve, even on a 99.9% basis, would
be zero. Thus it is possible for a quantile reserve to be smaller than the mean
value of the claim. This is unsatisfactory.

9.1.2 Another problem is that, when risks are combined into a portfolio,
it is possible for the quantile for the portfolio to be greater than the sum of
the corresponding quantiles for the individual risks. Consider a large
portfolio of one-year term assurances; the quantile reserve on say a 99% basis
would allow for a small number of deaths occurring. But the sum of the
zero quantiles would still be zero. This inconsistency is less troublesome when
the individual quantiles are greater than their respective means, and the
results are positively, but less than perfectly, correlated (or are independent).

62 Reserving, Pricing and Hedging for



We have not in fact had any result where the quantile for the portfolio is
less than the sum of the individual quantiles, but the possibility of
inconsistency remains.

9.1.3 A way in which to produce a ‘coherent’ contingency reserve is to
use ‘tail VAR’ or ‘conditional tail expectation’ (CTE). Just as the quantile at
level a is defined as the value of any X (the risk) such that PðX < QaÞ ¼ a,
so the CTE, which we denote as Ta, is defined as: E½X j X � Qa�, that is, the
expected value of all those claims greater than or equal to the corresponding
quantile. It is easily calculated during our simulations. For 10,000
simulations we defined, for example, the 99% quantile as the value of V09901.
We can calculate the CTE by taking the average of the 100 largest values of
V0, from V09901 to V010000 inclusive. (This gave us an incentive to define e.g.
Q99 as V09901.)

9.1.4 The value of the CTE can never be less than the mean (because Q0
is itself equal to the mean, and Qa � Qb if a > b), and it can be shown
(Artzner et al., 1999) that, when risks are combined into a portfolio, the
portfolio CTE cannot be greater than the sum of the individual CTEs. Further,
it gives an easy way to partition the portfolio CTE amongst the individual
contributors to the risk (see Panjer & Jing, 2001). If the claim for individual i
is denoted Xi and the total claim is denoted X ¼ SXi with a CTE at level a
of Ta and corresponding quantile of Qa, then the individual contribution to Ta

can be taken as Ti;a ¼ E½Xi j X � Qa�. It follows that the individual
contributions sum to the total Ta ¼ STi;a, and the whole system is coherent.

9.1.5 The CTE can be considered also as equal to the quantile,
plus the expected value of the excess over the quantile, or
Ta ¼ Qa þ E½XÿQa j X � Qa�. The excess can be thought of as the pure ‘stop
loss’ or ‘excess of loss’ premium. However, it would not normally be
possible to obtain reassurance cover at such a premium, because the
reassurer would need to set up contingency reserves to cover his risk in the
same way as the primary insurer. In practice, therefore, the CTE just gives a
level of security higher than the quantile reserve does, for the same value of
a. The value of Ta for any chosen a is equal to Qb for some b > a. Therefore
to hold a CTE reserve of Ta, and to take no further action, is equivalent to
holding a quantile reserve at level b. This can be seen, for example, from the
detailed figures for a ten-year term policy in 1984 using PMA68 mortality
(as in Table 2.5.1). The quantile reserve on a 99% basis Q99, estimated by the
value of V09901 is 7.84. The CTE, T99, estimated as the average of the 100
largest values of V0, is 10.64. But we have V09963 ¼ 10.63 and V09964 ¼
10.76, so a 99% CTE reserve of 10.64 is almost equivalent to a 99.63%
quantile reserve.

9.2 Results on a CTE Basis
9.2.1 Table 2.5.1 showed certain quantile measures for policies entering

in 1985, using the initial conditions of 31 December 1984 and PMA68U1985
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mortality. Table 9.2.1a shows the same quantile reserves (though only for
the terms shown in Table 4.2a) and the corresponding CTE reserves for
a ¼ 95%, 97.5%, 99% and 99.1%. Table 9.2.1b shows the same results using
the 1995 Wilkie model, initial conditions of 31 December 2001 and RMC92U
mortality (see Table 6.4r)

9.2.2 It can be seen from these two examples that the CTE is always
greater than the quantile reserve, that the increase is less, both absolutely and
proportionately, for higher values of a (so that, e.g. T99.9 ÿ Q99.9 < T99 ÿ

Q99), and that the increase is absolutely greater, but proportionately less, in
Table 9.2.1b than in Table 9.2.1a, i.e. when the values are generally higher.

9.2.3 To show how to calculate the individual contributions to the
portfolio CTE we add a little notation. Put V0j as the cost of the guarantee
for the portfolio for simulation j after sorting, so that V0j > V0jÿ1. V0j has
been calculated as the sum of the individual costs for terms 10 to 40 inclusive,
which we denote as V0j;i, and then divided by 31 (because there are
31 terms). We have already defined e.g. T99 for the portfolio as
T99 ¼ Sj¼9901;10000V0j=100. We now go through (sorted) simulations j ¼ 9;901
to 10,000 and calculate, for each term, i, U99;i ¼ Sj¼9901;10000V0j;i=100. Note
that these simulations are those with the 100 largest values of the portfolio

Table 9.2.1a. Quantile reserves and CTEs for GAO per »100 single
premium: 1984 Wilkie model, initial conditions of 31 December 1984,

mortality PMA68U1985

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 T95 T97.5 T99 T99.9

10 6.57 0.26 1.00 3.91 7.84 13.69 4.93 7.55 10.64 15.93
20 16.51 0.99 7.52 11.03 15.36 26.87 12.49 15.91 20.35 28.79
30 24.05 1.74 11.37 16.17 21.08 35.39 17.59 21.78 27.08 38.64
40 29.74 2.30 13.70 18.05 23.69 41.29 20.12 24.67 31.05 44.76
Portfolio 59.65 1.33 6.72 9.27 12.43 20.95 10.29 12.78 16.10 22.72
Sum 29.74 1.33 8.74 12.66 17.78 29.84 14.26 18.06 22.96 33.03

Table 9.2.1b. Quantile reserves and CTEs for GAO per »100 single
premium: 1995 Wilkie model, initial conditions of 31 December 2001,

mortality RMC92U2002

Term NZ% Mean Q95 Q97.5 Q99 Q99.9 T95 T97.5 T99 T99.9

10 99.44 29.37 51.32 56.45 63.18 75.92 58.44 63.28 69.14 79.29
20 94.02 23.44 51.31 57.85 65.86 86.32 60.25 66.42 74.08 89.05
30 90.34 21.69 51.63 59.68 68.59 92.49 62.36 69.51 78.72 98.94
40 88.67 21.32 51.65 58.72 68.94 96.68 62.22 69.65 79.94 104.22
Portfolio 99.99 23.33 44.49 49.77 55.86 70.74 51.56 56.23 62.21 73.28
Sum 99.44 23.33 51.23 58.10 67.06 87.38 60.85 67.41 75.82 93.34
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cost, which are not necessarily the same as the 100 simulations with the
largest values of V0j;i, though it is likely that there is some overlap. Then
U99 ¼ SiU99;i=31.

9.2.4 We show the results of these calculations in Tables 9.2.2a and
9.2.2b, using the same extreme sets of data as in Tables 9.2.1a and 9.2.1b. We
describe the values Ua;i as ‘partial CTEs’. We can see that, in every case,
Ua < Ta, as we would expect; but the reduction is not uniform, either
absolutely or proportionately for all terms. Indeed, the sequence of values
becomes different. In both cases the values of T increase with term (though
this is not true for all sets of data), while in both cases the value of U is
largest (among the terms shown) for term 30. The average of the values of U
for all 31 terms equals the portfolio value of T.

"ò. Option Pricing and Hedging

10.1 Introduction
10.1.1 So far we have described a system of reserving for extreme events

by calculating and setting up static reserves, which are maintained, perhaps
with adjustment, for the duration of the contract. However, another way of
reserving for financial options, such as GAOs are in respect of the interest
rate risk, is by modern option pricing and dynamic hedging. We now
consider this possibility.

Table 9.2.2a. Partial CTEs for GAO per »100 single premium: 1984Wilkie
model, initial conditions of 31 December 1984, mortality PMA68U1985

Term T99 U99 T99.9 U99.9

10 10.64 2.13 15.93 4.24
20 20.35 12.26 28.79 19.19
30 27.08 23.73 38.64 29.09
40 31.05 20.87 44.76 27.81
Portfolio 16.10 16.10 22.72 22.72

Table 9.2.2b. Partial CTEs for GAO per »100 single premium: 1995Wilkie
model, initial conditions of 31 December 2001, mortality RMC92U2002

Term T99 U99 T99.9 U99.9

10 69.14 48.18 79.29 51.69
20 74.08 61.12 89.06 69.92
30 78.72 70.48 98.94 81.97
40 79.94 58.43 104.22 64.19
Portfolio 62.21 62.21 73.28 73.28

Policies with Guaranteed Annuity Options 65



10.1.2 The analogy between GAOs and other types of financial option
has been brought out by other authors, including Bolton et al. (1997); Van
Bezooyen, Exley & Mehta (1998); Pelsser (2002) and Ballotta & Haberman
(2002). We discuss these in Section 10.5.
10.1.3 Yang (2001) also uses option pricing methodology. We follow her

approach, which is to use, inter alia, the Black (1976) model, originally
devised for options on commodity prices. The essence of the Black approach
is that the price of the commodity is assumed to follow geometric Brownian
motion, so that its value at any future date is lognormally distributed.
However, GAOs are a type of ‘quanto’ option, so are more complicated.
Further, we allow for the stochastic nature of interest rates before retirement
(which Yang did not). A full description of our assumptions and
methodology, showing how the formulae for the option price and for the
hedging proportions have been derived, is contained in Appendix C, which
the interested reader may wish to read in full now. For those who just wish to
know the results, we now give an outline of our assumptions, repeating to
some extent the material in Appendix C.

10.2 The Option Pricing Model
10.2.1 We start by defining a new type of option, a Maxi option, which

provides, at expiry at T, the greater in value of two assets, i.e. Max(A(T), B(T)).
This, in fact, is what many insurance companies provide. We then show that a
GAO, of the type we are considering, is a type of ‘quanto’ option, where the
payoff at time T depends on two factors, the value of the ‘units’, S(T), which
defines the quantity, and the relationship of the guaranteed rate to the market
annuity value, so that the payoff is £SðTÞ �Maxð1; g� aðTÞÞ. Note that the
Maxi option includes the basic value of the units, so the GAO now consists of
the whole contract, not just the extra over and above the unit value.

10.2.2 We follow closely the methods of Baxter & Rennie (1996). We
assume that there are three tradeable assets. The first is the unit fund, whose
market price per unit at time t is S(t). Next we assume a zero-coupon bond,
a ‘zcb’, which pays 1 at time T, and prior to that has value B(t,T) or just B(t).
We then assume that we can invest in a deferred life annuity, a ‘dla’, whose
value at time t is D(t,T) or D(t), and which provides a ‘life annuity’ at time T,
of annual rate 1, of the required type. This is not an annuity on an
individual life, but instead is an annuity certain, with the payments reducing
proportionately to tp65 on some prescribed life table. We relate the price of
the deferred annuity to the price of a forward life annuity, an ‘fla’, whose
price at time t, F(t,T) or F(t), is related by: D(t) ¼ F(t) � B(t).
10.2.3 We assume that the prices of the tradeables are driven by three

separate Brownian motions, W1, W2 and W3. Wi and Wj have instantaneous
correlation rij. The Wis are related to three independent Brownian motions,
Z1, Z2 and Z3 through a matrix, C: dW ¼ C.dZ. C can conveniently be made
a lower triangular matrix.
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10.2.4 The share price, S(t), is driven by the stochastic differential
equation:

dSðtÞ ¼ mSð Þ:SðtÞ:dtþ sS:SðtÞ:dW3

where sS is a constant, and mSð Þ ¼ mS, so that the logarithm of the share
price performs a random walk with constant drift.

10.2.5 The zcb price, B(t), is driven by the zcb interest rate, R(t), which
has the stochastic differential equation:

dRðtÞ ¼ mRð Þ:dtþ sR:dW2

where sR is a constant, and mRð Þ ¼ aRðyR ÿRðtÞÞ, so that R(t) follows an
Ornstein-Uhlenbeck process. The zcb price, B(t), is related to the zcb interest
rate, R(t), by:

BðtÞ ¼ expðÿðTÿ tÞ:RðtÞÞ:

10.2.6 The dla price, DðtÞ ¼ FðtÞ � BðtÞ, is driven by the zcb price, B(t),
and the fla price, F(t). We assume that F(t) has stochastic differential
equation:

dFðtÞ ¼ mFð Þ:FðtÞ:dtþ sF:FðtÞ:dW1

where sF is a constant, and mFð Þ ¼ aFðyF ÿ logFðtÞÞ þ 1
2s

2
F, implying an

Ornstein-Uhlenbeck process for logF(t).
10.2.7 We then show that the price of the option at time t is:

VðtÞ ¼ SðtÞ:½G:Nðd1Þ þNðd2Þ�

where:

d1 ¼ logðGÞ=Sþ 1
2S

d2 ¼ ÿ logðGÞ=Sþ 1
2S

G ¼ g:FðtÞ: expðCovÞ

Cov ¼ ðTÿ tÞ
2:r12sR:sF=2þ ðTÿ tÞ:r13:sS:sF

and

S ¼ sF

p
ðT ÿ tÞ:

We observe that mSð Þ, mRð Þ and mFð Þ do not enter this formula. This is
similar to what is found in the Black-Scholes result for an ordinary option on
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a share. We note also that r23 does not come in either; any correlation
between the zcb and the share does not affect the value of the option.
However, r12 and r13 are very relevant.

10.2.8 The hedging proportions, the amounts to be invested at all times
in the three tradeables, are:
ö invested in the share: jSðtÞ ¼ VðtÞ;
ö invested in the dla: jDðtÞ ¼ SðtÞ:G:Nðd1Þ; and
ö invested in the zcb: jBðtÞ ¼ ÿjDðtÞ.

The amount invested in units is the full value of the Maxi option. The
amounts invested in the dla and the zcb are equal, but of opposite signs, the
former positive (implying a ‘long’ position) and the latter negative (or ‘short’,
equivalent to borrowing). The more the option is in the money the larger
are these offsetting amounts, approaching in the limit the full value of the
option. If the option is very far out of the money, these amounts are both
small.

10.3 Discrete Hedging
10.3.1 In Appendix C we show that, if the ‘real world’ model is the

same as the model used for option pricing, with the same parameters in so far
as these are relevant, and if hedging is simulated as taking place, free of
transaction costs, at frequent enough intervals, then the result of the
investment process closely matches the required payoff of the option in each
simulation. This most important point is essential to the option pricing
methodology. In order for the theoretical option price, calculated in
accordance with the theoretical model, to be taken as the true or ‘fair’ value
of the option, it is necessary that it is possible to carry out hedging in
accordance with the required proportions, sufficiently frequently, and
sufficiently cheaply, so that the results of investment according to the
hedging strategy can be shown to replicate the desired payoff. Unless hedging
can actually be carried out in this way, then theoretical option prices are,
we suggest, not ‘fair values’, nor indeed of much use for any purpose. We
revert to this in Section 12.
10.3.2 Note that for the GAO the real world model and the option

pricing model need to correspond only in relation to the standard deviations
and to two out of the three correlation coefficients, and of course need to use
the same values for the guaranteed rate g and the initial value of the fla,
F(0).

10.3.3 The theoretical ‘real world’ model used for validation in Appendix
C is an artificially simplified one. We now investigate what the consequences
would be of a more realistic real world model being used for the simulation,
with, nevertheless, the option prices and hedging proportions being calculated
according to the model set out in Appendix C. As in the previous sections we
assume the Wilkie model for the real world. However, this model is defined for
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simulation only at annual steps, so we need to be able to simulate it at more
frequent intervals. We do this by means of interpolation with ‘stochastic
bridges’, which we describe more fully in Appendix D.

10.3.4 For these experiments we use, in the first place, a hybrid Wilkie
model, with the parameters of the 1984 model (as given in {2.4.3), but with
the addition of the model for the base rate B(t), as in the 1995 version of the
model, but with parameters: BMU ¼ ÿ0:185, BA ¼ 0:75, BSD ¼ 0:175. This
allows us to construct a yield curve, as described in Appendix B, with a value
for b of 0.39. Later we use the full 1995 version.

10.3.5 We first simulate annual values of the model, and then use a
Brownian bridge to interpolate between successive annual values of the
logarithm of the share Total Return Index S(t). We use an OU bridge
for the logarithm of the consols yield C(t), and another for the ‘log
spread’ ¼ log(B(t)/C(t)). The annual parameters we use in the first place
are:

for the share total return: sy ¼ 0:2;
for the log consols model: my ¼ ÿ2:48; ay ¼ 0:96 and sy ¼ 0:08; and
for the log spread model: my ¼ ÿ0:185; ay ¼ 0:75 and sy ¼ 0:175.

In the 1995 Wilkie model, the log spread is simulated using an AR(1)
model, and the parameters above are those for the annual hybrid model. The
other parameters are based on simulations using the 1984 parameters of the
model.

10.3.6 When we use the 1995 model for the annual simulations, with the
parameters as given in {6.1.2, we use bridging parameters:

for the share total return: sy ¼ 0:2;
for the log consols model: my ¼ ÿ2:56; ay ¼ 0:94 and sy ¼ 0:095; and
for the log spread model: my ¼ ÿ0:23; ay ¼ 0:74 and sy ¼ 0:18.

10.3.7 We then choose parameters for the option pricing model that are
based on simulations of the hybrid model, with the zero coupon rate derived
from the yield curve and the value of the fla derived from a specific
mortality table and the appropriate part of the yield curve. In practice we
find that the particular mortality table used affects the mean value of the fla
(which is not needed for the option pricing formula), but hardly affects the
standard deviation (which is what we need). The zcb rate depends on the
term, and on exactly how its parameters are estimated. In the option model,
we assume that the zcb rate for a specific maturity date has constant
parameters; but this is the track of a zcb rate that is constantly shortening its
term. In practice the standard deviation of zcb rates for shorter terms is
larger than that of rates for longer terms, so the assumption of constancy is
not strictly valid; but the variation is not great. For simplicity, we use the
same option pricing parameters for all terms and all mortality bases. It
would be more precise to use different ones.
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10.3.8 In our first trials we discovered that our chosen parameters gave
surpluses at maturity when the hedging strategy was followed. We therefore
adjusted the parameters a little, so that the investment proceeds broadly
matched the required payoffs from the option. The parameters appropriate
for the 1984 hybrid model were:

for the share: 0.2;
for the zcb: 0.006;
for the fla: 0.03;
correlation coefficient between share and fla: 0.3; and
correlation coefficient between zcb and fla: ÿ0:9.

