Evolving Embodiment of Risk:
The case of Alzheimer’s Disease

Dr C J Ball MRCPsych
Consulting Medical Officer
Gen Re Life Health London
Consultant Psychiatrist
South London and Maudsley NHS Trust

16 November 2015
Roughly 850,000 now to double to 2050.

Projected increase in people with dementia in UK
Dementia UK London 2014
Economic impact of dementia

Overall impact £26.3 billion

£4.3 billion on healthcare
£85 million on diagnostics

£10.3 billion on social care
£4.5 billion publically funded
£5.8 billion privately funded

Unpaid care £11.6 billion (44% of cost)

Dementia UK 2014
Long Term Care expenditure to double to 2050 – Very high costs in the Netherlands
Rhetoric and Dementia

Critical update:

One disease. Millions of lives permanently disrupted.

The Alzheimer's Association, Alzheimer’s Disease 2015 Facts and Figures released today, highlights the devastating human and economic costs of the Alzheimer's epidemic. Alzheimer's Disease is taking more than memories — it's taking lives.

(24/3/15)
Rhetoric and Dementia

It’s a fact that Alzheimer’s Disease is an escalating epidemic.

The number of Americans with Alzheimer's Disease and other dementias will grow each year as the size and proportion of the U.S. population age 65-and-older continue to increase. By 2050, the number of people with Alzheimer’s may rise as high as 16 million (8/4/15)
Cautions

Western estimates made on studies from the 1980s

UK - aged 65+ - 22% decline in prevalence in 2011 than was predicted in 1990

Spain - men + decline of 43% between 1987 and 1996

Main reason - decline of cardiovascular disease and its risk factors
Improvements in living conditions and education

Cautions

Obesity & diabetes on the rise so will this be maintained?

China’s obesity prevalence has doubled in 30 years

Call to rebalance research less on diagnostics and treatment than on prevention

"Policies which address determinants of health in earlier life stages and enhance cognitive reserve for populations may have the greatest long term impact on reduction of dementia risk at given ages in later life as well as on population health more generally."

Modifiable Risk Factors

Obesity
Low educational achievement
Depression
Hypertension
Frailty
Smoking
Type 2 Diabetes

Population attributable risk of 66%

Meta-analysis of modifiable risk factors for Alzheimer’s disease
J Neurol Neurosurg Psychiatry doi:10.1136/jnnp-2015-310548
Modifiable Risk Factors

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>1.39</td>
</tr>
<tr>
<td>Midlife hypertension</td>
<td>1.61</td>
</tr>
<tr>
<td>Midlife obesity</td>
<td>1.60</td>
</tr>
<tr>
<td>Depression</td>
<td>1.90</td>
</tr>
<tr>
<td>Physical inactivity</td>
<td>1.82</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.59</td>
</tr>
<tr>
<td>Low education</td>
<td>1.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes cases prevented</td>
<td>23k</td>
<td>40k</td>
</tr>
<tr>
<td>Life years saved</td>
<td>92.7k</td>
<td>150k</td>
</tr>
<tr>
<td>State savings</td>
<td>321M</td>
<td>560M</td>
</tr>
</tbody>
</table>
Dementia and Survival

<table>
<thead>
<tr>
<th>Age</th>
<th>Women</th>
<th>Women + Dementia</th>
<th>Men</th>
<th>Men + dementia</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-64</td>
<td>25.07</td>
<td>9.4</td>
<td>22.3</td>
<td>7.4</td>
</tr>
<tr>
<td>65-69</td>
<td>20.8</td>
<td>7.5</td>
<td>18.3</td>
<td>5.9</td>
</tr>
<tr>
<td>70-79</td>
<td>16.7</td>
<td>5.8</td>
<td>14.5</td>
<td>4.5</td>
</tr>
<tr>
<td>80-89</td>
<td>9.6</td>
<td>4.4</td>
<td>8.2</td>
<td>3.7</td>
</tr>
<tr>
<td>90+</td>
<td>4.6</td>
<td>3.9</td>
<td>4.2</td>
<td>3.4</td>
</tr>
</tbody>
</table>

