How long is forever?

Using annual capital re-allocation to calculate a rate of return on capital

Eric Pizarro
Disclaimer

THIS PRESENTATION REFLECTS THE VIEWS OF THE SPEAKER AND NOT NECESSARILY THOSE OF ALLIED WORLD
Contents

I. What are we aiming for?
 Defining the return on capital

II. How do we get there?
 A practical methodology

III. How will we know when we’ve arrived?
 Validating and interpreting results

IV. What are the limitations of the approach?
 Pitfalls & considerations

V. Q & A
I. What are we aiming for?
Defining the ROC
The hindsight view: Return on Equity (ROE)

\[
ROE = \frac{\text{Net Profit}}{\text{Shareholder’s Equity}}
\]

- The **ROE** compares the profits generated in the year to the equity held.
- Calculated from the Financials.
- A widely used measure of investment performance.

Key figures of non-life insurers (in CHF thousands)

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross premiums written</td>
<td>49,241,703</td>
<td>47,967,106</td>
</tr>
<tr>
<td>Claims paid out</td>
<td>25,961,281</td>
<td>25,811,840</td>
</tr>
<tr>
<td>Cost for the change in technical liabilities</td>
<td>597,371</td>
<td>12,564</td>
</tr>
<tr>
<td>Cost for the change in other actuarial liabilities</td>
<td>798,173</td>
<td>645,157</td>
</tr>
<tr>
<td>Costs for underwriting</td>
<td>10,097,966</td>
<td>9,548,200</td>
</tr>
<tr>
<td>Taxes</td>
<td>739,231</td>
<td>757,187</td>
</tr>
<tr>
<td>Gains/losses from investments</td>
<td>6,060,406</td>
<td>6,517,964</td>
</tr>
<tr>
<td>Annual profits</td>
<td>5,319,225</td>
<td>7,018,905</td>
</tr>
<tr>
<td>Balance sheet total</td>
<td>169,054,218</td>
<td>167,036,747</td>
</tr>
<tr>
<td>Investments</td>
<td>150,572,335</td>
<td>148,589,158</td>
</tr>
<tr>
<td>Technical liabilities</td>
<td>84,669,696</td>
<td>83,445,422</td>
</tr>
<tr>
<td>Equity (before profit allocation)</td>
<td>38,987,401</td>
<td>39,385,332</td>
</tr>
<tr>
<td>Return on investments (in %)</td>
<td>4.06%</td>
<td>4.44%</td>
</tr>
<tr>
<td>Return on equity (in %)</td>
<td>13.69%</td>
<td>17.82%</td>
</tr>
<tr>
<td>Loss ratio (in %)</td>
<td>65.7%</td>
<td>61.6%</td>
</tr>
</tbody>
</table>

The prospective view (I)

• Planning objective: to maximize the *reward* (profit earned) vs. the *risk* to the balance sheet from writing the business

• Return on capital (ROC) is a risk/reward metric
 – *Risk* is measured using economic capital
 – *Reward* is the expected (ultimate) profit

• How should we define a ROC for an insurance LOB? Remember that in the real world:
 – The profit may be earned over many years
 – Capital is released as claims are paid
 – Capital must be held as long claims are open
• Let’s look at two potential analogs from finance
 – Risk Adjusted Return on Capital (RAROC)
 – A mortgage APR
RAROC: From banking…

- Concept developed at Banker’s Trust in the 1970s

\[RAROC = \frac{\text{Revenue} - \text{Costs} - \text{Expected losses}}{\text{Risk capital}} \]

- Like a prospective ROE, using economic capital
Now widely used in insurance, e.g., *Risk-Adjusted Performance Measurement for P&C Insurers* by Goldfarb (on CAS syllabus)

Table 23: Comparison of RAROC - Using Co-CTE Allocation

<table>
<thead>
<tr>
<th></th>
<th>Economic Profit</th>
<th>Co-CTE (99%) Allocated Capital</th>
<th>RAROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line A</td>
<td>496,000</td>
<td>2,117,082</td>
<td>23.4%</td>
</tr>
<tr>
<td>Line B</td>
<td>880,000</td>
<td>4,225,340</td>
<td>20.8%</td>
</tr>
</tbody>
</table>

Allocated ultimate capital @T0

Earned over the lifetime of the claims “to ultimate”
RAROC assessment

But does it “work” for insurance?