10.3.9 When we used the 1995 parameters of the model, these were
altered to:

for the share: 0.2;
for the zcb: 0.01;
for the fla: 0.04;
correlation coefficient between share and fla: 0.2; and
correlation coefficient between zcb and fla: ÿ0:9.

10.3.10 In carrying out our experiments it appeared that what was all-
important to the success of the hedging strategy was how closely the option
pricing model matched the model used for stochastic bridging. The annual
model used did not seem to matter. If this is generally true, it is possibly an
important result, and it deserves more investigation than is necessary for our
immediate purpose.

10.3.11 We restrict ourselves to simulation with hedging being carried
out twice per month. We have discovered in another context that, if
reasonable transaction costs are allowed for, this frequency gives the best
balance between the cost of hedging and the accuracy. In a fuller
investigation we would allow for transaction costs in this case too, and find
what frequency of hedging was best. Another strategy, described by Boyle &
Hardy (1997), is to investigate frequently, but to alter the portfolio only
when it is sufficiently far away from the desired proportions.

10.3.12 As described in Appendix C, if one starts with the correct
amounts invested in shares, dla and zcb, in accordance with the correct
hedging proportions at time 0, by the end of the next time step the value of
investments will, in general, not have changed exactly in line with the option
value. In {C.11.6 we describe the different investment strategies that might
then be followed. Sometimes one of these strategies seems to be the best,
sometimes another. We find that procedure (iv) is always amongst the best,
so we have used it throughout these experiments. This involves investing the
net proceeds at each step, whatever they are, in accordance with the correct
hedging proportions at that point.

10.3.13 When we reach the end of the deferred period (the retirement
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age) for each contract, we then see whether the investment proceeds are
sufficient to pay for the required payoff of the maxi option at that time.
Often they are too great; often they are too little. We calculate the deficit,
and we then calculate the present value of that deficit. We could discount in
any of four different ways, assuming that the contingency reserve (which we
shall wish to set up) is invested in: the share portfolio, the zcb, the dla, or in
accordance with the same proportions as the option hedging portfolio.
Sometimes one of these is better, sometimes another. Investing in accordance
with the hedge portfolio seems to be, on balance, the best, and we have
used this in these experiments. However, whether this is the best strategy in
any other case would require investigation; in investigations of other types of
option we have found that it is far from being the best.

10.3.14 We now, for any particular term and starting conditions, have
the initial option price, the same for all simulations, and the discounted
present values of the deficit for each simulation. We should then allow for the
fact that not all policyholders will survive to the end of the term, and so be
able to take advantage of the GAO. This affects both the option premium
and the value of the deficit. We therefore multiply both the excess of the
option value over »100 and the value of the deficit by Tpx, to give figures that
correspond with V0 as defined in {2.3.6. We denote the reduced option
price (in excess of »100) as ROP, and the reduced and discounted value of the
deficit by DPV, as before.

10.3.15 We can calculate the mean value of the DPV, its standard
deviation (and since the deficit is reasonably symmetrical this is meaningful,
though the DPVs are also quite skew and very fat-tailed), and we can rank
them in sequence, just as we did for the corresponding amounts V0 in
Section 2.3. We can then calculate quantile reserves and CTEs as before. The
insurer needs to set up contingency reserves, in addition to the option price,
at some desired level of security, based either on a quantile, or, preferably, on
a CTE. The policyholder’s premium (in excess of »100) should consist of the
reduced option price (ROP), the mean value of the DPV, the two together
making up the amount denoted A, together with a further amount B,
calculated in the same way as before, making up a total amount C.
Alternatively the office may calculate premiums in accordance with the
procedure that we describe in Section 8.2. The relevant question is then:
“Does the hedging procedure allow lower contingency reserves to be set up,
and does it allow lower premiums for the policyholder, both with the same
level of security, and with the same parameters?’’

10.4 Results of Hedging
10.4.1 We start as if at the beginning of 1985, with market conditions

for the investment model as at 31 December 1984, and using mortality
PMA68U1985. Table 10.4.1 shows, for terms 10, 20, 30 and 40, the value of
the fla F(0) at commencement, the value of the maxi option per »100, the
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value of the reduced option premium, and the amounts that should be
invested in the share, the zero-coupon bond and the deferred life annuity
initially (assuming the full, not the reduced, option price). The options are
well out of the money, the values of the option are quite small, and the
amounts invested in the zcb and dla are not enormous, though they are much
larger than the value of the option might suggest.

10.4.2 Table 10.4.2 shows the same as Table 2.5.1 (for terms 10, 20, 30,
40, the total portfolio, and the ‘sum’) with the mean cost and selected
quantiles, all including the ROP. Careful comparison with Table 2.5.1 shows
that the means for terms 10 and 20 are larger with the hedging strategy, but
for terms 30 and 40 are smaller. The extreme quantiles are very much smaller
now, but Q90 for a ten-year term, previously zero, is now larger. Previously
the values all increased considerably with term. Now the values for term 40
are lower than for term 30, and the values for term 30 are not much greater
than those for term 20. Of course with different parameters different results
might well be obtained.

10.4.3 Table 10.4.3 shows the same as Table 2.5.3 (omitting the ‘sum’),
with values of B and C for a ¼ 99% and 99.9%, h ¼ 1% and 2%. Remember
that C is the proposed premium that the policyholder should pay, in excess of
the basic premium of »100. Comparison with Table 2.5.3 shows that these

Table 10.4.1. Values for the option per »100 single premium: initial
conditions of 31 December 1984, mortality PMA68U1985

Term F(0) Option price Reduced OP Share Zero-coupon
bond

Deferred
annuity

10 7.69 100.22 0.19 100.22 ÿ5.56 5.56
20 7.74 100.91 0.74 100.91 ÿ13.65 13.65
30 7.85 101.39 1.13 101.39 ÿ16.47 16.47
40 7.93 101.50 1.24 101.50 ÿ15.72 15.72

Table 10.4.2. Present value of cost of GAO per »100 single premium, with
hedging: 1984 Wilkie model, initial conditions of 31 December 1984,

mortality PMA68U1985

Term Mean Q90 Q95 Q97.5 Q99 Q99.5 Q99.9

10 0.42 0.73 0.91 1.09 1.30 1.42 1.78
20 1.07 1.60 1.80 1.98 2.18 2.35 2.60
30 1.10 1.88 2.11 2.32 2.56 2.71 3.02
40 0.53 1.64 1.93 2.15 2.43 2.62 3.00
Portfolio 0.91 1.33 1.43 1.51 1.60 1.67 1.80
Sum 0.91 1.59 1.81 2.00 2.24 2.41 2.76
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values are now much lower. It would therefore seem from these figures that
the hedging strategy, although the mean cost may sometimes be greater than
without it, would be beneficial to both shareholder and policyholder, in that
lower contingency reserves would be required, and a lower premium is
appropriate. However, we have tried only one experiment.
10.4.4 We now move forward to the initial conditions of December

1995, and use PMA80U mortality and the 1995 Wilkie model. Table 10.4.4
shows details of the option pricing. The options are now a little into the
money. The option prices are not much above 100, but the amounts to be
invested in the zcb and the dla are quite a lot larger than before.

10.4.5 Table 10.4.5 shows the same information as Table 10.4.2, and it
should be compared with Table 6.2l. The means are higher for short terms,
lower for longer terms, and all the quantiles are substantially lower. There is
not a great variation in the quantiles by term, whereas in Table 6.2l they
rise quite a lot as the term increases.

10.4.6 Table 10.4.6 shows the same information as Table 10.4.3, and
should also be compared with Table 6.2l. The values of C are almost
everywhere lower than they would be without hedging. The only exceptions
are C99,1 and C99.9,1 for term ten.

Table 10.4.3. Charge to policyholders per »100 single premium, with
hedging: different combinations of a and h; 1984 Wilkie model, initial

conditions of 31 December 1984, mortality PMA68U1985

Term 99%, 1% 99%, 2% 99.9%, 1% 99.9%, 2%

A¼Mean B C B C B C B C

10 0.42 0.08 0.50 0.15 0.57 0.12 0.54 0.23 0.65
20 1.07 0.18 1.26 0.32 1.39 0.25 1.33 0.43 1.51
30 1.10 0.34 1.43 0.55 1.65 0.44 1.54 0.72 1.82
40 0.53 0.54 1.07 0.84 1.37 0.70 1.24 1.09 1.63
Portfolio 0.91 0.14 1.05 0.23 1.14 0.18 1.09 0.29 1.21

Table 10.4.4. Values for the option per »100 single premium:
initial conditions of 31 December 1995, mortality PMA80U1996

Term F(0) Option price Reduced OP Share Zero-coupon
bond

Deferred annuity

10 9.35 107.13 6.57 107.13 ÿ65.69 65.69
20 9.46 107.62 6.90 107.62 ÿ56.07 56.07
30 9.52 105.91 5.35 105.91 ÿ41.13 41.13
40 9.55 103.58 3.24 103.58 ÿ25.32 25.32
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10.4.7 We now go to the other end of the scale to use the 1995 Wilkie
model, the initial conditions of 31 December 2001, and RMC92U mortality.
Table 10.4.7 shows details of the option pricing. The options are now well
into the money, and correspondingly expensive. The amounts to be invested
in the zcb and the dla are now almost as large as the amount to be invested in
shares, especially for shorter terms.

Table 10.4.5. Present value of cost of GAO per »100 single premium, with
hedging: 1995 Wilkie model, initial conditions of 31 December 1995,

mortality PMA80U1996

Term Mean Q90 Q95 Q97.5 Q99 Q99.5 Q99.9

10 7.28 8.42 8.74 9.04 9.35 9.65 10.28
20 7.79 9.17 9.53 9.83 10.23 10.52 11.09
30 6.56 8.03 8.42 8.81 9.35 9.68 10.46
40 4.84 6.63 7.35 8.00 8.93 9.68 11.46
Portfolio 6.88 7.77 8.00 8.19 8.41 8.61 8.96
Sum 6.88 8.31 8.75 9.13 9.61 9.95 10.72

Table 10.4.6. Charge to policyholders per »100 single premium, with
hedging: different combinations of a and h; 1995 Wilkie model,
initial conditions of 31 December 1995, mortality PMA80U1996

Term 99%, 1% 99%, 2% 99.9%, 1% 99.9%, 2%

A¼Mean B C B C B C B C

10 7.28 0.19 7.47 0.35 7.62 0.27 7.55 0.50 7.78
20 7.79 0.41 8.20 0.70 8.49 0.55 8.34 0.94 8.73
30 6.56 0.64 7.20 1.04 7.60 0.90 7.46 1.46 8.02
40 4.84 1.16 6.01 1.81 6.65 1.88 6.72 2.92 7.76
Portfolio 6.88 0.31 7.18 0.51 7.39 0.42 7.29 0.69 7.57

Table 10.4.7. Values for the option per »100 single premium:
initial conditions of 31 December 2001, mortality RMC92U2002

Term F(0) Option price Reduced OP Share Zero-coupon
bond

Deferred annuity

10 12.77 141.46 39.29 141.46 ÿ141.09 141.09
20 13.08 139.75 37.54 139.75 ÿ135.93 135.93
30 13.29 132.93 31.32 132.93 ÿ120.34 120.34
40 13.45 123.30 22.33 123.30 ÿ94.98 94.98
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10.4.8 Table 10.4.8 shows the same information as Table 10.4.2, and it
should be compared with Table 6.4r. The means are higher, but the quantiles
are substantially lower. It is interesting that the mean and the quantiles do
not vary very much by term, just as can be seen in Table 6.4r.

10.4.9 Table 10.4.9 shows the same information as Table 10.4.3, and
should also be compared with Table 6.4r. The values of C are now generally
larger than what they would be without hedging. Thus for term ten they are
now distinctly higher, for term 20 they are mostly higher, for term 40 they
are lower, and for term 30 they are mixed. While the hedging would allow
lower contingency reserves, it does not seem to be conspicuously cheaper for
the policyholder; but the differences between the two methods are quite
sensitive to the parameters and assumptions used. Further, we have not
allowed for the transaction costs of hedging, which would make all the
hedging methods considerably dearer.

10.4.10 In our calculations so far, both with and without using the
hedging strategy, we have assumed that the real ‘real world’ does in fact
behave according to our assumptions: our assumptions about the models; the

Table 10.4.8. Present value of cost of GAO per »100 single premium,
with hedging: 1995 Wilkie model, initial conditions of 31 December 2001,

mortality RMC92U2002

Term Mean Q90 Q95 Q97.5 Q99 Q99.5 Q99.9

10 38.35 39.38 39.71 40.11 40.65 41.25 42.67
20 37.92 40.43 41.63 42.66 43.72 44.47 45.97
30 33.94 37.64 38.84 39.81 40.92 41.75 43.21
40 26.86 31.71 33.35 34.86 36.40 37.66 40.40
Portfolio 34.99 37.43 38.14 38.75 39.41 40.01 40.66
Sum 34.99 38.01 39.10 40.10 41.29 42.12 43.84

Table 10.4.9. Charge to policyholders per »100 single premium,
with hedging: different combinations of a and h; 1995 Wilkie model,
initial conditions of 31 December 2001, mortality RMC92U2002

Term 99%, 1% 99%, 2% 99.9%, 1% 99.9%, 2%

A¼Mean B C B C B C B C

10 38.35 0.21 38.56 0.38 38.73 0.39 38.74 0.72 39.07
20 37.92 0.96 38.89 1.65 39.57 1.33 39.26 2.28 40.20
30 33.94 1.60 35.54 2.60 36.54 2.12 36.06 3.44 37.38
40 26.86 2.70 29.56 4.19 31.05 3.82 30.67 5.92 32.77
Portfolio 34.99 0.88 35.87 1.47 36.46 1.13 36.12 1.87 36.87
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values of the parameters; and the distribution of innovations, both for the
annual (macro) model and for the bridging (micro) process; further, we have
assumed at each stage that the latest mortality forecasts would in fact be
realised, whereas the record of the forecasts made by the C.M.I. from time to
time has not been as accurate as one would have liked. In Section 11 we
discuss a number of further enhancements to the methods that we have
discussed so far, and consider their possible effects.

10.5 Other Papers on Options and GAOs
10.5.1 Boyle (1978) seems to have been the first to suggest that option

pricing methodology could be applied to the valuation of guaranteed annuity
options, but this idea does not seem to have been taken up during the next
20 years. Bolton et al. (1997) draw an analogy between a GAO and a
‘swaption’, which is a financial option giving the holder the right to effect a
‘swap’ at some future date on pre-arranged terms. A ‘swap’ is, in its
economic effect, the same as the forward purchase of a coupon bond at a
specific time, for a specific term and coupon rate. Beyond quoting some
specimen costs for such swaptions, Bolton et al. carry the idea no further,
and assume that a life office would purchase a swaption from some
counterparty.

10.5.2 Van Bezooyen, Exley & Mehta (1998) (VBEM) discuss the
swaption idea much more fully, in conjunction with the quanto concept. They
develop two formulae for the option price, both similar to ours, but
omitting the important element of the (negative) correlation between the zcb
and the dla. Their first formula uses the Black model, assuming that the
prices of shares and of the fla are lognormally distributed; but they seem to
omit variation of the interest rate during the deferred period, or at least its
correlation with the fla price.

10.5.3 The second formula of VBEM allows for the purchase, not of an
annuity, but of a further zcb at retirement, on the grounds that an annuity is
simply the weighted sum of a number of such zcbs. However, an option on
an annuity is not the same as the sum of separate options on such zcbs,
because each separate option could be either exercised or not, whereas the
GAO is either exercised all together or not at all. They model interest rates
with a one-factor Hull & White (1990) model, in which (we suppose, but full
details are not given) the immediate short rate follows a Vasicek model (like
our zcb rate).

10.5.4 VBEM suggest hedging by, in effect, entering into forward
contracts for a portfolio of zcbs that match the required annuity; in our view
this is like reinsurance and simply passes the real hedging problem on to
someone else, as we explain in Section 10.7. They also demonstrate the
results of discrete hedging at monthly intervals over a past period, and show
how a more complicated hedging strategy than we have suggested could
match up changes in the partial derivatives of the option value as well as in
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the option value itself; this is well worth exploring further. However, they
do not indicate a way of calculating contingency reserves to cover hedging
error and the corresponding transaction costs.

10.5.5 Pelsser (2002) develops the swaption idea further, showing that a
life annuity (as we have defined it, i.e. an annuity certain with reducing
payments) can be replicated by a series of coupon bonds equally as well as by
a series of zero-coupon bonds. An option on a life annuity can be replicated
by a series of swaptions on coupon bonds, which are readily available in the
market (though whether for the terms and quantities required is not clear). A
single option on a life annuity has a lower value (or rather, no higher a
value) than the options on the replicating bonds, because one can ‘cherry-
pick’ which of the latter to exercise, whereas the GAO must be exercised in
totality; but a result of Jamshidian (1989) indicates that, if rates of interest
are modelled by a one-factor model, the two portfolios can have equal values
at some adjusted exercise rate.
10.5.6 Pelsser also develops a theoretical model for GAOs on similar

lines to what we have done, but with an interesting addition. Using the fact
that, if interest rates are never negative, the annuity rate has a lower limit, he
models the forward life annuity through the rate (we model the value), as if
it were a shifted lognormal, i.e. the excess of the rate over the minimum value
is assumed to be lognormal. If one converts the rate to a value by taking
the reciprocal, one then has a distribution with an upper limit, which cannot
be lognormal, and this would be intractable. By choosing the deferred
annuity as the numeraire, i.e. dividing by D(t) in our model, he keeps the
lognormal part in the numerator of his expressions, and derives a formula,
similar to ours, but with the offset recognised. This model is worthy of
further consideration. However, Pellser does not then seem to use an
explicitly separate model to drive the zcb part before retirement, as we do,
and he gives no numerical results in this part of his paper.

10.5.7 Pellser ignores the connection between share price changes and
interest rates because he is working in the framework of traditional with-
profits policies, with increases in the reversionary bonus from time to time.
When the bonus is increased, extra swaptions are purchased, but the
swaption portfolio remains static otherwise. He does not discuss how the
swaptions are paid for, but obviously the cost could be treated as part of the
cost of bonus.

10.5.8 The paper by Ballotta & Haberman (2002) is possibly still subject
to revision, because we have seen several versions, and the latest version has
numerical results that do not seem wholly plausible. They are ambitious and
complicated, using a single factor interest rate model, with the fullest
generalisation of the Heath-Jarrow-Morton (1992) model, in which the
standard deviations of forward rates are functions of time, and including the
correlation between shares and interest rates. They also use Jamshidian’s
(1989) result. They then simplify to two specific cases, one with fixed
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standard deviations, the other with an exponential decay in the standard
deviation. Both methods appear to miss out the correlation observed in our
model between short and long-term rates, though with a single factor this
should be automatic. They do not derive the hedging proportions. However,
their work also deserves further study.

