Long guarantees with short duration: The rolling annuity

Søren F. Jarner, VP
ATP Pension Fund

1 June 2016
Outline

• ATP and market value accounting
• The problem
• The rolling annuity
• Reserving and hedging
• Implementation at ATP
• Example
• Summing up
The ATP pension fund

• The Danish Supplementary Labour Market Pension Scheme
 – … or ATP for short (DK ‘Arbejdsmarkedets Tillægspension’)
 – Founded by law in 1964 as a supplement to State Pension
 – Mandatory scheme for all Danish employees (voluntary for self-employed)
 – Almost 5M members and assets under management of approximately €100B.

• Pension product
 – Life-long nominal annuity receivable from State Pension age (cohort dependent)
 – Discretionary indexation of pensions when the funding ratio of the fund is sufficiently high
 – Individual guarantees purchased for 80 pct. of contributions, remaining 20 pct. are “risk capital”.

Institute and Faculty of Actuaries
Market value accounting and its implications for ATP

- Market value accounting since 2003
 - “Pure” market rate discounting
 - Long-dated liabilities discounted at 30Y rate
 - Allows delta-hedging (in normal markets)
 - Huge interest rate sensitivity
 - Fully hedged in swaps and bonds
 - Decrease in interest rates increased value of liabilities dramatically.

- Discounting curve under Solvency 2
 - Long-dated liabilities valued at UFR
 - *Long-dated liabilities cannot be hedged*
 - Discounted value ≠ value of (delta) hedge
The problem

• The old annuity product at ATP
 – 80 pct. of contribution converted to nominal life-long annuity at the time of payment
 – Annuity level (tariff) updated annually to reflect current market rates and life expectancy.

• Large hedge demand at long-dated maturities
 – Increasingly difficult – and costly – to maintain the necessary hedge
 – Long-dated liabilities non-hedgeable (due to “semi” market rate discounting).

• The Board of ATP wants guarantees!
 – Not an option to move to unit-link type products
 – “Could you please design a hedgeable life-long guarantee”.

Institute and Faculty of Actuaries
... and one more thing

- “Please make sure to preserve the business model”
 - The liability side of the balance sheet is very simple
 - … allowing a very sophisticated asset side
 - Accommodation of all guarantees in one (simple) business model.

- Implication 1: Type of guarantee
 - All pension rights in the form of “guaranteed annual pension“
 - No individual unit-link accounts.

- Implication 2: Same status of new and old guarantees
 - Collective risk sharing of financial and biometric risks
 - New and old guarantees should entail same, or at least very similar, risks and have the same “claim” on free reserves (BP).
Traditional annuity vs rolling annuity

- Consider a person paying a contribution of 100 at time 0 and retiring at R
 - Denote by $p_t(T)$ the price at time t of a zero-coupon bond (ZCB) maturing at time T

- Traditional (deferred) life-long annuity
 - Ignore tax, safety loadings, technical basis etc.
 - Guaranteed annuity level = \(\frac{100}{\int_R^\infty p_0(w)S(w|0)dw} \).

- The rolling annuity replaces the long interest rate guarantee with shorter ones
 - Assume interest rate guarantee of 15 years
 - Initial guarantee: $z(0) = \frac{100}{\int_R^\infty S(w|0)dw} \frac{1}{p_0(15)}$
 - Guarantee after 15 years: $z(15) = z(0) \frac{1}{p_{15}(30)}$
 - Final guarantee: $z(30) = \frac{z(15) \int_R^\infty S(w|30)dw}{\int_R^\infty p_{30}(w)S(w|30)dw}$.
Market value reserve

• Consider the reserve associated with a contribution paid at time 0
 – Let $z(u)$ denote the guarantee at time $u \geq 0$
 – Prior to the final guaranteed increase, the reserve is
 • $V(u) = z(u)e(R|u)p_u(\tau_N(u))$,
 • where $e(R|u)$ is the expected no. of years in retirement given survival to time u, and $\tau_N(u)$ is the time of the next increase.
 – At or past the final guaranteed increase, the reserve is
 • $V(u) = z(u) \int_{\max\{u,R\}}^{\infty} p_u(w)S(w|u)dw$, i.e. the reserve for an ordinary, life-long annuity.

