

Highlights of the 2010 life conference seminar Roger Simler and Gabi Baumgartner, Deloitte

Contents

- 1. Building blocks of capital models
- 2. Key concepts explained
- 3. Main approaches
- 4. Illustration and kernel smoothing
- 5. Comparison of methods
- 6. L&G experience to date

Building blocks of capital models

Desired properties

2010 The Actuarial Profession • www.actuaries.org.uk © Deloitte LLP and Legal & General

Key concepts explained

Concept	Explanation
Correlation matrix	Matrix used to describe the dependence between pairs of random variables, eg lapse and interest rates
Non linearity/interaction	Non-linearity describes the effect whereby the impact of stresses occurring together differs from the sum of the impacts of the individual stresses
Copula	An approach by which the marginal distributions of a set of variables are combined together into a single multivariate distribution
Marginal distribution	Distribution of one variable obtained when ignoring all other variables of the joint distribution
Tail dependence	Measure of extreme co-movements in the tail of a joint distribution

Overview of main approaches

Method	Individual risk calibration	Dependency structure	Aggregation subject	Transformation	Output
Medium Bang	Assumed normal distribution. Mean and standard deviation calibrated.		Vector of net asset stresses by risk factor	MAX	 Capital requirement at given confidence level. Non-linearity allowed for through medium bang.
Risk Geographies	• Elliptically contoured distributions (e.g. Normal, multivariate T)		Vector of net asset stresses by risk factor	Likely locus Best estimate assumptions Least Solvent Hely Ruin locus	 As above. Non-linearity picked up directly.
Input Copula (Copula applied to marginal risk distributions)	• Marginal distribution.	Copula	Marginal distributions of individual risk drivers	Marginal distributions of individual risks	 Full distribution of capital requirements. Non-linearity picked up directly
Output Copula (Copula applied to loss distributions)	• As above.	Copula	Loss functions (P&L Impact) of individual risks	Loss functions of individual risks	 Full distribution of capital requirements. Non-linearity not picked up.

2010 The Actuarial Profession • www.actuaries.org.uk © Deloitte LLP and Legal & General

Aggregation with Variance/Covariance

Aggregatio	on with Variance/Covariance
Method	Variance / Covariance
Brief description	 Similar to Standard Formula under Solvency II, based on a correlation matrix Most common method currently used by insurance companies to perform capital calculations (see CRO Forum, Jan. 2009), but leading companies are revisiting their choice of this method
Risk factor modeling & calibration	 Risks are elliptically distributed and are combined by using a variance / co-variance approach Assumptions required regarding the mean and standard deviations of the individual risks
Process	 Closed-form formula combining the capital requirement calculated for each risk factor at a given level of confidence using a correlation matrix Approximate adjustment can be made to allow for the non-linearity of different risks (so-called Medium Bang approach used in the UK, involving a combined scenario), but it remains ultimately arbitrary
Outputs	 The method produces a capital result at the required level of confidence. Results at different levels of confidence can be produced by repeating the calculation process Results fairly stable over time due to the simplicity of the method
Key technical features	 Non-linearity, fungibility restrictions and asymmetry are not picked up by the method Assumes that stress tests for risk factors correspond to the tail of the capital distribution

Aggregation with Input Copulas

Marginal distributions of risks factors

Copula

Ĵ٨ Aggregated loss distribution

Method	Copulas
	Monte Carlo approach
Brief description	• This method combines the marginal distributions of risk factors using copula functions. Fed through an ALM model, these simulations are then used to produce a full distribution of capital requirements
Risk factor	Flexibility in assumed distributions of risk factors (including non-normal) and dependency structure
calibration	• A key challenge will be obtaining reliable data to calibrate each copula
	• A large number (e.g. 100,000) of scenarios are produced from the risk factor distributions
	Marginal distributions of risk factors are combined using copula functions
Process	• The ALM model used for generating capital requirements is usually a simplified model (for example based on Replicating Portfolios or Formula Fitting), as many scenarios need to be run to achieve statistical convergence
Outpute	• Full distribution of capital requirements (does not assume that stress tests for risk factors correspond to the tail of the capital distribution)
Outputs	• Results tend to be less stable over time as the approach is simulation based. They will need to be smoothed, which gives rise to a potential issue of managing the impact of smoothing
Key technical	Allowance can be made for non-linearity between risk factors through the use of an appropriate simplified ALM model
features	Tail dependence and fat-tailed distributions can be allowed for
	Fungibility restrictions can be allowed for as the method is simulation based