10.5.9 None of the authors mentioned above discuss how the options
should be priced to the policyholder, nor what contingency reserves might
need to be kept in addition to the option value, for example for mortality
uncertainty, as we discuss in Section 11.3, nor the errors and costs of
empirical hedging at discrete intervals (though VBEM do give one historical
example), nor the practicability of hedging, which we now discuss.

10.6 Practical Considerations
10.6.1 We have so far made our calculations as if it were in fact possible

to carry out the hedging strategy in the way that we have described. It is of
course possible to invest in the ‘share’ portfolio. Life offices do this anyway;
but the zcb and the dla are a different matter. The former has to be held
‘short’ the latter ‘long’. Zero-coupon U.K. government bonds, in the form of
‘strips’, have existed since early in 1998. We do not know how easy it is to
hold such a bond short for a long period, and to adjust the amount up and
down as required, but so far as we know, bonds can be held short in the
‘repo’ market only for very short periods, such as a few days.

10.6.2 Deferred life annuities, in the form that we have described, i.e. as
a fixed-interest contract with no payment until some vesting date, and
payments thereafter in proportion to the values of tp65 according to a
specified life table, are not, and so far as we know never have been, issued. It
would be possible to replicate such a bond with an appropriate schedule of
zcbs, or similarly with deferred coupon bonds, if these existed.
10.6.3 Even though strips have existed since 1998, their duration is not

long enough to match all the payments even of an immediate annuity, and
certainly not to cover a deferred annuity with a longer term. The longest
U.K. government stock in issue in 1985 with a final redemption date was
12% Exchequer 2013-17, which might be repaid as early as 12 December
2013, some 28 years ahead from 1985, or might be redeemed as late as 12
December 2017, 32 years ahead. It remained the longest dated stock until
1996, by which time its maturity dates were 17 and 21 years away. Longer
stocks issued since then have been:
ö on 29 February 1996: 8% Treasury 2021, repayable 7 June 2021;
ö on 29 January 1998: 6% Treasury 2028, repayable 7 December 2028;
ö on 25 May 2000: 4 Ù̂̆ % Treasury 2032, repayable 7 June 2032; and
ö on 27 September 2001: 5% Treasury 2025, repayable 7 March 2025.

All four of these stocks are now in strippable form, and a series of strips
exists, payable on 7 March, 7 June, 7 September and 7 December, each
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quarter until 7 June 2032. So-called ‘irredeemable’ stocks also exist, the
largest of which is 31

2% War Stock (often called ‘War Loan’) but all of these
are now repayable when the Government chooses, generally with just three
months notice. Such an early redemption would presumably happen if
interest rates fell significantly below the coupon rates on the stocks, which
range from 21

2% to 4%. None of the irredeemables is therefore satisfactory to
match with certainty a very long liability, particularly a GAO, which is of
greater value when interest rates fall.
10.6.4 Some U.K. corporate bonds with longer maturities do exist, but

their security is obviously less than that of government bonds, and during the
1980s and much of the 1990s the quantities issued were not large. So far as
we are aware, they are only in the form of coupon bonds. It may sometimes
be possible to match a schedule of deferred annuity payments with long and
short holdings of coupon bonds, but this still requires holding such bonds
short for extended periods, and also of adjusting the amounts frequently to
match the hedging requirement.

10.6.5 What may be required is to match a portfolio of GAO policies of
different terms. The overall maturity schedule would need to be taken into
account, but for any portfolio of policies the negative holdings are necessarily
shorter in date overall than the positive holdings, which are longer in date.
A life office could perhaps include a portfolio of immediate or vested
annuities in the calculations, and by so doing offset some of the early
negative holdings; but there would still be a lot of frequent adjustment, and
stocks of a long enough date do not seem to be available.

10.6.6 A zcb and a dla combined form a portfolio which is exactly
equivalent to a forward contract to purchase an fla. A life office might be
able to arrange such a forward contract with another institution, such as an
investment bank. However, that other institution would need to match its
liability by holding a zcb short and a dla long, so the problem is simply
passed on rather than solved.

10.6.7 A further problem about any dynamic hedging is that the very fact
of hedging may affect the prices of the underlying securities in the market. This
is a feature of all option pricing models, all of which (so far as we are aware)
assume that the prices of the underlying securities follow some stochastic
process which is not affected by the action of hedging by those who have
written options. But it is reasonable to assume that the attempted purchase or
sale of any security, beyond some trivial quantity, acts to increase or decrease
the market price of the security to some extent. Since this volume effect is not
normally taken into account, theoretical option prices are therefore only
marginal prices, i.e. the prices of a negligible quantity of options.

10.6.8 This aspect of option pricing was recognised by the Maturity
Guarantees Working Party (Ford et al., 1980), who observed ({6.6), in the
context of maturity guarantees, that if all life offices that had written policies
with maturity guarantees tried to sell shares when the price of shares fell, as
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the hedging strategy required, this would simply push the price of shares
down further, which in turn would require more selling of shares. This type
of ‘portfolio insurance’ effect is said to have exacerbated the share price
crash of October 1987.

10.6.9 In the case of GAOs the effect would be felt differently. If share
prices rose, so that the amounts that should be invested in zcbs and dlas
increased, this would mean more selling of (shorter) zcbs and buying of
(longer) dlas, so altering the ‘slope’ of the yield curve. If interest rates fell, so
that the prices of both zcbs and dlas rose, the slope of the yield curve would
also be altered; but the effect of the change would be a differential effect on
the (shorter) zcbs and the (longer) dlas, which might reinforce the effect of
the change in slope of the yield curve, possibly in an unstable way.

10.6.10 The quantity of U.K. life business with GAOs attached was
estimated by Bolton et al. (1997) to have been about »35 billion, as at the end
of 1996. The value has probably increased since then because of the rise in
share markets, but the quantity has probably reduced because few new
policies have been written, and some have passed retirement and others have
been bought out. In comparison with the size of the U.K. gilts market
(about »300 billion in 2002) the amount is not overwhelming, but it would be
large enough to affect prices if long enough bonds existed to make the
hedging possible at all.

10.6.11 We conclude that, however attractive the hedging strategy is
conceptually and mathematically, in the case of real GAOs its practicability
is severely limited. If the term to vesting were very short, say less than five
years, it might be possible to hedge a large part of the dla, say the payments
from age 65 to age 90, and then use quantile or CTE reserving explicitly for
the balance beyond age 90 (with quantile or CTE reserving still being needed
for the potential hedging error, as we have described); but, as a general
solution, we do not consider that hedging of actual GAOs is practicable.

10.7 Reinsurance
10.7.1 It may be suggested that a life office could purchase a suitable

option contract from an investment bank. This we consider as equivalent to
reinsurance. There are possible advantages of such reinsurance, as we discuss
below, but the counterparty would require to reserve for its liability in the
same way as the original insurer, and would therefore, other things being
equal, need to charge the same to the original insurer as the original insurer
would have to charge to the policyholder. If the counterparty charges a
premium as if hedging were possible, but is not in fact able to hedge, or
chooses not to, then its security is no better than that of an insurer who fails
to charge sufficiently, or fails to hedge.

10.7.2 We note and comment on some advantages of reinsurance of
financial risk by an insurer with a counterparty, who might well be an
investment bank.
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10.7.3 The counterparty may have expertise and systems that enable it
to carry out hedging operations more easily and cheaply than the original
insurer. On the other hand the insurer may be able to hire or develop such
expertise.

10.7.4 The counterparty may be able to offset risks of options against
other opposing risks, and so be able to hedge its net position more easily. The
insurer may not have access to such offsetting risks. On the other hand, a
GAO is what we have described as a Maxi option. The offsetting risk is a
Mini option, under which the policy proceeds are converted to an annuity at
the poorer of the market rate and the guaranteed rate. We do not know how
many policyholders would like to purchase such a contract, even if there were
a discount on the premium (i.e. a negative extra premium) equivalent to the
positive extra premium paid by those policyholders who wished to purchase a
GAO.

10.7.5 The counterparty may have access to more capital then the
insurer, or may have a larger diversity of risks than the insurer, in either case
enabling it to accept a lower rate of excess return on the contingency
reserves that need to be set up, i.e. use lower rates of h, j or k in the methods
described in Sections 2.3 and 8.2.

10.7.6 The usual advantages of life or general reinsurance, that the
reinsurer has a larger pool of lives or risks insured, and so the individual risks
can be spread more widely, do not apply in the case of financial options. All
contracts with the same term face the same outcome. Diversification of risks
may occur to some extent if contracts expire at different dates, or have
offsetting positions, or are in different markets. We have shown how a
portfolio of GAOs may have smaller risks, and so require smaller contingency
reserves than the sum of the individual policies, but they may still require
quite large reserves, and the results from year to year may be strongly
correlated, since interest rates do not bounce around enormously, but instead
show long periods with rates at similar levels.

10.7.7 Whilst reinsurance has some obvious advantages, particularly for
smaller life offices, we do not consider that it is, overall, a satisfactory
solution to reserving for GAOs. The buck stops somewhere, and the risk
from GAOs (unlike the risk of individual insurances which can be treated as
almost independent) is not significantly altered by passing it on.

"". Further Enhancements

11.1 Introduction
11.1.1 Both in the static reserving described in Section 2 and in the

dynamic hedging (with contingency reserves) described in Section 10, we have
made many assumptions: first, that the models we are using are correct;
then that we know the parameters of those models accurately; in particular
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we assume that the random innovations, both of the annual Wilkie model,
and of the bridging model, are normally distributed; finally that the mortality
forecasts that we have used turn out to be correct. It is possible to relax
each of these assumptions in one way or another. We describe below how this
could be done, without showing results.

11.2 Fat-Tailed Distributions for the Innovations
11.2.1 The Wilkie model as we have used it assumes normally distributed

random innovations, and we have used normally distributed innovations for
the bridging models in Section 10.3. This is consistent with the assumptions
made in Appendix C that the ‘drivers’ of the various investment processes are
Brownian motions. However, there is no difficulty in computer simulation of
any model to use one or more out of a great many different distributions for
innovations. It is well known that changes of variables in the real world are
leptokurtic, or ‘fat-tailed’, with a kurtosis well in excess of the value three that
a normal distribution would have. If the real world is fatter-tailed than we
have assumed, it is likely that the spread of results would be wider than we
have assumed, and hence that the contingency reserves would be greater than
we have calculated. In addition, if innovations are fat-tailed, the hedging error
is likely to be much larger than we have calculated.

11.2.2 Using monthly values from December 1950 to August 2001 of the
relevant variables we can calculate statistics of: (a) the differences in the
logarithm of a share total return index; (b) the residuals of the logarithm of
the consols yield after fitting an AR(1) model with a ¼ 0:9912; and (c) the
residuals of the ‘log spread’ after fitting an AR(1) model with a ¼ 0:9534. We
obtain:
(a) skewness: 0.01 kurtosis: 11.60;
(b) skewness: ÿ0:23 kurtosis: 4.89; and
(c) skewness: 1.53 kurtosis: 10.43.

These are very far from normality.
11.2.3 It is not difficult to simulate a fatter-tailed distribution. There are

many ways to do this. One that we favour is to treat each innovation X as
the difference between two independent non-negative random variables, Y1

and Y2, so that X ¼ Y1 ÿY2. Y1 and Y2 could both be lognormally
distributed. If they are lognormally distributed with log Yi � Nðmi; s

2
i Þ, we

have four parameters to play with. It is convenient to arrange that X is
standardised, so that it has zero mean and unit variance. This puts two
constraints on the values of the parameters. One can then choose the other
two to match, within limits, any desired skewness and kurtosis. If m1 ¼ m2 and
s1 ¼ s2, then the distribution is symmetrical and automatically has zero
mean and zero skewness.
11.2.4 Lognormal variables are easy to simulate. So also are variables

from many of the other non-negative distributions used in general insurance
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work, such as the Pareto, Burr and Weibull, described in Hogg & Klugman
(1984), all of which have distribution functions that can be easily inverted.
Others, such as the gamma, are harder to simulate, but methods are known.
One could choose Y1 and Y2 from different distributions, if one wished to
represent the shapes of the positive and negative tails in different ways. The
options are greater than our knowledge of the tails of the real-world
distributions might justify.

11.2.5 Another possibility is to use an a-stable (or stable Paretian)
distribution (see Finkelstein, 1997). Methods for simulating random variables
from these distributions are also known (see Chambers, Mallow & Stuck,
1976). Apart from the normal distribution, which is a special case, a-stable
distributions have infinite variance. If a-stable distributions are used for
option pricing, the values of most options become infinite. However, one can
still carry out simulations, using the usual hedging strategy based on
lognormal distributions for the option values, and with the real world
simulated with a-stable innovations.

11.2.6 Among the distributions mentioned in {11.2.4, the lognormal,
gamma and Weibull always have finite variance. The Pareto and Burr may
have infinite variance for certain values of the parameters. If a distribution
with finite variance is used for simulation, then the effect over multiple time
periods still tends toward normality; this is a consequence of the central limit
theorem. If a distribution with infinite variance is used, then the effect tends
towards an a-stable distribution. The short-term and long-term effects may
need to be distinguished.

11.2.7 If a fat-tailed distribution with finite variance is used within the
Wilkie model (or any similar model) for annual simulation, the effect over a
longer term may be diminished because of the tendency towards normality.
Over a small number of years, however, the effect may be significant. One
may therefore prefer to test out the effect of an infinite variance distribution
when considering static reserving, as in Section 2.

11.2.8 On the other hand, if dynamic hedging is used, then the bridging
process is important (indeed it may be all important, and it is possible that
using fat-tailed innovations within the annual model would have almost no
effect on the hedging method). A fat-tailed distribution for the bridging
innovations will, normally, put up the hedging error considerably; the central
limit theorem has no opportunity to have an effect.

11.2.9 We have not tested out reserving for GAOs using fat-tailed
distributions in either context, but separate investigations in another context
show that for an at the money option the 99% quantile may be multiplied
several-fold.

11.3 Stochastic Mortality Rates
11.3.1 We have assumed that the forecast mortality rates, as published

by the C.M.I. Bureau from time to time, turn out to be the correct rates; but
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the very fact that the basis of projection has changed so much between the
projections based on 1967-70 mortality and those based on 1991-94 mortality
shows that even the best constructed forecasts of mortality rates may prove
to be wrong. One way to deal with this is to allow the future mortality rates
to be random. Lee (2000) described a possible stochastic mortality model,
and Yang (2001) modified his method and used it in her thesis.

11.3.2 The method starts, like the C.M.I. Bureau’s forecasts, from a
base mortality table applicable to some year, say t ¼ 0, with annual
mortality rates q(x,0). It then uses the C.M.I. projection factors RF(x,t), so
that the projected mortality rate at age x in year t is q(x,t) ¼ RF(x,t) �
q(x,0). So far all is deterministic. It then assumes two random variables
applicable to year t, X(t) and Y(t). X(t) performs a random walk, with in
principle a zero mean, but with a bias to counteract the variance, so that
XðtÞ ¼ Xðtÿ 1Þ ÿ 1

2 s
2
X þ sX:zXðtÞ, where the zXð Þs are independent, with zero

mean and unit variance. They might well be distributed normally, but in
view of our comments in Section 11.2, they need not be. Y(t) is dependent
on X(t), YðtÞ ¼ XðtÞ ÿ 1

2 s
2
Y þ sY:zYðtÞ, where the zYð Þs are independent of

each other and of the zXð Þs, and are unit distributed. We start with
Xð0Þ ¼ 0. Then the experienced mortality rates in year t are assumed to be
q(x,t) � exp(Y(t)).
11.3.3 The rationale for these two variables is that X(t) represents the

overall drift of mortality rates that continues from year to year, while Y(t)
includes both X(t) and an annual factor that is peculiar to that year,
representing perhaps the effects of an epidemic, a hard winter, or some such
feature. In practice Yang found, on the basis of the limited evidence available
from C.M.I. Reports, that sY could be taken as zero, so Y(t) ¼ X(t). The
expected values of X(t) and Y(t) are both unity; the ÿ 1

2 s
2 terms ensure that

this is so.
11.3.4 A limitation of this model is that, in any one year, it applies the

same multiplicative factor at each age x. It might be preferable to have a
model in which the adjustment factors varied smoothly with x. In recent
years we have seen mortality at ages over 60 improving sharply in the U.K.,
whereas the mortality of males in their 30s has slightly worsened. The same
effect does not apply at all ages. A more elaborate model could be
constructed, where random factors, say Y1ðtÞ and Y2ðtÞ were used, similar to
Y(t), with experience mortality equalling qðx; tÞ � expðY1ðtÞ þY2ðtÞ:ðxÿ x0ÞÞ,
so that the adjustment factor was linear. However, to parameterise this
might, with the limited data available, be difficult.

11.3.5 While the mortality experienced in each of the years during the
deferred period would affect the number of survivors to retirement age, the
more important effect would be on the mortality that would be assumed at
retirement for the ensuing annuity. We need to model the response of
actuaries and life offices to recent mortality experience in setting annuity
rates. Yang (2001) assumed that actuaries calculated the average adjustment
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factor for the previous four years to set mortality rates for annuities. Other
assumptions are possible.

11.3.6 Yang (2001) found, not surprisingly, that using stochastic
mortality increased the required quantile reserves significantly. However, the
effect varied very much with the conditions, and it would be misleading to
quote any particular numbers. But for realistic reserving, it would seem
desirable to take stochastic mortality into account.

11.3.7 Note that this stochastic mortality method allows for uncertainty
about the values of qx at each age in each future year, but that, given those
values, it is assumed that the number of deaths at each age is exactly as
expected.

11.4 An Investment Hypermodel
11.4.1 Just as one can allow for the uncertainty of mortality projections

by the stochastic mortality method described in Section 11.3, so one can
allow for the uncertainty of the parameters of the Wilkie (or any other)
model in the simulations. The method was originally described by Wilkie
(1986b) and again by Lee & Wilkie (2000). Instead of keeping the parameters
the same for each simulation, one chooses values of all the parameters at
the start of each simulation from some multivariate distribution of the
parameters.

11.4.2 Thus, instead of simulating, for example, the inflation rate in the
Wilkie model as:

IðtÞ ¼ QMUþQA:ðIðtÿ 1Þ ÿQMUÞ þQSD:QZðtÞ

with constant values of QMU, QA and QSD, one uses, for simulation s:

IðtÞ ¼ QMUðsÞ þQAðsÞ:ðIðtÿ 1Þ ÿQMUðsÞÞ þQSDðsÞ:QZðtÞ:

where QMU(s), QA(s) and QSD(s) are picked at random at the start of
simulation s, and remain constant throughout that simulation.

