

Workshop B2: A dabbler's introduction to Python

Matt Evans, EMC Actuarial and Analytics

and Faculty of Actuaries

A dabbler's introduction to Python

Tools, Language and Applications

Agenda

- Welcome dabblers!
- The problem with R
- Python dabbling
- Actuarial applications
- Conclusions

The problem with R

- This presentation not intended as part of that phoney war, but...
 - R has a steep learning curve, don't believe the hype
 - R data structures are not intuitive if you use them infrequently
 - Preferred packages changed in six months (now better, but still need re-learning)
 - Each new algorithm has different package and syntax
- Could Python be the answer? The fanboys say yes.

Python dabbling

- Tools:
 - Anaconda for installing Spyder and Python packages
 - Spyder for editing code

- Trying out the language and packages:
 - Some data generation
 - Popular packages: a GLM fit and XGBoost

Python dabbling: Tools

- Anaconda
 - Installs Spyder
 - Jupyter notebook
 - Rstudio too

- Installs Python packages
 - Most need only a reference but...
 - Some packages (e.g. XGBoost) need separate installation, made easier in Anaconda

 Anaconda something like a "standard" configuration

Python dabbling: Tools

- Spyder
 - Looks a lot like other modern development environments
 - Run and test code
 - Get code hints
 - Examine variables
 - Show output and graphics

□ > = + = 0 > = = = + =		XFC	÷ >	C:\Users\matth	- -	٠
Editor - Dr Watthew Data Dropbox Work EMC Warketing (201805 Python VA1 Demo.py	5 ×	Variable explorer			6	e x
🗅 temp.py 🔲 Al Demo.py* 🛄	0.	土田与日				Q,
4 ***	~	Name	Type	Size	Value	~
E import pandas as pd		catt	list	2	['A', '8']	
/ import numpy as np				6		
Eimport rendom		cat2	1145	3	[11, 2, 3]	
10 from time import time		cat3	list	з	['x', 'y', '1']	
11 12 #		ganna_data	DataFrame	(10000, 5)	Column names: cat1, cat1, cat3, loss_mean, loss	
13 + senavota auta 18 e		1	int	1	8998	
15		a shartfittere	i at-		10000	
IF rell = [1, 5] # Arlarivities for categorical samiables		number of nois-	THE		70000	
10		reli	list	2	[1, 5]	
19 cat2 = ['1", '2", '3"] 20 re12 = [1, 4, 6]		re12	list	3	[1, 4, 6]	
22 cat3 = ["x", "y", "z"]		re123	list	3	{(1, 1, 1), [1, 1, 1.2], [1, 1, 1]]	
23 rel3 = [1, 1, 1]		ce13	11.00		0.1.0	5
3 # Test Interaction term		Variable explorer	File explore	Help	10.0.0	-
26 rel23 = [[1,1,1],			2.1. (C.	1		
27 [1,1,1,2], 28 [1,1,1]]		эрүүлсэ согасан	-			10
29		Cortucile 1/A				0
38		[cat3.index(g	anna_data.1	oc[1,"cat3"]	[[e])]	2
11 number of Kows = 18888			anna data.1	oc[1, loss a	con"] - scale	
33 Alata - pd, Detaframe(culumon-("cut1", "cut1", "wears", "taca"))		***T 8	anna_deta.l	oc[i, "huan"]	<pre>* np.random.gamma(shape, scale, size=None)</pre>	
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>		4441				
<pre>i in range(numberOfRows):</pre>		1111				
<pre>37 gamma_data.loc[1,"cat1"] = random.sample(cat1,1)[0]</pre>		# Cha	nge Loop on	stine_suit b	from object to memorical types (difficult	
<pre>38 gamma_data.loc[i,"cst2"] = random.sample(cst2,1)[0]</pre>		server estimpt	data-campa	data, infer	objects()	
<pre>48 88mma_data.tuc[1, turs] = random.sample(cars)1)[a]</pre>						
43 share a 1 5 share held constant to shue constant Coeldisiant of amelat		In [2]:				

Python dabbling: data generation

- This dummy data is designed to be like a claims severity dataset
 - Three factors and a loss severity
 - Factor levels each have a relativity attached, giving expected mean loss
 - Actual loss is simulated with a gamma distribution around the mean
- Distribution *perfect* for fitting a gamma GLM
- How hard is it to do?

