REPLACING THE THEORY OF EFFICIENT MARKETS---IMPLICATIONS FOR THEORY AND PRACTICE

Paul Woolley and Dimitri Vayanos
London School of Economics
Plan of the talk

- Momentum, reversal and value.
 Prominent market anomalies.

- An institutional theory.
 Rational explanation of the anomalies.

- Practical applications of the theory.
 Efficient portfolio management in an inefficient market.
Momentum, Reversal and Value

- **Momentum**: Tendency of recent performance to continue in the near future.
- **Reversal**: Tendency of performance over a longer history to revert.
- **Value** (closely related to reversal): Ratio of prices to fundamentals predicts inversely future performance.
- Prominent market anomalies!
Value

Source: Dimson, Marsh and Staunton, Global Investment Returns Sourcebook, Credit Suisse Research Institute, 2011
Momentum

Source: Dimson, Marsh and Staunton, Global Investment Returns Sourcebook, Credit Suisse Research Institute, 2011
Sharpe Ratios

- **Momentum**
 - 70% for individual stocks (average of US, UK, Japan, Continental Europe).
 - 34% for country-level indices.

- **Value**
 - 36% for individual stocks (average of US, UK, Japan, Continental Europe).
 - 34% for country-level indices.

Explanations

- Momentum and reversal are hard to explain within standard Finance models.
- Two leading approaches:
 - Behavioural Finance.
 - Market frictions.
Momentum and reversal can arise if investors react incorrectly to information signals.

Example:
- Investors are too optimistic about some assets (overpricing them) and too pessimistic about others (underpricing them) → Reversal.
- Optimism/pessimism builds gradually → Momentum.
Market Frictions

- Key friction: Delegation and agency.
 - Momentum and reversal result from flows between investment funds.
 - Fund managers and investors are rational.
Basic Intuition

Suppose that a negative shock hits an asset’s fundamentals.

→ Funds holding asset realize poor returns.
→ Funds experience outflows.
→ Funds sell asset.
→ If outflows are gradual, asset price declines gradually ⇒ **Momentum.**
→ Asset price below fundamental value ⇒ **Reversal.**
A Case Study: The Tech Bubble

Value was doing OK, but growth much better.
→ Outflows from value funds into growth funds.
→ Gradual decline in value and further rise in growth.
The Bird-in-the Hand Effect

Q: Why do investors absorb outflows, buying assets whose price is expected to drop?
 - Why isn’t the effect of gradual flows fully anticipated into current prices?

A: Investors prefer one bird in the hand.
 - Expectation of outflows renders assets undervalued.
 - Buy now: Lock in attractive long-run return. (One bird in the hand)
 - Buy after outflows occur: Earn higher return on average, but risk that undervaluation disappears. (Two birds in the bush)
A Simple Example

- **Buy now:** Expected return = 8
- **Buy after outflows occur:** Expected return = 20 or 0.
Supporting Evidence

 - Predict fund flows based on past returns.
 - Impute flows in or out of individual stocks.
 - Use stock-level flows to predict returns.
Supporting Evidence (cont’d)

- Fund flows explain a good part of stock-level momentum, especially for large stocks and recent data.

<table>
<thead>
<tr>
<th>Panel B: Subsamples Based on Time Periods and Firm Size</th>
<th>k=6 (80-93)</th>
<th>k=6 (94-06)</th>
<th>k=6 (Small Cap)</th>
<th>k=6 (Large Cap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.072</td>
<td>0.065</td>
<td>0.119</td>
<td>0.653</td>
</tr>
<tr>
<td></td>
<td>(1.37)</td>
<td>(1.29)</td>
<td>(2.54)</td>
<td>(1.65)</td>
</tr>
<tr>
<td>$E[FIPP(t-k, t)]$</td>
<td>0.106</td>
<td></td>
<td>0.203</td>
<td>0.158</td>
</tr>
<tr>
<td></td>
<td>(1.80)</td>
<td></td>
<td>(3.44)</td>
<td>(3.50)</td>
</tr>
<tr>
<td>$\text{ret}(t)$</td>
<td>-0.022</td>
<td>-0.027</td>
<td>-0.022</td>
<td>-0.029</td>
</tr>
<tr>
<td></td>
<td>(-1.10)</td>
<td>(-1.43)</td>
<td>(-1.07)</td>
<td>(-1.60)</td>
</tr>
<tr>
<td>$\text{ret}(t-k, t-1)$</td>
<td>0.032</td>
<td>0.027</td>
<td>0.023</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(2.77)</td>
<td>(2.75)</td>
<td>(2.44)</td>
<td>(1.92)</td>
</tr>
<tr>
<td>$\text{ret}(t-36, t-k-1)$</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.006</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>(-1.83)</td>
<td>(-1.83)</td>
<td>(-4.13)</td>
<td>(-4.11)</td>
</tr>
<tr>
<td>R^2</td>
<td>7.76%</td>
<td>8.44%</td>
<td>5.69%</td>
<td>6.99%</td>
</tr>
<tr>
<td>No Obs</td>
<td>72946</td>
<td>72946</td>
<td>150322</td>
<td>150322</td>
</tr>
</tbody>
</table>
Model
Dynamics

Following poor returns by active fund:

- Gradual outflows from active fund.