11.4.3 In order to generate values of QMU(s), QA(s) and QSD(s) we
need ‘hyperparameters’, denoted (rather clumsily perhaps) as QMUMU,
QMUSD, QAMU, QASD, QMUQACC, etc. We then assume that QMU(s)
is normally distributed, with mean QMUMU and standard deviation
QMUSD. That QA(s) is also normally distributed with mean QAMU,
standard deviation QASD and with correlation coefficient between QA(s)
and QMU(s) of QMUQACC, and so on.

11.4.4 The use of normal distributions can be justified if the parameters
have been estimated by maximum likelihood, because then, at least
asymptotically, the parameter estimates are distributed around the maximum
likelihood estimators with a multivariate normal distribution, and the
variance-covariance matrix of those estimates is derived in the fitting process.

Policies with Guaranteed Annuity Options 85



The standard deviations could be therefore taken as the standard errors of
the estimates of the parameters, based on the data the parameters have been
estimated from, with correlation coefficients likewise. However, the mean
values of the parameters could be taken as the same as the constant values of
the parameters used in the chosen version of the model, which may be
whatever is now considered the appropriate values for future simulation,

11.4.5 It is desirable that QA(s) should lie between 0 and 1, so it may be
necessary to limit its range after picking it. Likewise QSD(s) should be non-
negative; it could either be restricted, or it may be thought better to simulate
either QSD(s) or the variance, QV(s) ¼ QSD(s)2, lognormally, since a
lognormal distribution is very close to a normal if the standard deviation of
the latter is small relative to the mean. Similar modifications and limitations
might be needed throughout.

11.4.6 The results in Wilkie (1986b) show that the standard deviations,
and hence the extreme quantiles of all the variables, are increased by this
method, though by how much would depend on the variable and on the
parameters of the hypermodel. The question deserves fuller investigation.

11.5 Model Uncertainty
11.5.1 Not only do we not know the true values of the parameters of

any model, we do not even know whether any model is itself the correct one.
We are not in a world of Newtonian mechanics, where the true model (at
least in the sublunary world) has been well known for some centuries. Instead
there are competing models: there are those based on the concepts of
efficient markets, such as the random walk model and that of Smith (1996);
there are those based on econometric ideas, such as the Wilkie model and
others of the same style, like Thomson (1996), Yakoubov, Teeger & Duval
(1999) and Whitton & Thomas (2000); there are those that try to bridge the
gap between these two camps, such as Cairns (1999). Each has its adherents,
and none is authoritative.

11.5.2 One way of reflecting the uncertainty about the true model is to
use each of a number of alternative models as the real world model, and
compare the results. The prudent actuary might then take the highest
contingency reserves; the most optimistic might take the lowest. An
alternative would be to carry out each of the simulations using a model
chosen at random for that simulation. The question would then be how to
weight the models and give them probabilities in the first place. We have no
solution to this, and can only suggest that each actuary uses their subjective
prejudices, but then explains what they have done.

11.6 Conclusion
In conclusion, we consider that each of these extensions to the basic

model is both practicable and worth doing. On the other hand, if caution is
put into every aspect of the basis, and if marking to market each year is
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practised, then a very high initial probability of solvency, the a of Section
2.3, may not be required. It is better to assess the position on as realistic a
basis as is possible (and practicable), rather than just to increase some of the
standard deviations in the basis arbitrarily, or to use a weak basis and
contingency reserves set up on a high probability level.

"Æ. Summary and Conclusions

12.1 In this paper we have presented: first, a system of calculating
contingency reserves for guaranteed annuity options based on quantile or
conditional tail expectation reserves; and, secondly, a system based similarly
on quantile or CTE reserves after taking into account the possibility of
dynamic hedging according to option pricing theory. We then indicated a
variety of extensions that would make either of these methods more realistic.

12.2 We also showed how the required reserves would have been quite
small in 1985, but with ‘marking-to-market’ would have increased during the
rest of the 1980s and the 1990s, so that offices that had written such GAOs
would have built up funds which were sufficient to pay the required benefits
and they would not have been caught unexpectedly. GAOs would still have
been costly, but the costs would have been recognised more in advance. In
addition, the fact that larger reserves were needed than many offices seem to
have held would have alerted them to the dangers of writing policies with
GAOs, and they might have stopped offering such benefits sooner than they
did, and might have made more realistic charges to policyholders who
wished such an option, rather than giving away a valuable benefit apparently
free.

12.3 Several lessons can be learned from this paper. First, the
methodology that we have used in Sections 2 to 7 of the paper was all known
and publicly available by 1985. Further, Guidance Note 8, first issued in
October 1983, contained a relevant paragraph; we quote the version from the
Faculty of Actuaries Year Book 1984-85; essentially the same paragraph
still exists:

“4.2.2: The prudent assumptions on which the reserve under Part VI must be calculated
will naturally allow for stochastic variations as well as other contingencies. In determining
the extent to which the actuary would consider it prudent to make provision for the more
extreme stochastic variations in valuing particular categories of contact (for example in
relation to mortality and morbidity fluctuations, and variations in benefits resulting from
the inclusion in a unit-linked contract of a maturity guarantee) he may reasonably take into
account the basis of the solvency margin that the company is required to hold on account
of the liabilities under those contracts (net of the permitted deduction for reinsurance
cessions). ... .’’

12.4 It is reasonable then for those outside the group of Appointed
Actuaries to ask why few or no offices had either charged for or reserved for
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these options (see the survey reported by Bolton et al., 1997), and why the
then supervisors did not ask offices whether they had set up the required
reserves. Of course, the supervisors may not have known that such benefits
were being offered, but one wonders whether they have any obligation to be
aware of what is on the market, and some Appointed Actuaries may not have
been aware that the policies of the office they were advising contained such
benefits.

12.5 Several other conclusions can be drawn from our investigations,
which we list below.

12.6 CTEs are preferable to quantile reserves, as we explain in Section 9.
12.7 Marking-to-market seems preferable to the MGWP’s system of

adjusting reserves only when they go outside specific bands, but this requires
further discussion.

12.8 Calculating a theoretical option price is not enough; one must also
test out empirically how well the hedging strategy might perform,
particularly taking into account transaction costs and the possibility that
either the parameters or the nature of the real world model are not the same
as those used for calculating option prices and hedging proportions. One
needs then to set up contingency reserves to allow for all the possible hedging
errors. Further, the option price is only a guide to the ‘fair value’ if the
required hedging strategy can practicably be followed and then is actually
followed.

12.9 Some further comments on fair value may be helpful. There are
three values that have entered our calculations:
ö the mean value of the benefit, A in Section 2.3, and including any

option premium (and also including the basic unit liability);
ö the charge to the policyholder, C of Section 2.5 or D of Section 8.2; and
ö the quantile or CTE reserve, Qa or Ta.

In our view these three concepts are relevant to all insurance contracts.
12.10 The mean value is in some sense the ‘best estimate’ of the liability,

but it is not enough. As we understand it, the ‘fair value’ is meant to be the
value at which a liability could be transferred between willing parties. In that
case the charge to the policyholder (adjusted for expenses as appropriate) is
the right value. If the liability were to be transferred between life offices, a
willing acquirer of the liability would need to set up contingency reserves just
as the transferring office has done, and would require an appropriate return
on those reserves. The transferring office no longer needs the contingency
reserves, so should not expect to receive any further reward because they are
no longer at risk.

12.11 The amount of the contingency reserves minus the expected value
(‘QÿA’ or ‘TÿA’) ‘belongs’ to the shareholders, and not to the policyholders,
but it is needed to support the risks that they have underwritten, and cannot
be released to them until those risks have expired. At that time the amounts
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due to the individual policies, which may be greater or less than the
expected amount, are paid (or transferred to the offices’ annuity account)
and the balance can be released. The contingency reserves are, in our view, as
in GN8, quoted in {12.3, a substitute for, not an addition to, the traditional
statutory solvency margin. If these concepts are understood it may help any
accounting principles that are introduced.

12.12 The work on GAOs does not finish here. Further investigations
and discussion could usefully be undertaken, on the following lines:
ö transaction costs could be included both for the basic policy and for

hedging;
ö fat-tailed innovations could be used for the annual model (Section 11.2);
ö fat-tailed innovations could be used for the bridges (Section 11.2);
ö stochastic mortality could be introduced (Section 11.3);
ö a hypermodel to allow for parameter uncertainty could be used (see

Section 11.4);
ö alternative stochastic models could be used (Section 11.5);
ö whether our suggestion that the success of hedging depends only on the

bridging model, and not at all on the annual model should be
investigated (Section 10.3);

ö realistic portfolios could be investigated; however, it might be desirable
to try to model these with a number of representative policies (‘model
points’) rather than with the full portfolio, which might take an
inordinate amount of computer time, even nowadays;

ö consideration of the desirable values to use for a and h (Section 3.2);
ö consideration of an appropriate method for charging for individual

policies as part of a portfolio (Sections 3.3 and 9); and
ö consideration of how frequently marking to market should take place,

and what a suitable value of a is with different frequencies.

We hope that this paper stimulates further discussion and research on these
lines.

12.13 Just as our paper was being completed we received a draft of a
paper by Boyle & Hardy (2002), which covers the same subject as this paper,
in a rather similar way. We look forward to exchanging ideas further with
them.
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APPENDIX A

INVESTMENT DATA

Table A.1. Market indices at 31 December of year shown; BðtÞ is required
only for the 1995 Wilkie model; the other items are required for both the

1984 and the 1995 models

31 December Q(t) I(t) Y(t) % D(t) C(t) % B(t) %

1982 82.51 0.0527 5.26 20.10 10.25 10.00
1983 86.89 0.0518 4.62 21.74 9.71 9.00
1984 90.87 0.0448 4.42 26.21 9.90 9.50
1985 96.05 0.0553 4.33 29.57 9.80 11.50
1986 99.62 0.0365 4.04 33.75 10.06 11.00
1987 103.30 0.0363 4.32 37.59 9.21 8.50
1988 110.30 0.0656 4.71 43.64 8.99 13.00
1989 118.80 0.0742 4.24 51.08 9.66 15.00
1990 129.90 0.0893 5.47 56.46 10.48 14.00
1991 135.70 0.0437 5.02 59.62 9.71 10.50
1992 139.20 0.0255 4.35 59.32 8.83 7.00
1993 141.90 0.0192 3.37 56.69 6.52 5.50
1994 146.00 0.0285 4.02 61.16 8.53 6.25
1995 150.70 0.0317 3.80 68.52 7.78 6.50
1996 154.40 0.0243 3.74 75.31 7.74 6.00
1997 160.00 0.0356 3.23 77.88 6.39 7.25
1998 164.40 0.0271 2.92 78.08 4.55 6.25
1999 167.30 0.0175 2.36* 76.37 4.89 5.50
2000 172.20 0.0289 2.48* 73.93 4.62 6.00
2001 173.40 0.0069 2.92* 73.75 5.04 4.00

* gross yield calculated by grossing up ‘actual yield’ by 1/0.9.
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Table A.2. Derived initial conditions for 1984 and 1995 Wilkie models at
31 December of year shown

1984 model 1995 model
YEðtÞ DMðtÞ DEðtÞ CMðtÞ YEðtÞ DMðtÞ DEðtÞ CMðtÞ

1982 0.0627 0.1087 0.0335 0.0694 0.0788 0.1033 0.0283 0.0694
1983 ÿ0.0474 0.0973 ÿ0.0102 0.0686 ÿ0.0476 0.0966 ÿ0.0180 0.0686
1984 ÿ0.0051 0.0868 0.1030 0.0675 ÿ0.0087 0.0899 0.1021 0.0675
1985 ÿ0.0191 0.0805 0.0056 0.0670 ÿ0.0309 0.0854 ÿ0.0277 0.0670
1986 ÿ0.0421 0.0717 0.0617 0.0656 ÿ0.0446 0.0790 0.0655 0.0656
1987 0.0516 0.0646 0.0172 0.0643 0.0424 0.0735 ÿ0.0112 0.0643
1988 0.0581 0.0648 0.0881 0.0644 0.0390 0.0724 0.0775 0.0644
1989 ÿ0.0869 0.0667 0.0677 0.0648 ÿ0.1003 0.0727 0.0307 0.0648
1990 0.2176 0.0712 ÿ0.0174 0.0659 0.1936 0.0748 ÿ0.0317 0.0659
1991 0.0527 0.0657 0.0432 0.0649 0.0648 0.0708 0.0310 0.0649
1992 ÿ0.0514 0.0577 ÿ0.0619 0.0631 ÿ0.0436 0.0649 ÿ0.0757 0.0631
1993 ÿ0.2270 0.0500 ÿ0.0763 0.0612 ÿ0.2269 0.0590 ÿ0.0682 0.0612
1994 0.0849 0.0457 0.0169 0.0597 0.0670 0.0550 0.0153 0.0597
1995 ÿ0.0740 0.0429 0.0836 0.0584 ÿ0.0829 0.0520 0.0571 0.0584
1996 ÿ0.0435 0.0392 0.0122 0.0569 ÿ0.0513 0.0484 ÿ0.0068 0.0569
1997 ÿ0.2019 0.0384 ÿ0.0177 0.0559 ÿ0.2170 0.0467 ÿ0.0297 0.0559
1998 ÿ0.1942 0.0362 ÿ0.0655 0.0546 ÿ0.2107 0.0442 ÿ0.0715 0.0546
1999 ÿ0.3423 0.0324 ÿ0.0659 0.0530 ÿ0.3610 0.0407 ÿ0.0652 0.0530
2000 ÿ0.1860 0.0317 ÿ0.1073 0.0519 ÿ0.2223 0.0392 ÿ0.1093 0.0519
2001 ÿ0.0126 0.0268 ÿ0.0222 0.0499 ÿ0.0345 0.0350 ÿ0.0183 0.0499
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APPENDIX B

A YIELD CURVE FOR THE WILKIE MODEL

B.1 The Wilkie model as published in 1984 had a yield only for ‘consols’
(by which term ismeant a true perpetuity), denoted C(t), so nothing other than a
level yield curve could be derived. In 1995 a model for ‘base rate’ (by which
term ismeant either an immediate short-term interest rate, or a one-year rate, as
required by circumstances), denoted B(t), was added. This could give two ends
of a yield curve. However, no model for the intermediate values was derived.
Many other interest models have been published, but few are ‘integrated’, in the
sense of including consistent long-term models for share prices and inflation as
well as interest rates, such as we need in this investigation, though the models of
Smith (1996) and Cairns (2000) could be used for this purpose. For the
calculation of annuity values it is convenient to have a full yield curve available,
and in this appendix we describe how we construct a full yield curve model
based on the C(t) andB(t) of theWilkiemodel.

B.2 The yield curve used for the FTSE Actuaries British Government
Securities (BGS) Indices (see Dobbie & Wilkie, 1978) described redemption
yields on issued coupon stocks, and was modelled by the formula:

Yðt; nÞ ¼ AðtÞ þ BðtÞ: expðÿCðtÞ:nÞ þDðtÞ: expðÿFðtÞ:nÞ

where Yðt; nÞ is the redemption yield at time (day) t on a stock of term n
and A(t), B(t), C(t), D(t) and F(t) are constants which vary from day to day.
Such a curve starts at n ¼ 0 with value AðtÞ þ BðtÞ þDðtÞ, and as n!1 it
tends to a value of A(t). In between there can be one minimum or maximum
value. The yield curve for Debenture and Unsecured Loan Stocks, published
from 31 December 1977 to 30 December 1994, was simpler (see Wilkie,
1985), with only one exponential term:

Yðt; nÞ ¼ AðtÞ þ BðtÞ: expðÿCðtÞ:nÞ:

In the absence of data on which to build a more complex model, we have
chosen to use the simpler formula.

B.3 The yield curve described above is fitted to the redemption yields of
redeemable (and ‘irredeemable’) coupon stocks. To calculate annuity values
we require the rates on zero-coupon stocks. We start by assuming that the
redemption yield curve is in fact one for stocks standing at ‘par’, with a price
of 100, so that the redemption yield equals the coupon. We also assume that
coupons are payable annually in arrears (although interest on real BGS is
almost all paid half-yearly). We use Wilkie’s B(t) and C(t) as the end points,
and put:
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Yðt; nÞ ¼ CðtÞ þ ðBðtÞ ÿ CðtÞÞ: expðÿb:nÞ

where Yðt; nÞ is the par yield at time t for term n, and b is a constant, not
changing from year to year. Note that BðtÞ and CðtÞ in this formula are now
the base rate and consols yield from the Wilkie model, not the BðtÞ and CðtÞ
of {B.2. We then derive the zero-coupon rates, at annual intervals,
recursively, as follows:

Let vðt; nÞ be the value at time (year) t of a zero-coupon stock of term n.

Then the value of a coupon stock of term n, standing at a par of unity, with
coupon Yðt; nÞ, and redeemable at par, can be derived as:

1 ¼ Yðt; nÞ:Sm¼1;nvðt;mÞ þ 1:vðt; nÞ:

B.4 We start at term n ¼ 1, where we have:

1 ¼ Yðt; 1Þ:Sm¼1;1vðt;mÞ þ 1:vðt; 1Þ

whence vðt; 1Þ ¼ 1=fYðt; 1Þ þ 1g.
We continue, year by year:

1 ¼ Yðt; nÞ:Sm¼1;nÿ1vðt;mÞ þ f1þYðt; nÞg:vðt; nÞ

whence vðt; nÞ ¼ f1ÿYðt; nÞ:Sm¼1;nÿ1vðt;mÞg=f1þYðt; nÞg.
B.5 From the values of vðt; nÞ we can derive, if we wish, a zero-coupon

yield curve:

Zðt; nÞ ¼ 1=vðt; nÞ1=n ÿ 1

and the forward rate discount factors and yields:

f ðt; nÞ ¼ vðt; nþ 1Þ=vðt; nÞ

and

Fðt; nÞ ¼ 1=f ðt; nÞ ÿ 1:

B.6 A problem about this approach, which would apply whatever form
is used for a par yield curve, is that, when calculating the zero-coupon
discount factor vðt; nÞ, the sum of the values of the coupons from years one to
nÿ 1, Yðt; nÞ:Sm¼1;nÿ1vðt;mÞ, may exceed unity, so that the calculated value
of the zero-coupon discount factor vðt; nÞ is negative. This is unsatisfactory. It
happens when, for longer terms, the par yield curve is still rising noticeably,
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and this happens when, with our formula, the value of b is too low, for the
particular values of B(t) and C(t). We have therefore had to choose a value of
b that is large enough for this anomaly to not happen, at least within the
first 55 years (allowing for an annuity for a male aged 65 being calculated
with a terminal age of 120), for the eight sets of initial conditions we have
used (from December 1994 to December 2001) and the 10,000 simulations we
have used. We find that a value of b ¼ 0:39 is large enough, but that a
value of 0.38 is not large enough. We have therefore used the former value,
b ¼ 0:39, throughout. It is possible, of course, that this value might not be
large enough for a different set of initial conditions, or for further
simulations. Indeed Yang (2001) used a value of b of 0.5. However, because a
high value of b produces a very flat yield curve, rather little different from
using a constant interest rate of C(t), as we have done for the 1984 Wilkie
model, we have used the lowest value that did not give us inconsistencies.