After OHE 2014 + National Life Tables
Dementia vs Alzheimer’s Disease

Dementia is syndrome

ICD-10 (WHO)
Memory decline. Particularly learning new information
Decline in at least one other domain of cognition such as judging and thinking, planning and organising etc.
To a degree that interferes with daily functioning
Some change in one or more aspects of social behaviour
There should be corroborative evidence that the decline has been present for at least 6 months

ICD 10 WHO 1993 Dementia
Dementia vs Alzheimer’s Disease

Acquired, progressive and abnormal deterioration of memory, and at least one other area of cognitive function, which is affecting the daily life of the person, and not due to affective disorders or delirium (Rees, Lipsedge & Ball 1996)

Dementia is a syndrome (essentially brain failure) affecting higher functions of the brain (Barrett & Burns 2014)

There are many causes of Dementia
<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage of all people with dementia (rounded figures)</th>
<th>Numbers of people with dementia (rounded figures)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Alzheimer's disease</td>
<td>66.2%</td>
<td>54.6%</td>
</tr>
<tr>
<td>Vascular dementia</td>
<td>14.8%</td>
<td>20.5%</td>
</tr>
<tr>
<td>Mixed (AD & VD)</td>
<td>10.2%</td>
<td>10.9%</td>
</tr>
<tr>
<td>Lewy bodies dementia</td>
<td>2.7%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Fronto-temporal dementia</td>
<td>1.4%</td>
<td>2.3%</td>
</tr>
<tr>
<td>Parkinsons</td>
<td>1.3%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Other</td>
<td>3.5%</td>
<td>3.5%</td>
</tr>
</tbody>
</table>

Dementia Symptoms

Memory loss - recent events, messages, names,

Difficulties organising and planning activities

Confusion in unfamiliar environments
Difficulty finding words

Difficulty with numbers and/or handling money

Changes in personality and mood

Depression

Dementia Symptoms

Memory loss - recent events, messages, names,

Difficulties organising and planning activities

Confusion in unfamiliar environments
Difficultly finding words

Difficulty with numbers and/or handling money

Changes in personality and mood

Depression

Not ‘just your age dear’

Prevalence Men

Increase to 20% at 90

Prevalence Women

Increases to 30% at 90

Dementia UK 2014
If not ‘just your age dear’…….

Assumptions

Not normal ageing

There is a period when the person is aware of mild problems

A period of cognitive impairment but not yet dementia

Mild Cognitive Impairment

Mild Cognitive Impairment

10 to 15% per year progress to dementia

1 in 4 patients remain with MCI
Normal people 1 to 2 percent per year convert to dementia and 5 percent convert over five years

Over three years:-
• 1/3 improve
• 1/3 remain the same
• 1/3 develop dementia

(Bartlett & Burns 2014)
What makes Alzheimer’s Disease, Alzheimer’s Disease?

Tangles - made of Tau

Plaques – made of Amyloid

http://petridishtalk.com/2011/05/
Amyloid Cascade Hypothesis

Accumulation of amyloid triggers neuronal degeneration

Accumulation triggers cell death

Amyloid interferes with mitochondrial function

Amyloid interferes with neurotransmitters and glucose use

Failure to develop treatments

Trial design

Excessive side-effects biased enrolment

Heterogeneity of the AD process

No linear relationship between amyloid and cognition

No amyloid cognitive impairment (20%)

Too late and/or the wrong target

DOI: 10.1002/ana.24227
Biomarkers and embodying risk

‘(Genetic) technologies permit us to speculate with much greater precision than was formerly the case about who may be struck by misfortune…’

CT scan

MRI Scan

FDG – PET scan

Amyloid PET

Amyloid PET scan

Cerebrospinal fluid

Amyloid-beta(1-42):
Reduction amyloid-beta

Total Tau:
Increase in Total Tau
Total Tau predicts conversion of MCI

Phosphorylated Tau:
Phosphorylated Tau distinguishes AD from other conditions
Poorer survival with low AB amyloid and raised tau

https://www.genevaassociation.org/media/58196/ga_ed_382_10_smalley_health,dementia,underwriting.pdf
Genetics: Early Onset Alzheimer’s Disease