Index	cat1	cat2	cat3	loss_mean	loss
0	A	2	У	4	0.707742
1	В	1	x	5	0.0863207
2	A	3	x	6	0.589577
3	A	2	z	4.8	2.71553
4	В	3	z	30	14.9231
5	A	1	x	1	1.14697
6	В	3	x	30	8.08131
7	A	1	x	1	4.0253
8	В	1	У	5	8.23561
9	A	3	x	6	0.720686
10	A	3	x	6	9.19783
11	В	3	z	30	68.6866
12	A	3	z	6	8.02906
13	В	2	У	20	0.317313
14	В	1	z	5	5.4874
15	A	1	У	1	0.215856
16	А	3	z	6	1.20233

Python dabbling: data generation

No end of For loop in Python.

- The code doesn't look too bad...
 - Setting up arrays
 - Introducing matrix for interaction
 - DataFrame
 - Sampling from arrays of factor levels
 - Calculating gamma parameters
 - Simulating gamma loss
 - Inferring object types*

Python dabbling: data generation VERDICT

- Some problems setting up but actually these were minor
- DataFrames in Python still use occasionally confusing notation (for the dabbler) but R is probably harder
- Code noticeably more object-like
- An easy transition if you are used to VBA

Python dabbling: Popular packages

- Sci-kit learn, the data scientist's favourite Python package
 - Lots of algorithms all in one consistent package so you can switch easily
 - Regression and Classification algorithms abound
- Statsmodels package, for models closer to R
 - Proper stats with p-values
- XGBoost, Kaggle champion
 - Regression and Classification applications
 - GridSearch do we need to know what we're doing any more?

Python dabbling: a GLM fit

- The Sci-kit learn package has a model called *Generalized Linear Model...*
 - But it is only a *linear* model...
 no link function, not a proper
 GLM..!
- The Statsmodels package does a proper GLM
 - Code does *two* fits
 - One with interaction; one without

wed for. So g in the real n't have full
wed for. So g in the real n't have full
wed for. So g in the real n't have full
wed for. So g in the real n't have full
g in the real n't have full
n't have full
))
)
)
)
:est['loss']) ** 2)))
DEREECT
cest['loss']) ** 2)))
t))

Python dabbling: a GLM fit – did it work?

- Our simple model does OK, even though it doesn't "know" about the interaction
- Relativities quite close, with the interaction load falling into cat2[T.2]

Original Relativities

Cat1	Relativity	Cat
А	1.0	х
В	5.0	у
		Z

Cat3	Relativity	
х	1.0	
у	1.0	
Z	1.0	

	Relativity	Cat2:Cat3	Cat3			
1	1.0	Cat2	х		у	z
2	4.0	1		1.0	1.0	1.0
3	6.0	2		1.0	1.0	1.2
		3		1.0	1.0	1.0

- Note the RMSE on 25% hold out sample
 - RMSE 15.66

Cat2

	Gener	ralized	Linear	Model Re	gression Resul	lts	
Dep. Variabl Model: Model Family Link Functio Method: Date: Time: No. Iteratio	e: :: :n: : : :		lo: Gi Gam lo IR May 20: 22:15:	ss No. (LM Df Re ma Df Mo og Scale LS Log-l 18 Devia 36 Pears 7	Dbservations: esiduals: odel: e: Likelihood: ance: son chi2:	1.0151358	7500 7494 5 3144328344 -21556. 8713.5 7.61e+03
	coef	std	err	z	P> z	[0.025	0.975]
Intercept cat1[T.B] cat2[T.2] cat2[T.3] cat2[T.y] cat3[T.y] cat3[T.z]	-0.0287 1.6099 1.4591 1.7977 -0.0026 0.0380	0. 0. 0. 0. 0. 0.	.028 .023 .029 .029 .029 .028 .028	-1.010 69.154 51.123 62.908 -0.091 1.323	0.313 0.000 0.000 0.000 0.928 0.186	-0.084 1.564 1.403 1.742 -0.058 -0.018	0.027 1.655 1.515 1.854 0.053 0.094
Gamma GLM si Intercept cat1[T.B] cat2[T.2] cat2[T.3] cat3[T.y] cat3[T.z]	mple form 0.971749 5.002123 4.301979 6.035686 0.997431 1.038735	Relativ	/ities	- exponent	tiated paramet This would be interaction terr	~4 without th	le

dtype: float64

GAMMA GLM simple RMSE: 15.66

Python dabbling: a GLM fit – did it work?