B.7 A further inconsistency that could occur, but does not seem to
happen except in conjunction with the first inconsistency in our experiments,
is that the value of the forward discount factor f ðt; nÞ could be greater than
unity, so that the forward interest rate Fðt; nÞ is negative. This need not upset
the calculation of an annuity value in the form Sm¼1;o:mp65:vðt;mÞ, although
it is still theoretically undesirable.
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APPENDIX C

GAOS AND QUANTO OPTIONS

C.1 Introduction
A guaranteed annuity option in the form that we have described is

analogous to a ‘quanto option’, though it is not the same as the ‘typical’
quanto option. Quanto options seem to get rather slight reference in the main
textbooks, though what is there is helpful. Thus quantos are not referred to
at all in the second edition of Hull (1993), but are discussed briefly in the
third edition (1997) and fourth edition (2000). There is no reference in
Rebonato (1998). Baxter & Rennie (1996) discuss the typical quanto clearly,
but not comprehensively.

C.2 Maxis and Minis
C.2.1 It is first useful to define some new terms. The normal or ‘vanilla’

option is a call option, ‘on A with B’, allowing the holder to obtain A at time
T, paying for it with B. Thus its value, allowing the values of both A and B
to vary with time, is Max(0, A(T) ÿ B(T)). The corresponding put option, ‘of
A on B’, has value Max(0, B(T) ÿ A(T)). It is clear that a put option of A
on B is the same as a call option on B with A, and in the foreign currency
options market there are only call options, not puts.

C.2.2 What insurance companies often provide is a ‘guarantee’, which
we describe as a ‘maxi’ option. It pays Max(A(T), B(T)) at time T. We
consider only European options, with fixed T, but the notation would work
for American options too. The complement of a maxi option is a ‘mini’
option, that pays Min(A(T), B(T)). A maxi plus a mini are the same as A plus
B. Since the holder of the maxi gets an advantage, and the holder of a mini
a disadvantage, the maxi should cost more than Max(A(0), B(0)) and the
mini should cost less than Min(A(0), B(0)). They may be designed so that
Að0Þ ¼ Bð0Þ, but they need not be. A GAO is a maxi option, as is a ‘maturity
guarantee’ on a unit-linked policy.

C.2.3 A maxi is also the same as B plus a call on A with B, which in
turn is the same as A plus a put of A on B. This is just the ‘put-call parity’
formula, often expressed as:

cashþ call ¼ shareþ put

but we can also add: ¼ maxi.
C.2.4 Likewise cashþ share ¼ maxiþ mini, so we get:

mini ¼ shareÿ call ¼ cashÿ put:
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These formulae allow us to get the value of any such option from the
value of any other.

C.3 Quanto Options
C.3.1 Now we consider quantos. The ‘typical’ quanto option is

expressed in terms of a share price and two currencies. Consider the Nikkei
index, with value S(t), and an exchange rate: $1 ¼  F(t). The Nikkei index is
denominated in yen ( ), but the option pretends that it is denominated in
dollars. Thus a quanto call option on the Nikkei pays $Max(0, S(T) ÿ K).
This is equivalent to  Max(0, S(T) ÿ K) � F(T). However, this is not the
only sort of quanto option.

C.3.2 Baxter & Rennie (1996) define a quanto forward as paying $S(T)
at time T, equivalent to  S(T) � F(T), and show how this can be hedged and
hence valued. But they show that it is only S(T) � F(T) at a fixed T that
can be hedged exactly, not S(t) � F(t) for general t. They also give the value
of a quanto option that pays $Max(0, S(T) ÿ K), as above.

C.3.3 The corresponding maxi quanto option would pay $Max(S(T), K),
or more generally $Max(S(T), K(T)), or  Max(S(T), K(T)) � F(T).
C.3.4 There is, however, another type of quanto option, which is what

one might like for hedging a foreign currency investment. This is a maxi option
on the currency for a quantum determined by the value of shares, which
would pay:  S(T) � Max(K, F(T)), or $S(T) � Max(K/F(T), 1). Thus if the
yen has risen against the dollar (F(T) has fallen), one gets the advantage of
K/F(T), whereas if the yen has fallen (more yen to the dollar, so F(T) is
bigger), one converts at ‘par’. The whole contract would need to take into
account S(0), F(0) and the amount of dollars or yen originally invested.

C.3.5 We call the original quanto option a Type A quanto option, and
the one just defined as a Type B quanto option. They are symmetrical, in that
a Type A maxi can be expressed as paying  F(T) � Max(S(T), KA(T)) and
a Type B as paying  S(T) � Max(F(T), KB(T)). The ‘K(T)s’ are probably
different, so we have denoted them as KA and KB, but they play the same
role, and might well be constants, not functions of T.

C.3.6 Baxter & Rennie (1996) give formulae for the Type A option. It is
plausible that the Type B option can be valued with the same formula,
mutatis mutandis, but this would need proof. In fact our GAO model is a
little different from this ‘vanilla’ quanto.

C.4 Guaranteed Annuity Options
C.4.1 Guaranteed annuity options are similar to Type B quanto options,

in that the proceeds of some investment at some retirement date, say S(T),
can be taken either as ‘cash’ (strictly cash which must be applied to purchase
a life annuity at market rates) or for the purchase of an annuity at time T.
This value depends on the guaranteed annuity rate, the age of the assured,
the conditions of payment of the annuity, the mortality table assumed at time
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T and, most importantly, the market interest rates at time T. It can be
expressed as VðTÞ ¼ g� aðTÞ where g is the guaranteed rate (e.g. »111 per
year per »1,000 cash purchase price, so g ¼ 0:111) and a(T) is the value of a
suitable annuity (of unit amount) at time T. The cash amount would
correspondingly buy an annuity at a market rate of 1/a(T). Thus at time T
the GAO pays »S(T) � Max(1, V(T)) ¼ »S(T) � Maxð1; g� aðTÞÞ.
C.4.2 Prior to time T, at say time t, the annuity could be purchased,

either as a ‘deferred life annuity’, being paid for immediately at time t, or as a
‘forward life annuity’, at a price which is determined at time t, but with
payment at time T. ‘Cash’ at time T can likewise be purchased in advance, at
a price Bðt;TÞ, because it is just a zero-coupon bond (zcb) maturing at T.
The price of the deferred annuity, Dðt;TÞ equals the price of the forward life
annuity times the zcb price, Dðt;TÞ ¼ Bðt;TÞ � Fðt;TÞ.

C.5 Fundamentals
C.5.1 We now derive a formula for the GAO. We follow closely the

methods of Baxter & Rennie (1996), using the principles of the Black (1976)
model for the option.

C.5.2 We start by considering what the tradeable assets are. We have
assumed a unit fund, which we refer to as a ‘share’ without specifying how it is
invested. The market price per unit at time t is S(t), and at maturity (the
retirement date), T, it has a value S(T). Next we assume a zero-coupon bond, a
‘zcb’, which pays 1 at time T, and prior to that has value B(t, T) or just B(t).

C.5.3 We also assume that we can invest in a deferred life annuity, a ‘dla’,
whose value at time t is D(t, T) or D(t), and which provides a ‘life annuity’ at
time T, of annual rate 1, of the required type. We can relate the price of the
deferred annuity to the price of a forward life annuity, an ‘fla’, (which is a
derivative contract, not directly investible), whose price at time t, F(t, T) or
F(t), is related by: DðtÞ ¼ FðtÞ � BðtÞ. Note that the dla and fla are not annuities
on individual lives, but instead are annuities certain, with the payments
reducing proportionately to tp65 on some prescribed life table. Such an annuity
should match the expected payments on a portfolio of annuities. However they
will not necessarily meet the actual payments on such a portfolio, because of:
(a) the random individual lifetimes of the group of insured; and (b) the overall
mortality rates of the class of insured, which may be different from what was
expected originally.We do not consider these problems in this appendix.

C.5.4 We now consider the Brownian motions ‘driving’ the prices. We
assume three separate Brownian motions, W1, W2 and W3. Wi and Wj have
instantaneous correlation rij. The Wis are related to three independent
Brownian motions, Z1, Z2 and Z3 through a matrix, C:

dW ¼ C:dZ

where we shall choose the values for the elements of C appropriately in due
course.
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C.5.5 We assume that the share price S(t) is driven by the stochastic
differential equation:

dSðtÞ ¼ mSð Þ:SðtÞ:dtþ sS:SðtÞ:dW3

where sS is a constant, and mSð Þ is some function of t and SðtÞ, to be defined
later. We could have mSð Þ ¼ 0 (a random walk with no drift), or mSð Þ ¼ mS (a
random walk with constant drift), or mSð Þ ¼ aSðyS ÿ SðtÞÞ (an Ornstein-
Uhlenbeck process for log share price, analogous to a first order discrete
autoregressive, or AR(1), process), or some combination of these. For shares
in practice we shall choose mSð Þ ¼ mS.

C.5.6 We let the zcb price BðtÞ be driven by the zcb interest rate RðtÞ,
which has the stochastic differential equation:

dRðtÞ ¼ mRð Þ:dtþ sR:dW2

where sR is a constant, and mRð Þ is some function of t and RðtÞ, similar to
mSð Þ. In practice we shall choose mRð Þ ¼ aRðyR ÿRðtÞÞ, an Ornstein-Uhlenbeck
process. This is similar to the Vasicek (1977) model, but this is usually
applied to the short rate rather than to a zcb rate for constant maturity date.
The zcb price BðtÞ is related to the zcb interest rate RðtÞ by:

BðtÞ ¼ expðÿðTÿ tÞ:RðtÞÞ:

The differential equation for BðtÞ will be derived below from that for RðtÞ
through Ito’s formula.

C.5.7 The dla price DðtÞ ¼ FðtÞ � BðtÞ is driven by the zcb price BðtÞ and
the fla price FðtÞ. We assume that FðtÞ has stochastic differential equation:

dFðtÞ ¼ mFð Þ:FðtÞ:dtþ sF:FðtÞ:dW1

where sF is a constant, and mFð Þ is some function of t and FðtÞ, similar to
mSð Þ. FðtÞ follows a form of logarithmic Brownian motion. In practice we
shall choose an Ornstein-Uhlenbeck process for logFðtÞ, the details of which
are given in Section C.11.

C.6 Ito’s Formula
C.6.1 We now introduce Ito’s formula (Baxter & Rennie, 1996, p59, but

extended) in order to get formulae for the differential equations of 1=BðtÞ and
FðtÞ. If YðtÞ ¼ f ðXðtÞÞ and dXðtÞ ¼ mXð Þ:dtþ sX:dW, then:

dYðtÞ ¼ f 0ð Þ:dXþ 1
2s

2
X:f
00
ð Þ:dtþ @Y=@t:dt

where f 0ð Þ ¼ @Y=@X and f 00ð Þ ¼ @2Y=@X2.
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C.6.2 We first put CðtÞ ¼ 1=BðtÞ, and express it as a function of RðtÞ:

CðtÞ ¼ 1=BðtÞ ¼ expððTÿ tÞ:RðtÞÞ

so:

f 0ð Þ ¼ @C=@R ¼ ðTÿ tÞ: expððTÿ tÞ:RðtÞÞ ¼ ðTÿ tÞ:CðtÞ

and

f 00ð Þ ¼ @2C=@R2
¼ ðTÿ tÞ

2: expððTÿ tÞ:RðtÞÞ ¼ ðTÿ tÞ
2:CðtÞ

and also

@C=@t ¼ ÿRðtÞ: expððTÿ tÞ:RðtÞÞ ¼ ÿRðtÞ:CðtÞ:

We also have:

dRðtÞ ¼ mRð Þ:dtþ sR:dW2:

Hence:

dCðtÞ ¼ ðTÿ tÞ:CðtÞ:dRþ 1
2 s

2
R:ðTÿ tÞ

2:CðtÞ:dtÿRðtÞ:CðtÞ:dt

¼ ðTÿ tÞ:CðtÞ:ðmRð Þ:dtþ sR:dW2Þ þ
1
2s

2
R:ðTÿ tÞ

2:CðtÞ:dtÿRðtÞ:CðtÞ:dt

¼ CðtÞ:fðTÿ tÞ:mRð Þ þ
1
2s

2
R:ðTÿ tÞ

2
ÿRðtÞg:dtþ ðTÿ tÞ:CðtÞ:sR:dW2:

C.7 Change of Numeraire
C.7.1 It is convenient to choose a numeraire other than pounds, and for

this we choose the zcb. The value of the dla relative to the zcb is
DðtÞ=BðtÞ ¼ FðtÞ. The value of the share relative to the zcb is
SðtÞ=BðtÞ ¼ SðtÞ:CðtÞ, which we shall denote as HðtÞ. The value of the zcb
relative to itself is, of course, unity.

C.7.2 We now need the stochastic differential equation for HðtÞ. We get
this from the product rule (Baxter & Rennie, 1996, p62):

dðXYÞ ¼ X:dYþY:dXþ rXY:sX:sY:dt

where rXY is the instantaneous correlation coefficient between X and Y,
which we have to derive from the component parts of the stochastic
differential equations. We have:

HðtÞ ¼ SðtÞ:CðtÞ

dSðtÞ ¼ mSð Þ:SðtÞ:dtþ sS:SðtÞ:dW3

dCðtÞ ¼ CðtÞ:fðTÿ tÞ:mRð Þ þ
1
2s

2
R:ðTÿ tÞ

2
ÿRðtÞg:dtþ ðTÿ tÞ:CðtÞ:sR:dW2:

C.7.3 It is now convenient to define the independent Brownian motions
Zi. We start by putting:
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dW1 ¼ dZ1

so that c11 ¼ 1; c12 ¼ 0; c13 ¼ 0, and then:

dW2 ¼ c21dZ1 þ c22:dZ2

where c21 ¼ r12 and c222 ¼ ð1ÿ c221Þ, so that E½dW2� ¼ 1 and
CorrðdW1; dW2Þ ¼ r12, and so that c23 ¼ 0, and finally:

dW3 ¼ c31:dZ1 þ c32:dZ2 þ c33:dZ3

where c31 ¼ r13; c32 ¼ ðr23 ÿ c21:c31Þ=c22 and c233 ¼ ð1ÿ c231 ÿ c232Þ, so that
E½dW3� ¼ 1, CorrðdW1; dW3Þ ¼ r13 and CorrðdW2; dW3Þ ¼ r23. C is the
Choleski decomposition of the correlation matrix.

C.7.4 We now re-express dSðtÞ and dCðtÞ in terms of the Zs:

dSðtÞ ¼ mSð Þ:SðtÞ:dtþ sS:SðtÞ:ðc31:dZ1 þ c32:dZ2 þ c33:dZ3Þ

dCðtÞ ¼ CðtÞ:fðTÿ tÞ:mRð Þ þ
1
2s

2
R:ðTÿ tÞ

2
ÿRðtÞg:dt

þ ðTÿ tÞ:CðtÞ:sRðc21:dZ1 þ c22:dZ2Þ:

C.7.5 We now have:

dHðtÞ ¼ dðSðtÞ:CðtÞÞ

¼ SðtÞ:dCðtÞ þ CðtÞ:dSðtÞ

þ fsS:SðtÞ:c31:ðTÿ tÞ:CðtÞ:sR:c21 þ sS:SðtÞ:c32:ðTÿ tÞ:CðtÞ:sR:c22g:dt

¼ SðtÞ:fCðtÞfðTÿ tÞmRð Þ þ
1
2s

2
RðTÿ tÞ

2
ÿRðtÞgdt

þ ðTÿ tÞ:CðtÞ:sRðc21:dZ1 þ c22:dZ2Þg

þ CðtÞ:fmSð Þ:SðtÞ:dtþ sS:SðtÞ:ðc31:dZ1 þ c32:dZ2 þ c33:dZ3Þg

þ fsS:SðtÞ:c31:ðTÿ tÞ:CðtÞ:sR:c21 þ sS:SðtÞ:c32:ðTÿ tÞ:CðtÞ:sR:c22g:dt

¼ SðtÞ:CðtÞ½ðTÿ tÞ:mRð Þ þ mSð Þ þ
1
2s

2
RðTÿ tÞ

2
ÿRðtÞ

þ ðTÿ tÞ:sS:sR:ðc31:c21 þ c32:c22Þ�:dt

þ SðtÞ:CðtÞ:½fðTÿ tÞ:sR:c21 þ sS:c31g:dZ1

þ fðTÿ tÞ:sR:c22 þ sS:c32g:dZ2 þ sS:c33:dZ3�

¼ HðtÞ½ðTÿ tÞ:mRð Þ þ mSð Þ þ
1
2 s

2
RðTÿ tÞ

2
ÿRðtÞ þ ðTÿ tÞ:sS:sR:r23�:dt

þHðtÞ:½fðTÿ tÞsRc21 þ sSc31gdZ1 þ fðTÿ tÞsRc22 þ sSc32g:dZ2

þ sSc33:dZ3�:
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C.8 Equivalent Martingales
C.8.1 To calculate the value of the option we need to change the

stochastic differential equations so that the process for each of the tradeables
(relative to the new numeraire) is a martingale. We do this by adjusting the
Zs to new values Z�i ðtÞ ¼ ZiðtÞ þ

R
giðtÞ:dt or

dZ�i ¼ dZi þ giðtÞ:dt

in such a way that the tradeables are martingales. We denote adjusted
values by an asterisk.

C.8.2 The zcb is easy, since its value relative to the new numeraire is
always 1.

