The APCI model — a stochastic implementation.

Stephen Richards
23rd November 2017
1. Contributors
2. Background
3. APCI model
4. Fitting and constraints
5. Parameter estimates
6. Smoothing
7. Value-at-Risk (VaR)
8. Conclusions
9. Constraints (again)
1 Contributors

LONGEVITAS

HERIOT WATT UNIVERSITY

Actuarial Research Centre
Institute and Faculty of Actuaries

www.longevitas.co.uk
2 Background
2 Background

- CMI released new projection spreadsheet.
- Calibration is done by new APCI model.
- See Continuous Mortality Investigation [2017].
2 Background

- CMI intended APCI model for calibrating deterministic targeting spreadsheet.
- Richards et al. [2017] show how to implement it as a fully stochastic model.
- Presented at sessional meeting of IFoA on 16th October 2017.
- Paper and materials at www.longevitas.co.uk/apci
3 APCI model
3 APCI model

\[\log m_{x,y} = \alpha_x + \beta_x (y - \bar{y}) + \kappa_y + \gamma_{y-x} \] (1)
3 Related models for log $m_{x,y}$

Age-Period : $\alpha_x + \kappa_y$ \hspace{1cm} (2)

APC : $\alpha_x + \kappa_y + \gamma_{y-x}$ \hspace{1cm} (3)

Lee-Carter : $\alpha_x + \beta_x \kappa_y$ \hspace{1cm} (4)

APCI : $\alpha_x + \beta_x (y - \bar{y}) + \kappa_y + \gamma_{y-x}$ \hspace{1cm} (5)
3 Model relationships

Age-Period:

\[\alpha_x + \kappa_y \]
3 Model relationships

Age-Period:
\[\alpha_x + \kappa_y \]

Add \(\gamma_{y-x} \)

APC:
\[\alpha_x + \kappa_y + \gamma_{y-x} \]
3 Model relationships

Age-Period:
\[\alpha_x + \kappa_y \]

Add \(\gamma_{y-x} \)

Add \(\beta_x \)

APC:
\[\alpha_x + \kappa_y + \gamma_{y-x} \]

Lee-Carter:
\[\alpha_x + \beta_x \kappa_y \]
3 Model relationships

Age-Period:
\[\alpha_x + \kappa_y \]

Add \(\gamma_{y-x} \)

APC:
\[\alpha_x + \kappa_y + \gamma_{y-x} \]

Add \(\beta_x \)

Lee-Carter:
\[\alpha_x + \beta_x \kappa_y \]

Add \(\beta_x \)
Change nature of \(\kappa_y \)

APCI:
\[\alpha_x + \beta_x (y - \bar{y}) + \kappa_y + \gamma_{y-x} \]
3 Model relationships

Age-Period:
\[\alpha_x + \kappa_y \]

Add \(\gamma_{y-x} \)

APC:
\[\alpha_x + \kappa_y + \gamma_{y-x} \]

Add \(\beta_x \)

Lee-Carter:
\[\alpha_x + \beta_x \kappa_y \]

Add \(\gamma_{y-x} \)
Change nature of \(\beta_x \)
Change nature of \(\kappa_y \)

APCI:
\[\alpha_x + \beta_x (y - \bar{y}) + \kappa_y + \gamma_{y-x} \]
APCI model can be viewed superficially as either:

- An APC model with added Lee-Carter-like β_x term, or
- A Lee-Carter-like model with added γ_{y-x} cohort term.
3 APCI model

…but there are important differences:

- In the Lee-Carter model the change in mortality is age-dependent: $\beta_x \kappa_y$.
- In the APCI model only the expected change is age-dependent: $\beta_x (y - \bar{y})$.
- κ_y in the APCI model is very different to κ_y in the other models.
Although related to the APC or Lee-Carter models, the APCI model is not a generalization of either.
4 Fitting and constraints
All of these models have an infinite number of possible parameterisations.

Pick the Age-Period model as a simple example...
If we set:

\[\alpha'_x = \alpha_x + v, \forall x \]
\[\kappa'_y = \kappa_y - v, \forall y \]

then the model will have the same fitted values for any real-valued \(v \).
4 Identifiability — solution

- Use an identifiability constraint to impose desired behaviour without changing fit.
- Choice of identifiability constraints helps interpretation and can make parameters like κ_y forecastable.
Age-Period model:

- Imposing $\sum_y \kappa_y = 0$ does not change the fit...
- ...but it means that α_x is (broadly) the average of $\log \mu_{x,y}$ over the period.
4 Constraints used

\[\text{AP} : \sum \kappa_y = 0 \quad (6) \]

\[\text{LC} : \sum \kappa_y = 0, \sum \beta_x = 1 \quad (7) \]

\[\text{APC} : \sum \kappa_y = 0, \sum \gamma_c = 0, \sum (c - c_{\text{min}} + 1) \gamma_c = 0 \quad (8) \]

where \(c = y - x \).
APCI model uses five identifiability constraints:

\[\sum_y \kappa_y = 0 \quad (9) \]

\[\sum_y (y - y_1) \kappa_y = 0 \quad (10) \]

\[\sum_{x,y} \gamma_c = 0 \quad (11) \]

\[\sum_{x,y} (c - c_{\text{min}} + 1) \gamma_c = 0 \quad (12) \]

\[\sum_{x,y} (c - c_{\text{min}} + 1)^2 \gamma_c = 0 \quad (13) \]
Continuous Mortality Investigation [2017] uses (for example) $\sum_c \gamma_c = 0$.