Presenillin 1
Early age of onset – 15% Familial cases

Presenillin 2 –
Later onset and not all progress to dementia

Amyloid Precursor Gene (APP)
Together fewer than 1 in 100 cases

Excess production of Amyloid
Genetics: Late Onset Alzheimer’s Disease

APOE gene - Identified in 1983

Three common forms e2, 3 and 4

5 common genotypes 2/3, 3/3, 2/4, 3/4, 4/4

e4 present in 25-30% population

e4/4 variant 10 times the risk

Not everyone with e4 develops the disease

Between 1/3 and ½ of those with LOAD do not have e4
Genetics: Late Onset Alzheimer’s Disease

APO E 3 and 4
The effects of a single amino acid change

http://gladstoneinstitutes.org/node/11431
Age at which 15% of people were accumulating amyloid by APOE status
40 for those with APO E4/4

The cost of sequencing the entire human genome has decreased to just $60k.
Genome Wide Association Studies

Strongest evidence for APOE involvement

Complex interaction between multiple genes

Epigenetics

The expression of these genes depends on interaction with the environment

Potential to alter the expression of these genes
Genome Wide Association Studies

- **Cholesterol Metabolism**
 - APOE, SORL1, CLU, ABCA7

- **Endocytosis**
 - PICALM, SORL1, CD2AP, BIN1

- **LOAD**
 - ?Amyloid Cascade

- **AD**

- **FAD**
 - Amyloid Cascade
 - APP, SEN1, SEN2

- **Immunity**
 - INPP5D, EPHA1, HLA, CR1, MSA4, TREM2/TREML2

- **Unknown**
 - NME8, CASS4, ZCWPW1, FERMT2, PTK2B, MEF2C, CELF1, SLC24A4

95%	5%

Blood

Easily accessible but not in contact with the brain

Blood is a complex fluid

Single molecule studies not useful

Proteomics – Identify a protein signature for a disease

Potentially a cheap and acceptable biomarker for presymptomatic AD
Proteomics

http://neurology.stanford.edu/memory/alzheimers/diagnosing.html
Proteomics

Replication studies inconsistent e.g. Kiddle et al (2014)

Non-specific e.g. Chiam et al (2015)

But quite exciting Hye et al (2014)
Ideal Biomarker

Sensitive and specific

Identifies pathological process before clinical symptoms

Can be used for screening

Is proportionate to the severity of that process

Can be used as a marker for therapy

Cheap, acceptable
Relationship of biomarkers to the onset of cognitive problems

National Institute on Aging- Alzheimer's Association (NIA-AA) Classification 2011

Preclinical Stage

No cognitive impairment but biomarkers present

Mild Cognitive Impairment due to AD

Impairment on cognitive testing
Biomarker evidence
No impairment functioning

Dementia due to Alzheimer’s Disease

The Risk Evaluation and Education for Alzheimer’s Disease (REVEAL)

Educational session about AD

APOE testing

Informed of results and three further sessions over 12 months

At one year – 27% remembered accurately

50% had the broad gist correct

23% nothing or incorrectly

Increasing Complexity

Complex susceptibility genes identified

Modified by epigenetic factors

How do doctors manage these issues?

Effects

…. "can initiate or inhibit action, and increase or reduce, or transform anxiety about genetic embodiment"

‘I know what you told me but this is what I think’

Communicated risk not taken at face value even in those who recalled risk correctly at six weeks
69.3% higher, 30.7% lower
‘Anchoring and adjustment bias’

Kinscapes, Timescapes and Genescapes
http://orca.cf.ac.uk/39525/1/Kinscapes,Timescapes,and%20genescapes.pdf

Remain major problems in imparting and understanding probabilistic information about susceptibility
Information eclipsed by lay understanding
THE FUTURE!!!
Challenges

‘(Genetic) technologies permit us to speculate with much greater precision than was formerly the case about who may be struck by misfortune…’ Lock (2013)

Life insurance
Critical Illness
Retirement annuities
Long term care

Vehicle insurance
Public liability
Employers liability
The material contained in this presentation has been prepared solely for informational purposes by Gen Re. The material is based on sources believed to be reliable and/or from proprietary data developed by Gen Re, but we do not represent as to its accuracy or its completeness. The content of this presentation is intended to provide a general guide to the subject matter. Specialist advice should be sought about your specific circumstances.