C.8.3 The value of the dla, relative to the new numeraire, is FðtÞ with
stochastic differential equation:

dFðtÞ ¼ mFð Þ:FðtÞ:dtþ sF:FðtÞ:dW1

¼ mFð Þ:FðtÞ:dtþ sF:FðtÞ:dZ1:

If we put:

dZ�1 ¼ dZ1 þ g1ðtÞdt

with:

g1ðtÞ ¼ fmFð Þ:FðtÞg=fsF:FðtÞg

¼ mFð Þ=sF

we get:

dF�ðtÞ ¼ sF:F
�
ðtÞ:dZ�1

and F�ðtÞ is a martingale, since it has no drift ðdtÞ term.
C.8.4 The value of the share, relative to the new numeraire, is HðtÞ with

stochastic differential equation:

dHðtÞ ¼ HðtÞ:½ðTÿ tÞ:mRð Þ þ mSð Þ þ
1
2s

2
RðTÿ tÞ

2
ÿRðtÞ þ ðTÿ tÞ:sS:sR:r23�:dt

þHðtÞ:½fðTÿ tÞ:sR:c21 þ sS:c31g:dZ1 þ fðTÿ tÞ:sR:c22 þ sS:c32g:dZ2

þ sS:c33:dZ3�:

We first replace dZ1 by dZ�1 ÿ g1ðtÞ:dt to give:
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dHðtÞ (partially adjusted)

¼ HðtÞ:½ðTÿ tÞ:mRð Þ þ mSð Þ þ
1
2s

2
RðTÿ tÞ

2
ÿRðtÞ þ ðTÿ tÞ:sS:sR:r23�:dt

þHðtÞ:½fðTÿ tÞ:sR:c21 þ sS:c31gfdZ
�

1 ÿ g1ðtÞ:dtg

þ fðTÿ tÞ:sR:c22 þ sS:c32g:dZ2 þ sS:c33:dZ3�

¼ HðtÞ:½ðTÿ tÞ:mRð Þ þ mSð Þ þ
1
2s

2
RðTÿ tÞ

2
ÿRðtÞ þ ðTÿ tÞ:sS:sR:r23�:dt

þHðtÞ:½fðTÿ tÞ:sR:c21 þ sS:c31g:fdZ
�

1 ÿ mFð Þ=sF:dtg

þ fðTÿ tÞ:sR:c22 þ sS:c32g:dZ2 þ sS:c33:dZ3�

¼ HðtÞ:½ðTÿ tÞ:mRð Þ þ mSð Þ þ
1
2s

2
RðTÿ tÞ

2
ÿRðtÞ þ ðTÿ tÞ:sS:sR:r23

ÿ fðTÿ tÞ:sR:c21 þ sS:c31g:mFð Þ=sF�:dt

þHðtÞ:½fðTÿ tÞ:sR:c21 þ sS:c31g:dZ
�

1

þ fðTÿ tÞ:sR:c22 þ sS:c32g:dZ2 þ sS:c33:dZ3�:

C.8.5 We then define a new Brownian motion, Z4, with:

s4ðtÞ:dZ4 ¼ fðTÿ tÞ:sR:c22 þ sS:c32g:dZ2 þ sS:c33:dZ3

and

s4ðtÞ
2
¼ fðTÿ tÞ:sR:c22 þ sS:c32g

2
þ fsS:c33g

2

¼ ðTÿ tÞ
2:c222:s

2
R þ 2ðTÿ tÞ:c22:c32:sR:sS þ ðc

2
32 þ c233Þ:s

2
S

so that:

dHðtÞ (partially adjusted)

¼ HðtÞ:½ðTÿ tÞ:mRð Þ þ mSð Þ þ
1
2 s

2
RðTÿ tÞ

2
ÿRðtÞ þ ðTÿ tÞ:sS:sR:r23

ÿ fðTÿ tÞ:sR:c21 þ sS:c31g:mFð Þ=sF�:dt

þHðtÞ:½fðTÿ tÞ:sR:c21 þ sS:c31g:dZ
�

1 þ s4ðtÞ:dZ4�

and we then replace dZ4 by dZ�4 ÿ g4ðtÞdt with:

g4ðtÞ ¼ ½ðTÿ tÞ:mRð Þ þ mSð Þ þ
1
2 s

2
RðTÿ tÞ

2
ÿRðtÞ þ ðTÿ tÞ:sS:sR:r23

ÿ fðTÿ tÞ:sR:c21 þ sS:c31g:mFð Þ=sF�=s4ðtÞ

to give:

dH�ðtÞ ¼ H�ðtÞ:½fðTÿ tÞ:sR:c21 þ sS:c31g:dZ
�

1 þ s4ðtÞ:dZ
�

4�;

so that H�ðtÞ is a martingale.
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C.8.6 There are two ways of thinking about the new starred variables
that we have defined. Any starred variable, say X�ðtÞ, related to the original
variable XðtÞ, starts with the same value as XðtÞ, so X�ð0Þ ¼ Xð0Þ, but then, in
any particular realisation, follows a track closely associated with that of
XðtÞ, in that the random part is the same, but it has a different, zero, drift. A
starred variable can be thought of either as a variable subject to a different
probability measure, often called the ‘Q measure’, or else as a variable in the
same probability space as XðtÞ, the ‘real world probability space’, that
‘shadows’ XðtÞ, using only the stochastic parts of the differential equation
defining XðtÞ, i.e. using the dZ parts, and ignoring the dt parts. If XðtÞ is a
random walk with upwards drift, X�ðtÞ will be centred around the value of
Xð0Þ, with the same ‘scatter’ as XðtÞ; however, if XðtÞ is autoregressive, so
that it stays close to some mean value, X�ðtÞ will scatter like a random
walk.

C.9 The Guaranteed Annuity Option
C.9.1 The value of any payoff X at time T, which is a function of FðtÞ

and HðtÞ, can now be calculated as the expected value of X, expressed as a
function of F�ðtÞ and H�ðtÞ, i.e. under the equivalent martingale measure. The
combination of the basic policy and the GAO is a maxi option, and we can
express the payoff (see {2.3.5) as:

XðTÞ ¼ SðTÞ:maxðg:FðTÞ; 1Þ:

However, we wish to express this in terms of the numeraire, so that the
payoff is:

XðTÞ=BðTÞ ¼ SðTÞ=BðTÞ:maxðg:FðTÞ; 1Þ

¼ HðTÞ:maxðg:FðTÞ; 1Þ:

Thus the value of the maxi option in terms of the numeraire is:

E�½XðTÞ=BðTÞ� ¼ E½H�ðTÞ:maxðg:F�ðTÞ; 1Þ�:

Re-expressed in pounds at time 0, it is:

Vð0Þ ¼ Bð0Þ:E�½XðTÞ=BðTÞ� ¼ Bð0Þ:E½H�ðTÞ:maxðg:F�ðTÞ; 1Þ�:

Note that we treat time 0 as the starting point of the option, with it being
exercised T time units later.
C.9.2 We now need to consider the joint distribution of H�ðTÞ and

F�ðTÞ. We have:
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dF�ðtÞ ¼ sF:F
�
ðtÞ:dZ�1

dH�ðtÞ ¼ H�ðtÞ:½fðTÿ tÞ:sR:c21 þ sS:c31g:dZ
�

1 þ s4ðtÞ:dZ
�

4�

with:

s4ðtÞ
2
¼ ðTÿ tÞ

2:c222:s
2
R þ 2ðTÿ tÞ:c22:c32:sR:sS þ ðc

2
32 þ c233Þ:s

2
S:

C.9.3 To go further we use Ito’s formula again. Let KðtÞ ¼ logðF�ðtÞÞ.
f 0ð Þ ¼ 1=F�ðtÞ, f 00ð Þ ¼ ÿ1=F�ðtÞ2, and @K=@t ¼ 0. Hence:

dKðtÞ ¼ 1=F�ðtÞ:ðsF:F
�
ðtÞ:dZ�1Þ þ 1

2 ðsF:F
�
ðtÞÞ

2:ðÿ1=F�ðtÞ2Þ:dtþ 0:dt

¼ ÿ 1
2 s

2
F:dtþ sF:dZ

�

1:

Similarly, putting L ¼ logðH�ðtÞÞ, we get:

dLðtÞ ¼ f1=H�ðtÞg:H�ðtÞ:½fðTÿ tÞ:sR:c21 þ sS:c31g:dZ
�

1 þ s4ðtÞ:dZ
�

4�

þ 1
2H
�
ðtÞ

2:½fðTÿ tÞ:sR:c21 þ sS:c31g
2
þ s4ðtÞ

2
�:ðÿ1=H�ðtÞ2Þ:dt

¼ ÿ 1
2 ½fðTÿ tÞ:sR:c21 þ sS:c31g

2
þ s4ðtÞ

2
�:dt

þ fðTÿ tÞ:sR:c21 þ sS:c31g:dZ
�

1 þ s4ðtÞ:dZ
�

4:

C.9.4 Now KðTÞ ¼ Kð0Þ þ
R T

0 ½ÿ
1
2s

2
F:dtþ sF:dZ

�

1�:

The integral consists of two parts, one deterministic
R T

0 ÿ
1
2s

2
F:dt, which can

be integrated in the usual way to give
R T

0 ÿ
1
2 s

2
F:dt ¼ ÿ 1

2 s
2
F:T, and the other

stochastic
R T

0 sF:dZ
�

1, which is normally distributed with mean zero and

variance
R T

0 s2
F:dt ¼ s2

F:T. Therefore KðTÞ is normally distributed with mean:

E½KðTÞ� ¼ Kð0Þ þ
Z T

0
ÿ 1

2s
2
F:dt ¼ Kð0Þ ÿ 1

2 s
2
F:T

and variance:

Var½KðTÞ� ¼ s2
F:T:

C.9.5 Also:

LðTÞ ¼ Lð0Þ ÿ
Z T

0
f12 ½fðTÿ tÞ:sR:c21 þ sS:c31g

2
þ s4ðtÞ

2
�:dt

þ fðTÿ tÞ:sR:c21 þ sS:c31g:dZ
�

1 þ s4ðtÞ:dZ
�

4g
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so LðTÞ is normally distributed with mean:

E½LðTÞ� ¼ Lð0Þ ÿ
Z T

0

1
2 ½fðTÿ tÞ:sR:c21 þ sS:c31g

2
þ s4ðtÞ

2
�:dt

¼ Lð0Þ ÿ
Z T

0

1
2 ½ðTÿ tÞ

2:s2
R:c

2
21 þ 2ðTÿ tÞ:sR:c21:sS:c31 þ s2

S:c
2
31

þ ðTÿ tÞ
2:c222:s

2
R þ 2ðTÿ tÞ:c22:c32:sR:sS þ ðc

2
32 þ :c

2
33Þ:s

2
S�:dt

¼ Lð0Þ ÿ
Z T

0

1
2 ½ðTÿ tÞ

2:ðc221 þ c222Þ:s
2
R þ 2ðTÿ tÞ:ðc21:c31 þ c22:c32Þ:sR:sS

þ ðc231 þ c232 þ c233Þ:s
2
S�:dt

¼ Lð0Þ ÿ 1
2 ½T

3=3:ðc221 þ c222Þ:s
2
R þ 2T2=2:ðc21:c31 þ c22:c32Þ:sR:sS

þ T:ðc231 þ c232 þ c233Þ:s
2
S�

¼ Lð0Þ ÿ 1
2 ½T

3:s2
R=3þ T2:r23:sR:sS þ T:s2

S�

and variance:

Var½LðTÞ� ¼
Z T

0
fðTÿ tÞ:sR:c12 þ sS:c13g

2
þ s4ðtÞ

2:dt

¼ ½T3:s2
R=3þ T2:r23:sR:sS þ T:s2

S�:

C.9.6 Further, KðTÞ and LðTÞ have covariance (which comes only
through Z�1):

Covar½KðTÞ;LðTÞ� ¼
Z T

0
sF:½fðTÿ tÞ:sR:c12 þ sS:c31g�:dt

¼ T2:c21:sR:sF=2þ T:c31:sS:sF

¼ T2:r12:sR:sF=2þ T:r13:sS:sF:

Since KðTÞ ¼ logF�ðTÞ and LðTÞ ¼ logH�ðTÞ are jointly normally distributed,
F�ðTÞ and H�ðTÞ are jointly lognormally distributed.

C.9.7 To calculate the value of the maxi option we need another
result, relating to bivariate lognormal distributions. If X1 and X2 are jointly
normally distributed, with means m1 and m2, variances s2

1 and s2
2 and

correlation coefficient r, their density function can be written:
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f
X
ðx1; x2Þ ¼

1
2ps1s2ð1ÿ r2

Þ
1=2 :

: exp ÿ
1

2ð1ÿ r2
Þ

ðx1 ÿ m1Þ
2

s2
1

ÿ
2rðx1 ÿ m1Þðx2 ÿ m2Þ

s1s2
þ
ðx2 ÿ m2Þ

2

s2
2

� �� �
:

Then, if Y1 ¼ expðX1Þ and Y2 ¼ expðX2Þ, we describe Y1 and Y2 as being
jointly lognormally distributed with the same parameters. Their density
function is:

fYðy1; y2Þ ¼
1

2py1y2s1s2ð1ÿ r2
Þ
1=2 :

: exp ÿ
1

2ð1ÿ r2
Þ

ðx1 ÿ m1Þ
2

s2
1

ÿ
2rðx1 ÿ m1Þðx2 ÿ m2Þ

s1s2
þ
ðx2 ÿ m2Þ

2

s2
2

� �� �
where x1 ¼ log y1, x2 ¼ log y2.

C.9.8 Putting Y1 ¼ F�ðTÞ and Y2 ¼ H�ðTÞ we calculate the value of the
maxi option, expressed in units of the numeraire, as:

E½H�ðTÞ:maxðg:F�ðTÞ; 1Þ� ¼
Z 1
1=g

Z 1
0

H�ðTÞ:g:F�ðTÞ:f ðH�;F�Þ:dH�:dF�

þ

Z 1=g

0

Z 1
0

H�ðTÞ:f ðH�;F�Þ:dH�:dF�:

We can first calculate what we shall denote:

E½Yr1
1 :Y

r2
2 ; a; b; 0;1� ¼

Z b

a

Z 1
0

yr1
1 :y

r2
2 :fYðy1; y2Þ:dy2:dy1

i.e. y1 runs from a to b and y2 runs from 0 to1.
C.9.9 Putting x1 ¼ log y1 and x2 ¼ log y2 we rewrite the integral as:

I ¼
Z log b

log a

Z 1
0

expðr1x1Þ: expðr2x2Þ:fXðx1; x2Þ:dx2:dx1

¼

Z log b

log a

Z 1
ÿ1

expðr1x1Þ: expðr2x2Þ
1

2ps1s2ð1ÿ r2
Þ
1=2 :

: exp ÿ
1

2ð1ÿ r2
Þ

ðx1 ÿ m1Þ
2

s2
1

ÿ
2rðx1 ÿ m1Þðx2 ÿ m2Þ

s1s2
þ
ðx2 ÿ m2Þ

2

s2
2

� �� �
dx2:dx1

and after a great deal of straightforward, but tedious, manipulation we get:
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I ¼ expðr1m1 þ r21s
2
1=2þ r1r2rs1s2 þ r2m2 þ r22s

2
2=2Þ:

:½Nfðlog bÿ m1 ÿ r2rs1s2 ÿ r1s
2
2Þ=s1g ÿNfðlog aÿ m1 ÿ r2rs1s2 ÿ r1s

2
2Þ=s1g�:

C.9.10 So with r1 ¼ r2 ¼ 1, we have:

E½Y1Y2; a; b; 0;1� ¼ expðm1 þ m2 þ
1
2 s

2
1 þ rs1s2 þ

1
2 s

2
2Þ:

:½Nfðlog bÿ m1 ÿ rs1s2 ÿ s2
1Þ=s1g

ÿNfððlog aÿ m1 ÿ rs1s2 ÿ s2
1Þ=s1g�

and putting b ¼ 1 we have:

E½Y1Y2; a;1; 0;1� ¼ expðm1 þ m2 þ
1
2 s

2
1 þ rs1s2 þ

1
2 s

2
2Þ:

:½1ÿNfðlog aÿ m1 ÿ rs1s2 ÿ s2
1Þ=s1g�:

Then with r1 ¼ 0, r2 ¼ 1:

E½Y2; a; b; 0;1� ¼ expðm2 þ
1
2s

2
2Þ:

:½Nfðlog bÿ m1 ÿ rs1s2Þ=s1g ÿNfðlog aÿ m1 ÿ rs1s2Þ=s1g�

and with a ¼ 0 we have:

E½Y2; 0; b; 0;1� ¼ expðm2 þ
1
2s

2
2Þ:½Nfðlog bÿ m1 ÿ rs1s2Þ=s1g ÿ 0�:

C.9.11 We now get the value of the maxi option V(0) as:

Vð0Þ ¼ Bð0Þ:E½H�ðTÞ:maxðg:F�ðTÞ; 1Þ�

¼ Bð0Þ:
� Z 1

1=g

Z 1
0

H�ðTÞ:g:F�ðTÞ:f ðH�;F�Þ:dH�:dF�

þ

Z 1=g

0

Z 1
0

H�ðTÞ:f ðH�;F�Þ:dH�:dF�
�

¼ Bð0Þ:g: expðm1 þ m2 þ
1
2s

2
1 þ rs1s2 þ

1
2s

2
2Þ:

:½1ÿNfðlogð1=gÞ ÿ m1 ÿ rs1s2 ÿ s2
1Þ=s1g�

þ Bð0Þ: expðm2 þ
1
2s

2
2Þ:Nfðlogð1=gÞ ÿ m1 ÿ rs1s2Þ=s1g:

Now m1 ¼ E½KðTÞ� ¼ Kð0Þ ÿ 1
2s

2
F:T and s2

1 ¼ Var½KðTÞ� ¼ s2
F:T, so m1 þ

1
2 s

2
1 ¼

Kð0Þ ¼ logF�ð0Þ ¼ logFð0Þ, since F�ð0Þ ¼ Fð0Þ.
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C.9.12 Further:

m2 ¼ E½LðTÞ� ¼ Lð0Þ ÿ 1
2 ½T

3:s2
R=3þ T2:r23:sR:sS þ T:s2

S�

and

s2
2 ¼ Var½LðTÞ� ¼ ½T3:s2

R=3þ T2:r23:sR:sS þ T:s2
S�

so:

m2 ¼
1
2s

2
2 ¼ Lð0Þ ¼ logH�ð0Þ ¼ logHð0Þ:

Also:

rs1s2 ¼ Cov ¼ Covariance½KðTÞ;LðTÞ� ¼ T2:r12:sR:sF=2þ T:r13:sS:sF:

C.9.13 So:

Vð0Þ ¼ Bð0Þ:g: expðKð0Þ þ Lð0Þ þ CovÞÞ:

:½1ÿNfðlogð1=gÞ ÿKð0Þ þ 1
2s

2
F:Tÿ Covÿ s2

F:TÞ=sF

p
Tg�

þ Bð0Þ: expðLð0ÞÞ:Nfðlogð1=gÞ ÿKð0Þ þ 1
2 s

2
F:Tÿ CovÞ=sF

p
Tg

¼ Bð0Þ:g:Fð0Þ:Hð0Þ: expðCovÞ:

:½1ÿNfðÿ logðgÞ ÿ logFð0Þ ÿ 1
2 s

2
F:Tÿ CovÞ=sF

p
Tg�

þ Bð0Þ:Hð0Þ:Nfðÿ logðgÞ ÿ logFð0Þ þ 1
2 s

2
F:Tÿ CovÞ=sF

p
Tg

¼ Bð0Þ:g:Fð0Þ:Sð0Þ=Bð0Þ: expðCovÞ:

:Nflogðg:Fð0ÞÞ þ 1
2 s

2
F:Tþ CovÞ=sF

p
Tg

þ Bð0Þ:Sð0Þ=Bð0Þ:Nfðÿ logðg:Fð0ÞÞ þ 1
2s

2
F:Tÿ CovÞ=sF

p
Tg

¼ Fð0Þ:Sð0Þ:g: expðCovÞ:Nfðlogðg:Fð0ÞÞ þ CovÞ=sF

p
Tþ 1

2sF

p
Tg

þ Sð0Þ:Nfÿðlogðg:Fð0ÞÞ þ CovÞ=sF

p
Tþ 1

2sF

p
Tg:

C.9.14 We assumed that the starting date of the option was time t ¼ 0,
and the expiry date was time T, but the above formula applies equally at
general time t if F(0) and Sð0Þ are replaced by FðtÞ and SðtÞ, and T is replaced
by Tÿ t, giving:

VðtÞ ¼ FðtÞ:SðtÞ:g: expðCovÞ:Nfðlogðg:FðtÞÞ þ CovÞ=sF

p
ðTÿ tÞ þ 1

2 sF

p
ðTÿ tÞg

þ SðtÞ:Nfÿðlogðg:FðtÞÞ þ CovÞ=sF

p
ðTÿ tÞ þ 1

2 sF

p
ðTÿ tÞg

¼ SðtÞ:½g:FðtÞ: expðCovÞ:Nfðlogðg:FðtÞÞ þ CovÞ=sF

p
ðTÿ tÞ þ 1

2 sF

p
ðTÿ tÞg

þNfÿðlogðg:FðtÞÞ þ CovÞ=sF

p
ðTÿ tÞ þ 1

2 sF

p
ðTÿ tÞg�

¼ SðtÞ:½G:NflogðGÞ=Sþ 1
2Sg þNfÿ logðGÞ=Sþ 1

2Sg�

¼ SðtÞ:½G:Nðd1Þ þNðd2Þ�
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with:

d1 ¼ logðGÞ=Sþ 1
2S

d2 ¼ ÿ logðGÞ=Sþ 1
2S

G ¼ g:FðtÞ: expðCovÞ

Cov ¼ ðTÿ tÞ
2:r12:sR:sF=2þ ðTÿ tÞ:r13:sS:sF

and

S ¼ sF

p
ðTÿ tÞ:

C.9.15 Note that mSð Þ, mRð Þ and mFð Þ do not enter this formula, so they
can be any suitable functions that we like. This is similar to what is found in
the Black-Scholes result for an ordinary option on a share. Note also that
r23 does not come in either; any correlation between the zcb and the share
does not affect the value of the option. However, r12 and r13 remain
relevant.