In general – “No”*

- The reward is the ultimate profit
- The risk is the capital held in the first year only
- A mismatch: There can be no cost of capital without the capital

* Goldfarb (2010) presents alternative approaches that account for this; see p. 41
Mortgage APR

• Now for something more familiar…

• In a typical mortgage, for the bank/lender:
 – The *reward* is the interest payments received
 – The (debt) capital at *risk* is the outstanding loan amount
 – The principal repaid is capital returned

![Diagram showing Outstanding Balance and Interest Payments over time]

10 September 2019
Mortgage APR assessment

• How does it compare to insurance? In general – quite well

<table>
<thead>
<tr>
<th></th>
<th>Mortgage</th>
<th>Insurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital type</td>
<td>Debt (loan)</td>
<td>Economic, GAAP, etc.</td>
</tr>
<tr>
<td>Capital recipient</td>
<td>Home owner</td>
<td>Underwriter</td>
</tr>
<tr>
<td>Investment</td>
<td>Houses</td>
<td>Insurance contracts</td>
</tr>
<tr>
<td>Profit</td>
<td>Interest on loan</td>
<td>UW profit</td>
</tr>
<tr>
<td>Investment horizon</td>
<td>Term of mortgage</td>
<td>Time claims are open</td>
</tr>
<tr>
<td>Maximum loss</td>
<td>Outstanding balance</td>
<td>Capital held at start of year</td>
</tr>
<tr>
<td>Annual rate of return</td>
<td>APR</td>
<td>Annual rate of ROC</td>
</tr>
</tbody>
</table>
Mortgage APR

• Mortgage analogy for RAROC:
 – The initial loan amount and total interest are known, but not the repayment schedule
 – (A bad idea)

• We can build on these comparisons to define an annual rate of ROC for an LOB…

So many different investment opportunities… how can I compare them?
Four principles for R, the rate of ROC

1. Capital must be held as long as claims are open \textit{(investment horizon)}

2. The total capital requirement varies by year according to the downside risk of open claims \textit{(amount of total capital)}

3. The amount of capital allocated to a LOB depends on its contribution to the total capital requirement \textit{(amount of allocated capital)}

4. R is the effective annual rate of return paid to the capital providers over the period that their capital is invested \textit{(normalizes for the amount of capital and the investment horizon)}
The UW account

Underwriting Account
Receives *premium* and pays *loss and expense*

\[
P_0 - L_0 \\ P_1 - L_1 \\ P_2 - L_2 \\ \cdots \\ P_n - L_n
\]

Year 0 Year 1 Year 2 \cdots Year n

Ears the risk free rate r

A cheque is written for the balance at n years

\[
\sum_{t=0}^{n} (P_t - L_t) \times (1 + r)^{n-t}
\]
Two accounts, one value

Underwriting Account
Receives *premium* and pays *loss and expense*

\[
P_0, \quad -L_0 \quad P_1, \quad -L_1 \quad P_2, \quad -L_2 \quad \ldots \quad P_n, \quad -L_n
\]

Year 0, Year 1, Year 2, \ldots, Year n

Dividend Account
Receives *\(R \times (Capital \ held \ @ \ BOY) \) at year-end*

\[
R*C_0, \quad R*C_1 \quad R*C_2, \quad \ldots \quad R*C_{n-1}
\]

Year 0, Year 1, Year 2, \ldots, Year n

Earn the risk free rate \(r \)

Cheques of equal amount are written for the balances at \(n \) years

\[
\sum_{t=0}^{n} (P_t - L_t) \times (1 + r)^{n-t}
\]

\[
\sum_{t=0}^{n-1} R \times C_t \times (1 + r)^{n-t-1}
\]
Solving for R

- R is the value that makes the two cheques equal
- Dividing by $(1+r)^n$ to get present values:

\[R \times \sum_{t=0}^{n-1} C_t \times (1 + r)^{-t-1} = NPV(UW\ Profit) \]

- Simple! Looks just like the S2 risk margin formula
 - $R \leftrightarrow$ CoC (6%)
 - NPV (UW Profit) \leftrightarrow Risk Margin
Solving for C_t is the central challenge

• Except now:
 – We are solving for R
 – C_t is for a LOB

• How do we solve for C_t for each LOB?