• \textbf{Before the final increase, the reserve for a cohort equals the price of a ZCB maturing at $\tau_N(u)$ with principal $\bar{z}(u) \times \text{total no. of years in retirement}$}
 – The liability can be semi-statically hedged, i.e. hedge needs to be adjusted only every L years
 – For L up to 20 years, say, the hedge can be implemented in liquid markets
 – In practice, the reserve is based on updated mortality assumptions
 – Longevity risk is borne collectively, i.e. guarantees are unaffected.
Implementation at ATP

• Rolling annuities were implemented at ATP with effect from 1 January 2015
 – Guarantee period of $L = 15$ years
 – The effect from contributions received in 2015 can be seen as an increased “payment” in 2030
 – The remaining cash flow stems from ordinary annuities; both old guarantees and guarantees written in 2015 for members within 15 years of retirement.

• Hedgeable at large scale
 – The bulk of the (rolling annuity) cash flow is at maturities where market liquidity is high
 – Ordinary life-long annuities are issued only close to retirement.
Example: Longevity risk

- Table shows the relative reserve increase when applying a 20% mortality stress
 - GM mortality law*: \(\mu(x) = 1.5 \cdot 10^{-5} \exp(0.1 \cdot x) + 2 \cdot 10^{-4} \)
 - Stressed mortality law: \(\tilde{\mu}(x) = 0.8 \mu(x) \)
 - Flat yield curve: \[p_T(t) = \exp\left(-\frac{T-t}{y}\right), \text{ for some fixed } r \]
 - Single premium at age \(x \), age of retirement \(R = 65 \) yrs, and guarantee period of \(L = 15 \) yrs.

<table>
<thead>
<tr>
<th>(\Delta V/V)</th>
<th>(\text{Age} \ (x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate ((r))</td>
<td>25</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>0%</td>
<td>11.4%</td>
</tr>
<tr>
<td>2%</td>
<td>11.4%</td>
</tr>
<tr>
<td>4%</td>
<td>11.4%</td>
</tr>
</tbody>
</table>

* Independent of interest rate

* Gompertz-Makeham law fitted to Danish unisex population mortality for 2011
Example: Building up of guarantee

Annual contribution of 100 indexed by inflation of 2% from age 25 to age 64. Interest rate of 3%, and guarantee period of $L = 15$ years.
Example: Duration

Left plot: Reserve for maturities over 30 years as fraction of the total reserve.
Right plot: Duration of total reserve measured in years.

In both plots the solid line represents a guarantee period of $L = 15$ years, while the dashed lines represent guarantee periods of 5 and 25 years, respectively. The vertical dotted line at age $R = 65$ years marks the age of retirement.
Summing up

• Initial minimum guarantee and subsequent guaranteed increases prior to retirement
 – Prior to the final increase, the reserve equals a zero-coupon bond maturing at the next increase
 – Rolling annuities can be hedged at large scale for guarantee periods of up to, say, 20 years
 – Keeping the duration below 20 years imply very similar financial and regulatory (S2) value
 – This simplifies risk management considerably
 – Rolling annuities have been implemented at ATP with a guarantee period of 15 years.

• Longevity risk can be reduced by weakening the “life expectancy guarantee”
 – However, the rolling annuities at ATP have full longevity risk (similar to existing annuities).

• Rolling annuity guarantees are intended as part of a with-profits contract
 – A complementing return-seeking portfolio is essential to obtain broad market exposure
 – The guarantees entail both longevity risk and hedging risk and thus can apply to only part of contributions
 – At ATP, rolling annuities are acquired for 80 pct. of contributions.