C.9.16 In order for our logic to be valid, there are technical conditions
that must be met, mainly that the integral of the variance over any finite time
is itself finite. The conditions are met in our model, effectively because we
assume constant values of sS, sR and sF.

C.9.17 We used the zcb as the numeraire. We could have taken either
the share or the dla as the numeraire, or just left the expressions in pounds,
and in each case we should have obtained the same results.

C.10 The Hedging Proportions
C.10.1 We must now find the hedging proportions. The value of the

option calculated above is a deterministic value, but it is only so because of
the possibility of hedging with a self-financing portfolio, in such a way that
the proceeds of the investment always exactly meet the required option value.
This is possible only in a world in which hedging can be carried out
continuously and costlessly, and of course only if the true ‘real world’ model
is the same as the hypothesised real world model that we have defined in
order to calculate the option value.

C.10.2 Imagine that at each time t we hold a portfolio consisting of
amounts jSðtÞ invested in the share, jDðtÞ invested in the deferred annuity
and jBðtÞ invested in the zero-coupon bond. We wish the value of this
portfolio to equal the value of the option at all times. Thus we would
like:

jSðtÞ þ jDðtÞ þ jBðtÞ ¼ VðtÞ

for all t. For this to occur, the initial values must be equal:
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jSð0Þ þ jDð0Þ þ jBð0Þ ¼ Vð0Þ

and also the derivative of the portfolio must equal the derivative of the
option, so we would have:

dVðtÞ ¼ djSðtÞ þ djDðtÞ þ djBðtÞ

for all t.
C.10.3 It is again easier to work in terms of the numeraire, so we

proceed by defining:

UðtÞ ¼ VðtÞ=BðtÞ

jHðtÞ ¼ jSðtÞ=BðtÞ

jFðtÞ ¼ jDðtÞ=BðtÞ

jAðtÞ ¼ jBðtÞ=BðtÞ

and we require:

UðtÞ ¼ jHðtÞ þ jFðtÞ þ jAðtÞ

and

dUðtÞ ¼ djHðtÞ þ djFðtÞ þ djAðtÞ

¼ jHðtÞ=HðtÞ:dHðtÞ þ jFðtÞ=FðtÞ:dFðtÞ þ jAðtÞ=AðtÞ:dAðtÞ

where AðtÞ is the value of the zcb in terms of the zcb, so AðtÞ ¼ 1 and
dAðtÞ ¼ 0 for all t.

C.10.4 To calculate dUðtÞ we need Ito’s formula again. We have:

UðtÞ ¼ VðtÞ=BðtÞ

¼ SðtÞ=BðtÞ:½G:Nðd1Þ þNðd2Þ�

¼ HðtÞ:½G:Nðd1Þ þNðd2Þ�:

Now dUðtÞ ¼ @U=@H:dHðtÞ þ @U=@F:dFðtÞ þ non-stochastic terms, so if we
set:

jHðtÞ=HðtÞ ¼ @U=@H

jFðtÞ=FðtÞ ¼ @U=@F

and

jAðtÞ ¼ UðtÞ ÿ jHðtÞ ÿ jFðtÞ

we shall achieve what we require.
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C.10.5 We therefore need @U=@H and @U=@F.

UðtÞ ¼ HðtÞ:½G:Nðd1Þ þNðd2Þ�

so:

@U=@H ¼ ½G:Nðd1Þ þNðd2Þ�

and

jHðtÞ ¼ HðtÞ:@U=@H ¼ UðtÞ:

C.10.6 Then:

@U=@F ¼ @fHðtÞ:½G:Nðd1Þ þNðd2Þ�g=@F

¼ HðtÞ:@½G:Nðd1Þ þNðd2Þ�=@F:

Now:

G ¼ g:FðtÞ: expðCovÞ

so:

@G=@F ¼ g: expðCovÞ

@NðxÞ=@x ¼ expðÿx2=2Þ=
p
ð2pÞ

d1 ¼ logðGÞ=Sþ 1
2S ¼ logðg:FðtÞ: expðCovÞÞ=Sþ 1

2S

so:

@d1=@F ¼ 1=ðFðtÞ:SÞ

d2 ¼ ÿ logðGÞ=Sþ 1
2S ¼ ÿ logðg:FðtÞ: expðCovÞÞ=Sþ 1

2S

and

@d2=@F ¼ ÿ1=ðFðtÞ:SÞ:

So:

@U=@F¼ HðtÞ:½g: expðCovÞ:Nðd1Þ þG: expðÿd2
1=2Þ=ð

p
ð2pÞ:FðtÞ:SÞÞ

þ expðÿd2
2=2Þ=ð

p
ð2pÞ:ðÿFðtÞÞ:SÞ�

¼ HðtÞ:½g: expðCovÞ:Nðd1Þþ½G: expðÿd2
1=2Þÿexpðÿd2

2=2Þ�=
p
ð2pÞ:FðtÞ:S�:
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C.10.7 Then:

jFðtÞ ¼ FðtÞ:@U=@F

¼ FðtÞ:HðtÞ:½g: expðCovÞ:Nðd1Þ

þ ½G: expðÿd2
1=2Þ ÿ expðÿd2

2=2Þ�=f
p
ð2pÞ:FðtÞ:Sg�

¼ HðtÞ:G:Nðd1Þ þHðtÞ:½G: expðÿd2
1=2Þ ÿ expðÿd2

2=2Þ�=f
p
ð2pÞ:Sg

but:

d1 ¼ logðGÞ=Sþ 1
2S

d2 ¼ ÿ logðGÞ=Sþ 1
2S

ÿd2
1=2 ¼ ÿ 1

2 ðlogðGÞ=Sþ 1
2SÞ

2

¼ ÿ 1
2 ðlogðGÞ2=S2

þ 2 logðGÞ=S: 12Sþ
1
4S

2
Þ

¼ ÿ 1
2 ðlogðGÞ2=S2

þ logðGÞ þ 1
4S

2
Þ

ÿd2
2=2 ¼ ÿ 1

2 ðÿ logðGÞ=Sþ 1
2SÞ

2

¼ ÿ 1
2 ðlogðGÞ2=S2

ÿ logðGÞ þ 1
4S

2
Þ

G: expðÿd2
1=2Þ ¼ expðlogðGÞ ÿ d2

1=2Þ

¼ expðlogðGÞ ÿ 1
2 ðlogðGÞ2=S2

þ logðGÞ þ 1
4S

2
ÞÞ

¼ expðÿ 1
2 ðlogðGÞ2=S2

ÿ 2 logðGÞ þ logðGÞ þ 1
4S

2
ÞÞ

¼ expðÿ 1
2 ðlogðGÞ2=S2

ÿ logðGÞ þ 1
4S

2
ÞÞ

¼ expðÿd2
2=2Þ

so:

G: expðÿd2
1=2Þ ÿ expðÿd2

2=2Þ ¼ 0

and

jFðtÞ ¼ HðtÞ:G:Nðd1Þ:

C.10.8 Then we calculate:

jAðtÞ ¼ UðtÞ ÿ jHðtÞ ÿ jFðtÞ

and then:

jSðtÞ ¼ jHðtÞ:BðtÞ

jDðtÞ ¼ jFðtÞ:BðtÞ

jBðtÞ ¼ jAðtÞ:BðtÞ
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or, more directly:

jSðtÞ ¼ jHðtÞ:BðtÞ

¼ UðtÞ:BðtÞ

¼ VðtÞ

jDðtÞ ¼ jFðtÞ:BðtÞ

¼ HðtÞ:BðtÞ:G:Nðd1Þ

¼ SðtÞ:G:Nðd1Þ

jBðtÞ ¼ VðtÞ ÿ jSðtÞ ÿ jDðtÞ ¼ ÿjDðtÞ:

The amount invested in units is the full value of the maxi option. The
amounts invested in the dla and the zcb are equal, but of opposite signs, the
former positive (implying a ‘long’ position) and the latter negative (or ‘short’,
equivalent to borrowing). The more the option is in the money the larger
are these offsetting amounts, approaching in the limit the full value of the
option. If the option is very far out of the money, these amounts are both
small.

C.11 Validation
C.11.1 We noted that the value of the option that we have calculated is

what we have calculated only because of the possibility of a self-financing
hedge strategy. To demonstrate this we use simulation over time steps of
length h. We noted in C.9.8 that mSð Þ, mRð Þ and mFð Þ do not enter
the option pricing formula, so we can make them any simple functions
that we like. We choose mSð Þ ¼ mS, a constant, mRð Þ ¼ aRðyR ÿRðtÞÞ and
mFð Þ ¼ aFðyF ÿ logFðtÞÞ þ 1

2s
2
F, both autoregressive functions, the latter with

a bias whose use will become apparent.
C.11.2 The differential equation for SðtÞ is:

dSðtÞ ¼ mS:SðtÞ:dtþ sS:SðtÞ:dW3

from which we can derive (using Ito again):

d log SðtÞ ¼ ðmS ÿ
1
2 s

2
SÞ:dtþ sS:dW3

whence:

log Sðtþ hÞ ¼ log SðtÞ þ mS;h þ sS;h:W3ðtþ hÞ

where mS;h ¼ ðmS ÿ
1
2s

2
SÞh and sS;h ¼ sS

p
h, and W3 is a unit normal random

variable. This is, of course, a random walk model with drift for log SðtÞ.

Policies with Guaranteed Annuity Options 115



C.11.3 The differential equation for RðtÞ is:

dRðtÞ ¼ aRðyR ÿRðtÞÞ:dtþ sR:dW2

which is an Orenstein-Uhlenbeck process, whence:

Rðtþ hÞ ¼ RðtÞ þ aR;h:ðRðtÞ ÿ yRÞ þ sR;h:W2ðtþ hÞ

with aR;h ¼ expðÿaRhÞ; sR;h ¼ sR

p
fð1ÿ a2

R;hÞ=ð2aRÞg and W2 is a unit normal
random variable. This is a first order autoregressive, or AR(1), time series
model for RðtÞ.

C.11.4 The differential equation for FðtÞ is:

dFðtÞ ¼ faFðyF ÿ logFðtÞÞ ÿ 1
2s

2
Sg:FðtÞ:dtþ sF:FðtÞ:dW1

from which we can derive, using Ito again:

d logFðtÞ ¼ aFðyF ÿ logFðtÞÞ:dtþ sF:dW1

which is another Orenstein-Uhlenbeck process, whence:

logFðtþ hÞ ¼ logFðtÞ þ aF;h:ðlogFðtÞ ÿ yRÞ þ sF;h:W1ðtþ hÞ

with aF;h ¼ expðÿaFhÞ; sF;h ¼ sF

p
fð1ÿ a2

F;hÞ=ð2aFÞg and W1 is a unit normal
random variable.

C.11.5 Note that W1, W2 and W3 are related through:

W1 ¼ Z1

W2 ¼ c21:Z1 þ c22:Z2

W3 ¼ c31:Z1 þ c32:Z2 þ c33:Z3

where Z1, Z2 and Z3 are independent unit normal variates and the cs are
defined as in Section C.7.

C.11.6 To perform the simulation we need to select a horizon, T, a
guaranteed rate g, values of the parameters mS, sS, etc., and values of
Sð0Þ, R(0) and F(0). From these we calculate the derived values
Bð0Þ ¼ expðÿT:Rð0ÞÞ and Dð0Þ ¼ Fð0Þ:Bð0Þ. In one simulation we simulate
the ‘real world’ values of SðtÞ, RðtÞ and FðtÞ, for each step t ¼ h; 2h; 3h,
..., as just described, and calculate the derived values BðtÞ and DðtÞ.
This gives us one ‘real world’ scenario. We then consider the option.
We start the simulation with an amount invested of Yð0Þ ¼ Vð0Þ,
invested in amounts jSð0Þ, jDð0Þ and jBð0Þ, as calculated in Section C.10.
At time h the values of these investments will have altered to
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jSð0Þ:SðhÞ=Sð0Þ, etc. The sum of these, denoted YðhÞ, will almost
certainly not exactly match the value of VðhÞ. We then consider five
possible investment strategies:
(i) invest the correct amounts in the share and in the dla, jSðhÞ and jDðhÞ

respectively, based on VðhÞ and the formula in Section C.10, and let the
balance be invested in the zcb;

(ii) invest the correct amounts in the share and in the zcb, jSðhÞ and jBðhÞ
respectively, and let the balance be invested in the dla;

(iii) invest the correct amounts in the zcb and in the dla, jBðhÞ and jDðhÞ
respectively, and let the balance be invested in the share;

(iv) invest the correct proportions in each of the three tradeables; and
(v) invest the correct proportions at time 0, and leave them unchanged

until the option expires (the only purpose of this being to show that this
is not a matching strategy).

We choose one of these strategies, initially strategy (i).
C.11.7 Following the chosen strategy, by time T we shall have an

amount YðTÞ. This will almost certainly not exactly match the required
payoff PðTÞ, which we can calculate as PðTÞ ¼ SðTÞ:maxðg:FðTÞ; 1Þ. The
discrepancy we call the hedging error, denoted as EðTÞ ¼ PðTÞ ÿYðTÞ. In the
first place we wish to investigate the distribution of EðTÞ.

C.11.8 We have chosen parameters:

mS ¼ 0:1

sS ¼ 0:2

yR ¼ 0:065

aR ¼ 0:125

sR ¼ 0:0125

yF ¼ 2:2

aF ¼ 0:1

sF ¼ 0:065

rSR ¼ ÿ0:3

rSF ¼ 0:3

rRF ¼ ÿ0:9:

These are very loosely based on the actual experience in the U.K., at
monthly intervals, from December 1950 to August 2002. The value of FðtÞ
depends in principle on the mortality table used. For this experiment we have
used PA(90), with an annuity due at age 65. We then assume:
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T ¼ 20 years

g ¼ 0:111

Sð0Þ ¼ 100

Rð0Þ ¼ 0:05

Fð0Þ ¼ 9:0:

The exact values are not important for this experiment; but the option is
almost at the money.

C.11.9 We first show the results of 1,000 simulations with h ¼ 1 year,
and the hedging being carried out according to strategy (i), in which, at each
rebalancing point, the correct amounts are invested in the share and the dla,
with the bond taking the balance. Figure C.1 shows the values of YðTÞ, the
investment proceeds, plotted against the values of PðTÞ, the amount required
to pay off the option. One can see that in general the investment proceeds
correspond with the amounts required, but by no means perfectly.

C.11.10 The results depend so strongly on the value of SðTÞ that it
seems more informative to work in units of the share. The investment
proceeds are Y�ðTÞ ¼ YðTÞ=SðTÞ, and the required option is P�ðTÞ ¼
PðTÞ=SðTÞ ¼ maxðg:FðTÞ; 1Þ. Figure C.2 shows the values of Y�ðTÞ and P�ðTÞ
plotted against g:FðTÞ. One can now see that, although the investment results
cluster around the desired target, they are, in some cases, very far away
from it. In one case the investment proceeds are negative, but in other cases
the investment proceeds provide a proportionately very large profit.
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Figure C.1. YðTÞ versus PðTÞ, hedging yearly
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C.11.11 We next use h ¼ 1
2 month. Figure C.3 shows the same variables

as Figure C.2, but with hedging twice per month. One can see that the
correspondence is rather closer. The extreme values are very much less
extreme than with yearly hedging, but there are still some proportionately
large deficits and profits.
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Figure C.2. Y�ðTÞ versus g:FðTÞ, hedging yearly
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Figure C.3. Y�ðTÞ versus g:FðTÞ, hedging twice per month
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C.11.12 Now we use h ¼ 1=128 of a month, which implies rebalancing
the hedge about every six hours, day and night, every day. Figure C.4 shows
the results. One can see that the results now correspond very closely, but
still not perfectly.

C.11.13 The results demonstrate that the investment strategy we have
described, if it is applied according to the option formulae, and if hedging is
sufficiently frequent, does indeed give results that correspond with the
required payoff. This validates the option and hedging formulae that we have
developed. However, it also demonstrates that, with any practical schedule
of hedging the results do not correspond perfectly, so that additional initial
contingency reserves might be thought prudent. In addition, we have
assumed so far that hedging can be carried out at no cost. To be more
realistic, we need to take transaction costs into account. Finally, we have
assumed that the real world investment in fact behaves in accordance with
the stochastic processes we have defined and have used for the calculation of
option values and hedging quantities. The true behaviour of the real world
may actually be very different. If we take into account all of these, the
distribution of hedging errors will, almost always, widen considerably, and
the investment proceeds may well not even centre on the desired target.