2010 The Actuarial Profession • www.actuaries.org.uk © Deloitte LLP and Legal & General

Aggregation	with	Risk	Geographies
-------------	------	------	-------------

Method	Risk Geographies
Brief description	 Basically an enhancement of the Variance / Covariance + Medium Bang approach which enables the insurer to determine the exact scenario which would have the most severe financial impact on its balance sheet at a given level of confidence
Risk factor modeling & calibration	 Not restricted by particular choices of distributions or copulas However, most of the implementations to date have been in the variance-covariance framework
Process	 The most onerous scenario is determined by means of an iterative process of stress tests The result does not require Monte Carlo simulations of capital requirements and runs with full ALM model
Outputs	 The method produces a capital result at the required level of confidence. Results at different levels of confidence can be produced by repeating the calculation process The other main outputs are the risk scenarios (LSLE, MLRE) Results tend to be fairly stable over time as the approach is not simulation based
Key technical features	 Risks are combined in such a way that non-linearity is allowed for Allowance for fat tails, tail dependencies and fungibility restrictions is possible but sometimes requires adaptations

Likely locus

Best estimate assumptions LSU

Ruin locus

Illustration of Risk Geographies & Input Copulas

Input Copula produce relatively smooth capital requirements

Business Unit	Risk Geographies	Input Copulas					
		Highest of 5 runs Lowest of 5 runs Lowest / H					
BU 1 – Term Assurances	5,746	5,744	5,729	99.7%			
BU 2 – Annuities	15,909	16,102	15,921	98.9%			
BU 3 – Pensions	8,659	8,896	8,708	97.9%			
Diversification benefit	-11,761	-12,053	-11,754	n/a			
Total – post diversification (Group)	18,553	18,689	18,604	99.5%			

However, identification of biting scenario is difficult

cenarios driving capital requirements (100,000 simulations)							
Risk	Risk Geographies	Input Copulas					
	LSLE	Run 1	Run 2	Run 3	Run 4	Run 5	Range
Interest	0.15%	0.77%	0.68%	-0.60%	1.80%	1.93%	2.53%
Credit Spreads	2.24%	2.30%	2.06%	1.70%	2.12%	3.25%	1.55%
Equity Levels	-3.14%	0.86%	-7.11%	-19.35%	-4.45%	8.95%	28.31%
Asset Share Volatility	5.43%	6.27%	7.59%	5.33%	13.70%	2.20%	\ 11.49% /
Mortality Level	2.77%	7.48%	5.83%	0.60%	5.06%	3.04%	6.88%

Requires a smoothing mechanism Kernel smoothing

2010 The Actuarial Profession • www.actuaries.org.uk © Deloitte LLP and Legal & General

Kernel smoothing explained

An example of Kernel smoothing

Attribution using Euler method and driving scenarios produces widely varying capital amounts								
Business Unit	Risk Geographies		Input Copula (100,000 Simulations, Unsmoothed)					
		Run 1	Run 2	Run 3	Run 4	Run 5	Size of range	
BU 1 – Term Assurances	2,837	4,636	3,757	2,086	2,303	1,854	2,781	
BU 2 – Annuities	13,601	13,219	12,289	10,112	14,143	19,914	(9,802)	
BU 3 – Pensions	2,115	762	2,558	6,452	2,242	-3,081	9,533	
Group	18,553	18,617	18,604	18,650	18,689	18,687	85	

Kernel smoothing reduces variability ...

Business Unit	Risk Geographies	Input Copula (100,000 Simulations, Smoothed)					
		Run 1	Run 2	Run 3	Run 4	Run 5	Size of range
BU 1 – Term Assurances	2,837	2,832	2,864	2,759	2,842	2,854	105
BU 2 – Annuities	13,601	13,531	13,571	13,809	13,567	13,689	278
BU 3 – Pensions	2,115	2,148	2,064	2,013	2,130	2,065	135
Group	18,553	18,512	18,500	18,581	18,539	18,608	108

... meaning we are less exposed to random variations

2010 The Actuarial Profession • www.actuaries.org.uk © Deloitte LLP and Legal & General

Comparison of methods considered

Risk Geographies & Input Copula selected

2010 The Actuarial Profession • www.actuaries.org.uk © Deloitte LLP and Legal & General

L&G experience to date

Selection:

- Monte Carlo with Input Copula and Risk Geographies chosen methods
- Monte Carlo approach was prioritised due to automatic provision of full distribution of capital amounts, and prevalence of the approach
- Also considered to be the most flexible method to implement and to address challenging Solvency II requirements such as extreme events and fungibility constraints

L&G experience to date (continued)

Monte Carlo with Input Copula:

2010 The Actuarial Profession • www.actuaries.org.uk © Deloitte LLP and Legal & General

- Randomness of scenarios makes identification of "biting scenario" complex
- Creates challenge for both attribution and communication to Boards
- Algo out-of-the-box smoothing methodology initially used in place of flexible Kernel smoothing

Risk geographies:

- •Build on hold pending completion of Monte Carlo
- May be used as a validation tool