⇒ Cohort with one observation gets same weight as cohort with thirty observations?
Cairns et al. [2009] weight according to number of observations, i.e. $\sum_{x,y} \gamma_c = \sum_c w_c \gamma_c = 0$.

Cairns et al. [2009] approach preferable.

See also Richards et al. [2017, Appendix C].
The Age-Period, APC and APCI models:
- are linear,
- use identifiability constraints, and
- have parameters that can be smoothed.
4 Fitting

- Assume $D_{x,y} \sim \text{Poisson}(E_{x,y} \mu_{x,y})$.
- AP, APC and APCI models are penalized, smoothed GLMs.
- Lee-Carter model can fitted as pairwise conditional penalized, smoothed GLMs.
Currie [2013] sets out generalized GLM-fitting algorithm to:

- maximise likelihood,
- apply linear identifiability constraints, and
- smooth parameters.

Note that the Currie algorithm achieves these simultaneously, not in separate stages as in Continuous Mortality Investigation [2017].
Identifiability constraints do not always have to be linear; see Girosi and King [2008], Cairns et al. [2009] and Richards and Currie [2009].

However, proving that a constraint is an identifiability constraint is harder if it is non-linear.

The Currie [2013] algorithm works with linear constraints only.
5 Parameter estimates
Parameter estimates $\hat{\alpha}_x$ for four unsmoothed models.

Age-Period $\hat{\alpha}_x$

APC $\hat{\alpha}_x$

Lee-Carter $\hat{\alpha}_x$

APCI $\hat{\alpha}_x$
$\Rightarrow \alpha_x$ plays the same role across all four models, i.e. average log mortality by age.

...as long as $\sum_y \kappa_y = 0$.

$\Rightarrow \alpha_x$ could be smoothed to reduce effective dimension of model.
Parameter estimates $\hat{\beta}_x$ for Lee-Carter and APCI models (both unsmoothed).
Parameter estimates $\hat{\beta}_x$ for Lee-Carter and $-\hat{\beta}_x$ for APCI models (both unsmoothed).
\(\beta_x \) plays an analogous role in the Lee-Carter and APCI models, namely an age-related modulation of the time index.

\(\beta_x \) in APCI model operates on a quite different scale due to \((y - \bar{y})\) term.

\(\beta_x \) in APCI model would be better multiplied by \((\bar{y} - y)\) term...

...and have a constraint on \(\beta_x \) analogous to the Lee-Carter one.
Like α_x, β_x could be smoothed to reduce effective dimension of model.

Smoothing β_x also improves forecasting properties; see Delwarde et al. [2007].
Note that the APCI model has two time-varying components:

1. An age-dependent central linear trend, \((y - \bar{y})\), and
2. An unmodulated, non-linear term, \(\kappa_y\).
5 Conclusions for α_x and β_x

- α_x and β_x play similar roles across all models.
- What about κ_y and γ_{y-x}?
Parameter estimates $\hat{\kappa}_y$ for four unsmoothed models.

Age-Period $\hat{\kappa}_y$

APC $\hat{\kappa}_y$

Lee-Carter $\hat{\kappa}_y$

APCI $\hat{\kappa}_y$
\(\kappa_y \) plays a similar role in the Age-Period, APC and Lee-Carter models.

\(\kappa_y \) plays a very different role in the APCI model.

APCI \(\hat{\kappa}_y \) values have less of a clear trend pattern for forecasting.

APCI \(\hat{\kappa}_y \) values are strongly influenced by structural decisions made elsewhere in the model.
Parameter estimates $\hat{\gamma}_{y-x}$ for APC and APCI models (both unsmoothed).
The γ_{y-x} values appear to play analogous roles in the APC and APCI models. . .

. . .yet the values taken and the shapes displayed are very different.

If values and shapes are so different, what do γ_{y-x} values represent?

γ_{y-x} don’t have an interpretation independent of the other parameters in the same model. . .

. . . γ_{y-x} don’t describe cohort effects in any meaningful way.
6 To smooth or not to smooth?

- Continuous Mortality Investigation [2017] smooths all parameters.
- However, only α_x and β_x exhibit regular behaviour.
- Does it make sense to smooth κ_y and γ_{y-x}?
6 To smooth or not to smooth?