- Our "perfect information" model does better – it fits interaction
- Relativities quite close, even the interaction loading

Original Relativities

Cat1	Relativity	Cat3	Relativity
А	1.0	x	1.0
В	5.0	У	1.0
		z	1.0
Cat2	Relativity	Cat2:Ca	t3 Cat3

Relativity	Cat2:Cat3	Cats		
1.0	Cat2	х	у	z
4.0	1	1.0	1.0	1.0
6.0	2	1.0	1.0	1.2
	3	1.0	1.0	1.0

- Note the RMSE is about 0.1% reduced (not a lot!)
 - RMSE 15.64

Gen	eralized Lin	ear Mod	el Regress	ion Resul	ts		
Dep. Variable: Model: Model Family: Link Function: Method: Date: Time: No. Iterations:	Thu, 31 May 22:	loss GLM Gamma log IRLS 2018 15:38 7	No. Obser Df Residu Df Model: Scale: Log-Likel Deviance: Pearson c	vations: als: ihood: hi2:	1.013505	7500 7490 9 2395413193 -21550. 8701.5 7.59e+03	
	coef	std e		 7	P> z	 [0.025	0.975
Intercept cat1[T.B] cat2[T.2] cat2[T.3] cat3[T.y] cat3[T.z] cat2[T.2]:cat3[T.y] cat2[T.3]:cat3[T.y] cat2[T.2]:cat3[T.y]	-0.0136 1.6093 1.3854 1.8303 0.0003 -0.0126 0.0448 -0.0572 0 1815	0.0 0.0 0.0 0.0 0.0 0.0 0.0	37 -0. 23 69. 49 28. 50 36. 49 0. 50 -0. 69 0. 70 -0. 70 -0.	369 159 493 555 007 252 649 822 588	0.712 0.000 0.000 0.000 0.994 0.801 0.516 0.411 0.610	-0.086 1.564 1.290 1.732 -0.096 -0.111 -0.091 -0.193 0.044	0.058 1.655 1.481 1.928 0.097 0.086 0.180 0.079 0.079
cat2[T.3]:cat3[T.z]	-0.0365	0.0	71 -0.	516	0.606	-0.175	0.102

Gamma GLM interaction form Relativities - exponentiated parameters

ntercept	0.986538
at1[T.B]	4.999344
at2[T.2]	3.996425
at2[T.3]	6.235984
at3[T.y]	1.000347
at3[T.z]	0.987455
at2[T.2]:cat3[T.y]	1.045852
at2[T.3]:cat3[T.y]	0.944436
at2[T.2]:cat3[T.z]	1.199027
at2[T.3]:cat3[T.z]	0.964129
type: float64	
AMMA GLM interaction	RMSE: 15.64

C

Interaction load was set at 1.2. We are close here.

Python dabbling: XGBoost

- This regression and classification algorithm uses gradient boosted trees
- It wins a lot of competitions on Kaggle, the data science website, and doesn't do too badly here either
- RMSE on 25% hold out sample:
 - XGBOOST RMSE: 15.65
 - This is *better* than the typical real world GLM model with imperfect information, without knowing *anything*
- A simple test with dummy data only, but encouraging, alongside anecdotal evidence*

```
# Fit XGBoost
import xgboost
from sklearn.grid search import GridSearchCV
xgb = xgboost.XGBRegressor(n_estimators=900,
                           learning_rate=0.1,
                           gamma=0.15,
                           subsample=0.75,
                            colsample bytree=0.7,
                           max depth=4)
xgb.fit(one hot train, gamma data train[['loss']]) # X and y
print("XGBOOST RMSE: %.2f"
      % math.sqrt(np.mean((xgb.predict(one hot_test) - gamma_data_test['loss']) ** 2)))
# Grid search
parameters = { 'nthread':[1],
               'n estimators': [910,920], #number of trees, change it to 1000 for better results
              'learning_rate': [0.10,0.15], #so called `eta` value
              'max_depth': [4,5,6,7],
               'gamma': [0.1,0.15],
              'subsample': [0.75],
              'colsample bytree': [0.5,0.6,0.7],
               'seed': [1337]}
                                                              GridSearch uses cross-
reg = GridSearchCV(xgb,
                                                              validation to optimise
                   parameters,
                                                             parameters, offering route
                   n jobs=10,
                                                              to further improvement
                   verbose=0,
                   cv=10,
                   scoring='neg mean squared error',
                   refit=True)
reg.fit(one hot train, gamma data train[['loss']]) # X and y
print("XGBOOST RMSE: %.2f"
      % math.sqrt(np.mean((reg.predict(one_hot_test) - gamma_data_test['loss']) ** 2)))
```