C.12 Numerical Results
C.12.1 We now give some numerical results. With the parameters that

we have used, the value of the maxi option is 108.14. The initial hedging
strategy is to invest 108.14 in the share, 43.20 in the dla and ÿ43:20 in the
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Figure C.4. Y�ðTÞ versus g:FðTÞ, hedging 128 times per month
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zcb. Of course the value of the option and the initial hedging quantities
vary enormously, depending on how far in or out of the money it is, the term,
and the chosen parameters. It can be seen from Figure C.2 that in one
simulation, with yearly hedging, the value of the proceeds Y�ðTÞ is negative.
This occurred because the option was well in the money, so the proportions
in zcb and dla were large; then in one year share prices fell, and interest rates
moved so that the value of the zcb reduced by less than the value of the dla.
Such a result is possible if hedging is sufficiently infrequent.

C.12.2 The most useful statistic to measure the success of hedging is the
deficit at maturity, defined as D�ðTÞ ¼ ðPðTÞ ÿYðTÞÞ=SðTÞ. Some statistics of
D�ðTÞ with the different hedging frequencies, using investment strategy (i),
are shown in Table C.12.1.

It can be seen that more frequent hedging reduces the hedging error, but
not to zero. Note that these are based on only 1,000 simulations, so do not
give reliable extreme quantile measures.

C.12.3 The results with other investment strategies, (ii to v) above, with
hedging twice per month, are shown in Table C.12.2.

We see that the last strategy (v), which involves no hedging at all after the
initial portfolio is set up, is quite unsatisfactory. Strategies (i) and (ii), where
the right amount is put into the share with either the zcb or the dla getting
the correct amount and the other getting the balance, give similar results.
Strategies (iii), with the share taking the balance, and (iv), with the hedging
proportions being maintained, give similar results, and are distinctly better

Table C.12.1. Statistics of D�ðTÞ with different frequencies of hedging

Frequency Mean Standard
deviation

Minimum Maximum

Yearly 0.43 14.04 ÿ135.10 158.19
Twice per month 0.02 2.63 ÿ27.53 20.99
128 times pm ÿ0.01 0.33 ÿ4.62 1.93

Table C.12.2. Statistics of D�ðTÞ with different hedging strategies

Strategy Mean Standard
deviation

Minimum Maximum

(i) 0.018 2.63 ÿ27.53 20.99
(ii) 0.018 2.60 ÿ34.30 21.72
(iii) 0.016 1.10 ÿ4.76 5.01
(iv) 0.011 1.06 ÿ5.81 4.58
(v) ÿ0.463 39.24 ÿ421.45 492.00
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than either (i) or (ii). Note that this is in contrast with results that we have
found elsewhere for other types of option.

C.12.4 We next consider the present values of the deficit, when
discounted at different rates, corresponding to the share, the zcb, the dla, or
the option mix. We again assume hedging twice a month, now with strategy
(iv). The results are shown in Table C.12.3.

From this table we see that the discounted value has the least dispersion
when the deficit is assumed to be discounted as if it had been invested in the
same proportions as the option. Thus, if a contingency reserve is set up,
sufficient to meet say the 99% quantile or CTE, and that the reserve is
invested in the same proportions as the option, it will meet 99% of deficits.
Further, the contingency reserve required will probably be smaller than if
other investment strategies, either for the total investment or for the
contingency reserve, had been adopted. Again, this is in contrast with what
we have found elsewhere.

C.12.5 We now consider hedging over different periods, 10, 20, 30 and
40 years. We fix our ‘standard’ as hedging twice a month, with strategy (iv)
and discounting by the option proceeds. The results are shown in Table
C.12.4, in which we show the option price and the amount to be invested
initially in the dla; the amount to go into the share is the same as the option
price, and the amount to go into the zcb is the negative of the dla amount. It
is interesting that the option price decreases as the term lengthens. We
comment further on this in Section C.13. In spite of these low option prices,

Table C.12.3. Statistics of D�ðTÞ discounted with different
discount methods

Discount as: Mean Standard
deviation

Minimum Maximum

Share 0.011 1.06 ÿ5.81 4.58
Zcb 0.012 2.46 ÿ19.22 14.53
Dla 0.014 2.29 ÿ19.16 12.53
Option 0.025 1.04 ÿ3.91 4.29

Table C.12.4. Statistics of the option and of D�ðTÞ for different terms

Term
(years)

Option
price

Initial
dla hedge

Mean Standard
deviation

Minimum Maximum

10 108.26 54.45 0.002 0.93 ÿ2.78 3.62
20 108.14 43.20 0.025 1.04 ÿ3.91 4.29
30 105.37 27.24 0.062 1.15 ÿ4.24 4.91
40 102.49 13.03 0.049 1.14 ÿ4.42 4.25
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the hedging process still meets the required payoff, which, in money terms,
varies enormously, with quite small errors, which do not increase much with
term.

C.12.6 We now consider various starting values for the fla, viz. 7, 8, 9,
10 and 11, from well out of the money to well into the money, all for term 20,
with the standard assumptions. The results are shown in Table C.12.5.
Naturally the option price increases with the value of F(0). The hedging
errors also increase somewhat with F(0).

C.12.7 We could go on with this exercise, showing for example the
results of allowing for transaction costs. It is obvious that allowing for
transaction costs on purchases or sales of investments increases the deficit,
and that this increase is generally greater the more frequent is the hedging. In
other experiments we have found that hedging twice per month achieves the
optimum balance between keeping the hedging error down and not incurring
too great costs, but this would depend very much on the level of transaction
costs assumed. We have assumed hedging at regular time intervals. Another
strategy, described by Boyle & Hardy (1997) as a ‘move-based’ strategy, is to
look at the position at frequent time intervals, but to rebalance the portfolio
only when it diverges from the desired position by more than some threshold
amount. This, too, is worth investigating.

C.12.8 We could also show the results of setting the values of the ‘real
world’ parameters different from those assumed for calculating the option
prices. If the ‘wrong’ parameter values are used for the option pricing and
hedging, in general the mean value of the hedging error is altered, possibly in
either direction, and sometimes severely.

C.13 Properties of the Option Pricing Formula
C.13.1 The formula for the option price, shown in {C.9.14, bears some

resemblance to the formula for a maxi option on an ordinary share based on
the usual Black-Scholes formula, but it has an important difference, the
covariance term that enters into the calculation of G, and hence into the
calculation of d1 and d2. This is affected by two correlation coefficients, that

Table C.12.5. Statistics of the option and of D�ðTÞ for different
values of F(0)

F(0) Option
price

Initial
dla hedge

Mean Standard
deviation

Minimum Maximum

7 101.68 12.28 0.025 0.84 ÿ3.41 3.35
8 104.13 25.65 0.025 0.93 ÿ3.67 3.77
9 108.14 43.20 0.025 1.04 ÿ3.91 4.29
10 113.70 62.85 0.036 1.19 ÿ4.22 4.89
11 120.63 82.67 0.049 1.35 ÿ4.91 5.54
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between shares and the fla r13, and that between the fla and the zcb rate
r12. The latter has a bigger effect the longer the term, because of the ðTÿ tÞ

2

factor. It is likely that the value of the fla and the zcb rate are very negatively
correlated, because both depend on interest rates, though at different parts
of the term structure. A high negative value for r12 reduces the value of the
option, especially at longer terms. In effect, during the hedging process the
values of the holdings of the zcb and the dla, one short and one long, offset
one another to a great extent over each short interval. On the other hand, the
value of the correlation coefficient between shares and the fla may well be
positive, though probably smaller in absolute value than r12, and acts to
increase the value of the option.

C.13.2 Thus, with the other parameters as shown in {C.11.8, if we set
the two correlation coefficients to zero, the option price increases with term,
from about »104 per »100 invested for term 1 to about »125 for term 40. If
we set the value of r13 to 0.5, it increases from about »105 to about »160. If,
instead, we set the value of r12 to ÿ0:5, the option price is still about »104
for term 1, increases to over »107 at term 7, and then reduces to very close to
»100 by term 40. If both changes are made, the maximum rises to over »111
by term 9, but thereafter the value falls to close to »100 with longer terms.
C.13.3 Obviously, if the guarantee amount g increases, the option price

increases. Also, if the option is more in the money the price increases, and it
reduces if it is more out of the money. However, with the other parameters as
in {C.9.14, when the option is in the money the option price still rises to a
maximum and then falls for longer terms. It has to be very far into the
money before the price at term 40 increases much. If the value of r12 is
altered to ÿ0:9, as we use in experiments with the Wilkie model, the long-
term option value remains close to »100 even if we increase the value of the
fla to the ridiculous value of 50. Note that, if interest rates remain positive,
an annuity value is never greater than the expectation of life at the
commencement age. Even with the lightest mortality table we use,
PMA92B1977, the value of an annuity due at age 65 at 0% does not go above
22.1.

C.13.4 Provided r13 is positive, an increase in the standard deviation of
the share price sS increases the value of the option. If r13 were negative it
would have the opposite effect, and if r13 is zero sS has no effect at all.
Because r12 is almost certainly negative, an increase in the value of the
standard deviation of the zcb rate sR has the apparently perverse effect of
reducing the option price.

C.13.5 The effect of the standard deviation of the fla sF seems to be
more complicated. If both correlation coefficients are zero, then an increase
in sF results in an increase in the option price. However, with r12 negative
and r13 positive, a small increase in sF can result in a decrease in the option
price at all durations, whereas a large increase in sF can produce an increase
in the option price at short durations, but a decrease at longer durations.
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The pattern deserves further investigation, but with the relatively large
number of parameters, generalisations may be misleading.

C.14 Deflators
C.14.1 A number of actuarial papers recently have advocated the use of

deflators as a way of calculating option prices through simulation with the
‘real world’ model. The deflator for any model is readily calculated as what is
technically known as the ‘Radon-Nikodym derivative’, expressed in terms of
the numeraire. In our model the deflator is therefore (see Baxter & Rennie,
1996, p186):

Deflatorð0Þ ¼ Bð0Þ: exp ÿSi¼1;n

Z T

0
giðtÞdZiðtÞ ÿ

Z T

0
jgðtÞj2dt

� �
:

C.14.2 We had only two gs, viz:

g1ðtÞ ¼ mFð Þ=sF ¼ ½aFðyF ÿ logFðtÞÞ þ 1
2 s

2
F�=sF

g4ðtÞ ¼ ½ðTÿ tÞ:mRð Þ þ mSð Þ þ
1
2s

2
RðTÿ tÞ

2
ÿRðtÞ þ ðTÿ tÞ:sS:sR:r23

ÿ fðTÿ tÞ:sR:c21 þ sS:c31g:mFð Þ=sF�=s4ðtÞ

¼ ½ðTÿ tÞ:aRðyR ÿRðtÞÞ þ mS þ
1
2s

2
RðTÿ tÞ

2
ÿRðtÞ þ ðTÿ tÞ:sS:sR:r23

ÿ fðTÿ tÞ:sR:c21 þ sS:c31g:mFð Þ=sF�=s4ðtÞ

so:

Deflatorð0Þ ¼ Bð0Þ: exp ÿ

Z T

0
g1ðtÞdZ1ðtÞ ÿ

Z T

0
g4ðtÞdZ4ðtÞ ÿ

Z T

0
ðg1ðtÞ

2
þ g4ðtÞ

2
Þ:dt

� �
but:

dZ4 ¼ fðTÿ tÞ:sR:c22 þ sS:c32g=s4ðtÞ:dZ2 þ sS:c33=s4ðtÞ:dZ3

with:

s4ðtÞ
2
¼ ðTÿ tÞ

2:c222:s
2
R þ 2ðTÿ tÞ:c22:c32:sR:sS þ ðc

2
32 þ c233Þ:s

2
S:

C.14.3 This does not seem to be analytically tractable. However, within
any simulation, it can be calculated approximately numerically, by
simulating with suitably small step sizes and summing. In our view the
deflator method has no advantages over the much more direct analytical
method which we have used. Indeed, to use the deflator method to carry out
the empirical hedging calculations, as we have done in Section C.11, would
be quite impracticable.
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C.15 Final Comments
C.15.1 This appendix has been lengthy, and we have intentionally shown

almost all our working. We wished to demonstrate to actuaries that
discovering option pricing formulae and the corresponding hedging strategies
is, in many cases, not difficult, although it may be tedious and it always
needs care. One requires to be familiar with the practical methodology, and
also to be able to use certain mathematical techniques.
C.15.2 The practical steps are generally straightforward:

ö decide on the tradeable assets ({{C.5.2 and C.5.3);
ö define stochastic derivatives for those assets, or for suitable functions of

them (Sections C.5 and C.6);
ö choose a suitable numeraire, and discount the tradeables in relation to

that numeraire (Section C.7);
ö define the ‘shadow’ martingale functions, corresponding to the

discounted tradeables (Section C.8);
ö express the option payoff in terms of the discounted tradeables ({C.9.1);
ö calculate the expected value of the payoff, usually as functions of

lognormally distributed variables, to get the value of the option (Section
C.9); and

ö differentiate the option price with respect to time and equate the
derivatives to get the hedging proportions (Section C.10).

C.15.3 The mathematical techniques required are also straightforward.
Besides ordinary calculus and the properties of normal and lognormal
distributions, one needs to know:
ö Ito’s formula ({C.6.1);
ö the product rule for differentiating XðtÞ:YðtÞ ({C.7.2);
ö that if XðTÞ ¼

R T

0 xðtÞ:dZ1, and xðtÞ is deterministic, then XðTÞ is
normally distributed with mean zero and variance

R T

0 xðtÞ
2:dt ({C9.4); and

ö if further YðTÞ ¼
R T

0 yðtÞ:dZ1, and yðtÞ is deterministic, then the
covariance of XðTÞ and YðTÞ is

R T

0 xðtÞ:yðtÞ:dt ({C9.6).

It is also useful to have at hand the result in relation to bivariate lognormal
distributions quoted in {C9.6, which corresponds to a similar result for a
univariate lognormal that can easily be derived from it.

C.15.4 It is desirable to arrange matters so that functions are normally
or lognormally distributed, and also so that the xð Þ and yð Þ functions noted
above are deterministic. The deflator methodology (Section C.13) may break
down because of this latter point.
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APPENDIX D

STOCHASTIC BRIDGES

D.1 If a stochastic model, such as the Wilkie model, is defined only for
steps at annual (or other discrete) intervals, and it is desired to use the model
to simulate values of the variables at more frequent intervals, such as
monthly, one method of doing this is to use stochastic bridges as a method of
stochastic interpolation. The ‘Brownian bridge’ is familiar in the literature.
We describe it, and introduce also the ‘Ornstein-Uhlenbeck (OU) bridge’,
which we have not seen referred to elsewhere, though the principles are not
difficult, and we claim no originality for this method.

D.2 Imagine that we have simulated values of some variable Xt at
integral values of t. We now wish to interpolate over shorter intervals, with
say n short intervals per unit. We consider only the period from t to tþ 1. All
other longer intervals are dealt with in the same way. It is convenient to
denote the new values as x0 to xn, with x0 ¼ Xt and xn ¼ Xtþ1. We first show
how a Brownian bridge can be constructed. The principle of a Brownian
bridge is that out of all possible paths from t to tþ 1 starting at Xt, we select
only the subset that starts at Xt and ends at Xtþ1; this is a subset consisting
of all possible bridges; we then select one of those bridges at random.

D.3 We use the terms ‘years’ and ‘months’ to denote the longer and
shorter periods, with n months per year. Of course these can be any suitable
periods, and n can have any integral value, not necessarily 12. We start by
choosing a value for the monthly standard deviation, say sm. If the original
model for Xt is a discrete random walk with standard deviation sy, then a
sensible and consistent choice for sm is to put sm ¼ sy=

p
n, but this is not

essential. We then generate n random unit normal variables z1 to zn, multiply
each by sm to get e1 to en, with ej ¼ sm � zj, j ¼ 1 to n, and calculate the sum
of the ejs:

S ¼ Sj¼1;nej:

We then compare x0 þ S with the ‘target’ Xtþ1, calculate the difference, and
divide by n to give an adjustment, d:

d ¼ fXtþ1 ÿ ðx0 þ SÞg=n:

D.4 We then add the adjustment to each value of ej to give fj ¼ ej þ d,
and calculate each xj as:

xj ¼ xjÿ1 þ fj:
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We can see that now:

xn ¼ x0 þ Sj¼1;n fj ¼ x0 þ Sj¼1;nðej þ dÞ

¼ x0 þ Sj¼1;nej þ nd

¼ x0 þ Sþ nd ¼ Xtþ1

as desired.
D.5 An OU Bridge is useful if the annual series has been generated

from a first order autoregressive AR(1) model, or can be treated as if it has.
Assume that the annual model is:

Xt ¼ my þ ayðXtÿ1 ÿ myÞ þ sy:zt:

This would be equivalent to a monthly model of the same type:

xj ¼ mm þ amðxjÿ1 ÿ mmÞ þ sm:zj

with mm ¼ my ¼ m, am ¼ a1=n
y and sm ¼ sy:

p
fð1ÿ a2

mÞ=ð1ÿ a2
yÞg. We shall

therefore simulate the values of x1 to xnÿ1 using this monthly AR(1) model.
D.6 We start as before by generating n random unit normal variables z1

to zn. We then multiply each by sm to get e1 to en, and calculate:

S1 ¼ Sj¼1;na
nÿj
m ej

S2 ¼ Sj¼1;na
nÿj
m ¼ ð1ÿ ayÞ=ð1ÿ amÞ:

We then calculate the adjustment, d, as:

d ¼ fðXtþ1 ÿ mÞ ÿ ayðx0 ÿ mÞ ÿ S1Þg=S2:

D.7 We then add the adjustment, as before, to each value of ej to give
fj ¼ ej þ d, and now calculate each xj as:

xj ¼ mm þ amðxjÿ1 ÿ mmÞ þ sm:zj þ fj:

We shall find, as before, that xn ¼ Xtþ1.
D.8 Although it is consistent to relate the monthly parameters sm in the

case of the Brownian bridge, and mm, am and sm for the OU bridge, to the
corresponding yearly parameters, especially if the annual model has been
generated as a random walk or as an AR(1) model, it is not essential to do
so. Either model may be useful for interpolating when the annual model is a
more complicated one that cannot easily be replicated by a corresponding
monthly model, but which nevertheless can be treated over the course of the
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year either as a local random walk or as a local AR(1) model, as we have
done in practice for the Wilkie model.
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