- CMI’s smoothing parameter for \(\kappa_y \) is \(S_\kappa \).
- Smoothing penalty for \(\kappa_y \) is
 \[
 10^{S_\kappa} \sum_{y=3}^{n_y} \left(\kappa_y - 2\kappa_{y-1} + \kappa_{y-2} \right)^2.
 \]
- Value for \(S_\kappa \) is set subjectively.
- What is the impact of smoothing \(\kappa_y \)?
life expectancies are [...] very sensitive to the choice made for S_κ, with the impact varying across the age range. At ages above 45, changing S_κ by 1 has a greater impact than changing the long-term rate by 0.5%.”

Continuous Mortality Investigation [2016, page 42]

See also https://www.longevitas.co.uk/site/informationmatrix/signalornoise.html
6 Impact of smoothing APCI κ_y

- S_κ has a large impact because κ_y collects features left over from other parts of the model structure.
- Indeed, κ_y collects every remaining period effect and applies it without any age modulation.
- If κ_y is a “left-over”, should one smooth it at all?
7 Value-at-Risk (VaR)
“Whereas a catastrophe can occur in an instant, longevity risk takes decades to unfold”

The Economist [2012]
7 Trend risk v. one-year view

Solution from Richards et al. [2014]:
- Simulate next year’s experience.
- Refit the model.
- Value liabilities.
- Repeat...
7 Sensitivity of forecast

Observed male mortality at age 70 in E&W

Central projections based on simulated 2011 experience

Source: Lee-Carter example from Richards et al. [2014].
www.longevitas.co.uk
Approach from Kleinow and Richards [2016] for parameter uncertainty:

- γ_{y-x}: use ARIMA model without mean.
- κ_y under AP, APC and LC models: use ARIMA model with mean.
- κ_y under APCI model: use ARIMA model without mean.
Value-at-risk capital requirements for annuities payable to male 70-year-olds. Source: Richards et al. [2017, Table 4].

See also https://www.longevitas.co.uk/site/informationmatrix/twinpeaks.html
Variety of density shapes.
⇒ not all unimodal.
Considerable variability between models.
⇒ need to use multiple models.
VaR99.5% capital-requirement percentages by age for four models. Source: Richards et al. [2017].
Q. Why do capital requirements reduce with age for Lee-Carter, but not with APCI?
A. κ_y is unmodulated by age in APCI model.
8 Conclusions

- APCI model is implementable as a fully stochastic model.
- APCI model shares features and drawbacks with Age-Period, APC and Lee-Carter models.
- Smoothing APCI $\hat{\alpha}_x$ and $\hat{\beta}_x$ seems sensible.
- Smoothing APCI $\hat{\kappa}_y$ and $\hat{\gamma}_{y-x}$ is not sensible.
- Currie [2013] algorithm makes fitting penalized, smoothed GLMs straightforward.

More on longevity risk at www.longevitas.co.uk
10 Constraints (again)
10 Corner cohorts

Number of observations for each cohort in the data region.
10 Constraints (again)

- Both Continuous Mortality Investigation [2017] and Richards et al. [2017] avoid estimating “corner cohorts”.
- This means not all constraints are required for identifiability.
- Continuous Mortality Investigation [2017] and Richards et al. [2017] both fit over-constrained APCI models.
- What impact does this have?
Over-constrained models reduce the goodness-of-fit...
...but can be used to impose desirable behaviour on parameters.
Parameter estimates $\hat{\kappa}_y$ APC(S) model

$\hat{\kappa}_y$ (over-constrained)

$\hat{\kappa}_y$ (minimal constraints)
Parameter estimates $\hat{\gamma}_{y-x}$ APC(S) model

$\hat{\gamma}_{y-x}$ (over-constrained)

$\hat{\gamma}_{y-x}$ (minimal constraints)
\(\hat{\kappa}_y \) robust to over-constrained model.

Values for \(\hat{\gamma}_{y-x} \) differ, but shape similar.
Parameter estimates $\hat{\kappa}_y$ APCI(S) model

$\hat{\kappa}_y$ (over-constrained)

$\hat{\kappa}_y$ (minimal constraints)
10 APCI model — γ_{y-x}

Parameter estimates $\hat{\gamma}_{y-x}$ APCI(S) model

$\hat{\gamma}_{y-x}$ (over-constrained)

$\hat{\gamma}_{y-x}$ (minimal constraints)
Neither $\hat{\kappa}_y$ nor $\hat{\gamma}_{y-x}$ robust to over-constrained model.

κ_y in APCI model is a term which picks up left-over aspects of fit.

$\hat{\gamma}_{y-x}$ changes radically depending on constraint choices.

⇒ What are the implications for the CMI spreadsheet of using $\hat{\gamma}_{y-x}$ from APCI model?