Python dabbling: Popular packages VERDICT

- Sci-kit learn a bit disappointing as tests with a wide range of regressors failed to get near GLM result, however...
 - Cross validation and train/test facilities are useful
 - Many regressors can be tried out and trained with GridSearch, which should improve results
- Statsmodels works very well
 - Output as good as R
 - Fast to run
 - Model formulae standard and intuitive

```
# Fit Model (Scikit-learn)
reg = linear model.BayesianRidge()
reg.fit(one hot train, gamma data train['loss'])
print("Scikit Model 2 RMSE: %.2f"
     % math.sqrt(np.mean((reg.predict(one hot test) - gamma data test['loss']) ** 2)))
# Fit Model (Scikit-learn)
#-----
reg = linear model.ElasticNet()
reg.fit(one hot train, gamma data train['loss'])
print("Scikit Model 3 RMSE: %.2f"
     % math.sqrt(np.mean((reg.predict(one hot test) - gamma data test['loss']) ** 2)))
# Fit Model (Scikit-learn)
#
#_____
reg = linear model.Lasso()
reg.fit(one hot train, gamma data train['loss'])
print("Scikit Model 4 RMSE: %.2f"
     % math.sqrt(np.mean((reg.predict(one hot test) - gamma data test['loss']) ** 2)))
#_____
# Fit Model (Scikit-learn)
#------
reg = linear model.Lars(n nonzero coefs=1)
reg.fit(one_hot_train, gamma_data_train['loss'])
print("Scikit Model 5 RMSE: %.2f"
     % math.sqrt(np.mean((reg.predict(one hot test) - gamma data test['loss']) ** 2)))
```

Python dabbling: Popular packages VERDICT

- XGBoost
 - On our admittedly simple test, this algorithm gets very close to a GLM with perfect information
 - Full GLM knows structure and error distribution
 - XGBoost uses only cross-validation to improve fit
 - In the real world our data is full of hidden interactions and effects... could we get closer with this?
 - Could this approach work well where...:
 - We have little data?
 - We are not resourced to do full GLM modelling?
 - We suspect non-linear characteristics?
 - We are less worried about a "black-box"?

Model	RMSE
GLM without interaction term	15.66
GLM with interaction term	15.64
XGBoost	15.65
Best Sci-kit (1st pass only)	16+

Actuarial applications

- Data wrangling
- Pricing with GLM, GAM, XGBoost and various others
- Pricing using curve fitting and simulation
- Reserving with ChainLadder* package now ported from R to Python
- Capital Modelling
- Reporting and Graphics

Strengths and weaknesses

- Python is from world of IT:
 - Is proper programming, and can be deployed easily in modern IT structures
 - Has a whole load of other stuff in it, not just stats
 - Is supported by wider pool of talent
 - But is weaker as not so statistical (..?)

- R is from world of academic stats
 - Closer to SAS and SPSS
 - Proper statistics with p-values!
 - Rich library of packages
 - Good at data handling
 - But harder to learn if you're used to VBA
 - And more difficult to deploy (..?)

Conclusions

- On balance, I will likely look to Python first for new projects
 - Data handling and syntax are more intuitive for this VBA-soaked actuary
 - A friendlier introduction to the new data science tools available
 - Python is used in QGIS, open source mapping software
- Others may feel differently...
 - Do you have a lot of SAS experience in your team?
 - Would your team emphasise "proper" statistics?
 - GLM/GAM are more established in R

EMC Actuarial & Analytics About Us

- Peter England
 - Capital
 - Reserving
 - IFRS 17

- Stochastic/statistical modelling
- Research
- peter@emc-actuarial.com

- Matthew Evans
 - Pricing
 - Reserving
 - Data Science
 - InsurTech

• matthew@emc-actuarial.com

References

- Anaconda installer
 <u>https://www.anaconda.com/download/</u>
 - Spyder code editor and console
 - Jupiter notebooks
- Statsmodels
 <u>https://www.statsmodels.org/stable/index.html</u>
- Sci-kit learn
 <u>http://scikit-learn.org/stable/</u>
- Kaggle competitions<u>https://www.kaggle.com/</u>
- XGBoost Champion regression algorithm
- MatPlotLib Python graphing

The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [*or authors, in the case of non-IFoA research*].