- Stocks that active fund overweights:
 - Immediate price drop.
 - Drop in expected return in short run \Rightarrow Momentum.
 - Rise in expected return in long run \Rightarrow Reversal.

- Stocks that active fund underweights:
 - Opposite effects.
Additional Implications

- Fund flows generate **comovement**.
 - Following outflows from some funds, all assets held by the funds drop in price.

- Fund flows generate **lead-lag effects** (i.e., cross-asset predictability).
 - Price drop of one asset predicts that other assets held by the same funds will drop in the short run and rise in the long-run.
Additional Implications (cont’d)

- Momentum, reversal and comovement are larger for assets with high *idiosyncratic risk*.
 - Trading against mispricings in those assets subjects fund managers to high risk of underperforming their benchmark.

- Predictability of returns based on earnings:
 - **Post-earnings drift** (earnings surprises predict short-run return movements in same direction).
 - **Value** stocks have high expected returns and low and **declining** earnings.
Portfolio Management

- **Momentum, reversal and value:**
 - Well-documented empirically.
 - Form basis for most active investment strategies.

- **However:**
 - Investment strategies are mainly data-driven, without underlying conceptual framework.

- ➡️ A theory can add value!
Some Investment Questions

- How to best implement momentum and value?
 - Raw vs. risk-adjusted returns.
 - Measure of fundamentals.

- How to best combine momentum and value?

- How does optimal strategy depend on investor’s horizon?
Our theory provides a framework to answer those questions.

- Calibration of the model.
- Use model as “test bed” to evaluate a number of investment strategies.
- Analytical formulas for Sharpe ratios (SR).
Calibration and SR

- Calibrate using evidence on mutual-fund returns and flows.
 - Key parameters:
 - Response of flows to performance.
 - Price impact of flows.
 - Two types of SR:
 - Static (short-horizon investor).
 - Standard in empirical studies.
 - Dynamic (long-horizon investor).
Construction of Momentum and Value

- **Momentum:**
 - High weight for assets with high cumulative returns over a lookback window.

- **Value:**
 - High weight for assets with high future earnings forecasts relative to price.
Static SR of Momentum

- Maximum SR = 40%, for lookback window of 4 months.
- For comparison: Market index has SR = 30%.
Static SR of Value

- Two versions of a value strategy, using different forecasts for future earnings.
 - Accurate vs. crude forecast.
- Both achieve SR = 26%.
 - Crude forecast does not hurt!
 - Forecast error raises weight of assets for which market expects low earnings.
 - Declining earnings are associated with high expected returns.
Comments

- SRs somewhat lower than empirical evidence (e.g., AMP 2009).
 - Momentum: 40% vs 70%/34%.
 - Value: 26% vs 36%/34%.
 - Calibration considers only subset of flows.

- Momentum dominates value.
 - Consistent with empirical evidence.

- Value less sensitive to implementation than momentum.
Combining Momentum and Value

- Negative correlation between momentum and value.
 - Consistent with empirical evidence.
- Diversification benefits from combining the two strategies.
 - SR of optimal combination = 48%.
- Optimal combination can be further improved!
 - Overall optimal SR = 61%.
 - Use information on fund flows.
Lagged Value

- Value strategy using lagged signal.
- Higher SR than with current signal:
 - Maximum for 1 year, and equal to 35%.
- Has element of momentum.
- When combined with momentum, SR same as with current signal.
Dynamic SR

- Exceeds static SR if autocovariance of returns is negative.
 - Long-run risk is smaller than sum of short-run risks.
- What is autocovariance for momentum and value strategies?
Autocovariance

- Momentum has small short-run momentum.
 - Weights change rapidly \Rightarrow Inherit only part of asset return momentum.

- Value has short-run momentum and long-run reversal.
 - Weights change slowly \Rightarrow Inherit both momentum and reversal.
Dynamic SR

- Long-run risk of momentum is sum of short-run risks.
 - Series of uncorrelated bets.
- Long-run risk of value is smaller than sum of short-run risks.
 - Expected return becomes higher following poor performance.
- Value overtakes momentum for long investment horizons.
Conclusion

- Momentum, reversal and value can result from flows between investment funds.
- Analytical framework for studying efficient portfolio management in an inefficient market.
 - Good to combine momentum and value. Even better to use information on fund flows.
 - Long-run investors should raise their weight on value and lower that on momentum.
Further Reading

- **Papers:**
 - http://personal.lse.ac.uk/vayanos/WPapers/ITMR.pdf
 - http://personal.lse.ac.uk/vayanos/WPapers/TAMVS.pdf

- **VoxEU Columns:**