• We can’t just run-off C_0 as we might for the SCR
 – The size of the total portfolio capital pie changes, AND
 – The relative share of each LOB changes
Running off C_0 doesn’t always work

• A hypothetical two-line portfolio example:
 – Large Property LOB, paid out after 5 years
 – Small Casualty LOB, paid out after 10 years
 – The Casualty LOB could have small/nil/negative allocated capital @ T=0
 – Not so for years 6+

• Allocation applies *at a point in time*
II. How do we get there?

A practical methodology
Path of the projected ultimate
LOB modelled ultimates @ T=0

Terra incognita for Ultimate analysis
Path and length of Ultimate not modelled

co-TVaR ultimate @ T0

Allocated Capital Required C(t)

13.4
0 1 2
Year
The algorithm

Question: What capital would we expect to allocate at the start of each year if the true final ultimate is the co-TVaR ultimate @ T=0?

Answer: At $T = 1, 2, \ldots$, for each LOB:

1. Recognize a share of the deterioration from best estimate to co-TVaR
2. Parameterize a lognormal using a CoV and the updated best estimate from step 1
3. Simulate an ultimate for each LOB and in total
4. Re-allocate capital to each LOB
Proposal for re-allocating LOB capital

- Claims experience converges to co-TVaR ultimate modelled @ T=0
- At each time step:
 1. A distribution is parameterized
 2. Claims are simulated by LOB and aggregated
 3. Capital is re-allocated
A simplified LOB example

Model outputs @ T0

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium</td>
<td>110.0</td>
</tr>
<tr>
<td>Expected Loss & ALAE</td>
<td>100.0</td>
</tr>
<tr>
<td>Risk-free rate</td>
<td>0.0%</td>
</tr>
<tr>
<td>Expected UW Profit</td>
<td>10.0</td>
</tr>
<tr>
<td>TVaR 99p</td>
<td>180.0</td>
</tr>
<tr>
<td>Co-TVaR 99p</td>
<td>125.0</td>
</tr>
<tr>
<td>Co-TVaR 99p Stress</td>
<td>25.0</td>
</tr>
</tbody>
</table>

The Cloud of Aggregation (all LOB)

The Thunder of Allocation

\[R \times \sum_{t=0}^{n-1} C_t \times (1 + r)^{-t-1} = NPV (UW Profit) \]

\[R \times (21.9 + 12.1 + ... + 2.7) = 10 \]

\[R = 19.2\% \]
III. How will we know when we’ve arrived?

Validating and interpreting results
“Validation” of R

- R for individual LOB can’t be validated
 - R depends on the portfolio as a whole and the methodology
- But we can have expectations for the portfolio:
 - Extreme outliers (high or low) not realistic
 - Reason: *Competition/UW discipline place upper/lower bounds*
 - Similar LOB should have a similar ROC
 - Reason: *Comparable risk vs. reward*
 - No trend in ROC vs. premium
 - *But more variability expected for smaller LOB*
- A good methodology will satisfy these criteria
Test 1: Fewer extreme outliers

ROC Distribution

No Re-allocation

ROC Distribution

With Re-allocation
Test 2: Efficient frontier

- A fitted line should start at the origin (no risk, no reward)
- Result depends on portfolio and ROC methodology

\[
NPV \ (UW \ Profit) = \sum (Allocated \ Capital) \times (Discount \ Factor)
\]

\[
\text{Slope} = R
\]
Test 3: No trend in R vs. premium

- Small (or large) LOB shouldn’t have inherently higher/lower ROC
- But it is reasonable to expect more volatility for smaller LOB
IV. What are the limitations of the approach?
Hazards, pitfalls and considerations
ROC pitfalls & considerations

• ...of which there are many

• General
 – Capital is not legally divisible and the allocation method is a choice
 – Many assumptions are arbitrary and can yield very different ROCs

• Specific to this method (to name a few)
 – How to align reserve risk volatilities (low granularity) with UW LOB (high granularity)
 – The capital release pattern requires many simulations
 – Explaining to key stakeholders
Take away

• The first step is always the most important: choose the right metric
 – The ROC should be a rate of return

• Not all methodologies are equal – develop a validation toolkit for separating the good, the bad, and the ugly

• Communication to stakeholders is key – buy-in to the results depends on buy-in to the method
Now I know my invested capital for each year, from now until ultimate…*until FOREVER!*
The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].