What if there was a cure for obesity?

Dr Matthew S Capehorn
GPwSI and Bariatric Physician
Clinical Manager, Rotherham Institute for Obesity
Board member, Association for the Study of Obesity (ASO)

Nay Wynn
Research Actuary, Hannover Re

Overview of the presentation

• What is obesity and how is it measured?
• Current obesity statistics
• What causes obesity?
• What are the consequences of obesity?
• How can we tackle obesity?

• Impact on the Protection business
• Concluding remarks

Matt Capehorn
Nay Wynn
BMI classification of obesity

BMI = weight(kg) / height(m)^2

<table>
<thead>
<tr>
<th>WHO Classification</th>
<th>BMI</th>
<th>Risk of Comorbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td>Below 18.5</td>
<td>Low (but risk of other clinical problems increased)</td>
</tr>
<tr>
<td>Healthy weight</td>
<td>18.5-24.9</td>
<td>Average</td>
</tr>
<tr>
<td>Overweight</td>
<td>25.0-29.9</td>
<td>Mild increase</td>
</tr>
<tr>
<td>Obese</td>
<td>&gt;30.0</td>
<td></td>
</tr>
<tr>
<td>Grade 1 obesity</td>
<td>30.0-34.9</td>
<td>Moderate increase</td>
</tr>
<tr>
<td>Grade 2 obesity</td>
<td>35.0-39.9</td>
<td>Severe increase</td>
</tr>
<tr>
<td>Grade 3 obesity</td>
<td>&gt;40.0</td>
<td>Very severe</td>
</tr>
<tr>
<td>(morbid obesity)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Adapted from WHO, 1995, WHO, 2000 and WHO 2004

Android (apple) vs. gynoid (pear) obesity

A tribute to a pioneer: Jean Vague (1947)
Not all types of fat are the same

Visceral fat is the target

©1994 Mayo Foundation for Medical Education and Research. By permission of Mayo Foundation.

Measuring waist circumference

- A practical guide from the NIDDK/NIH
  - Place a tape measure around the bare abdomen, just above the hip bone
  - Be sure the tape is snug, but does not compress the skin
  - The tape should be parallel to the floor, midway between the top of the iliac crest and the lower rib margin on each side
  - The patient should relax and exhale while the measurement is made

NIDDK = National Institute of Diabetes and Digestive and Kidney Diseases; NIH = National Institutes of Health
Prevalence of obesity among adults aged 16+ years

Health Survey for England 2016; Adult health trends
Obesity defined as BMI ≥ 30kg/m²

Obesity

• It is not that we don’t see weight problems!

  – 26% of men and 27% of women are obese (BMI >30)
  – Increasing numbers are morbidly obese (BMI >40) and ‘super obese’ (BMI >50)
  – 66% men and 57% women are obese or overweight

• Foresight report (Oct 2007):
  – estimates on current trends >50% of the UK will be obese by 2050
  – Currently 2/3 adults and 1/3 children overweight or obese
  – Without action 9/10 and 2/3 by 2050
  – By 2050 the total direct & indirect costs of obesity may increase to £49.9bn
… but what causes obesity?

• Gluttony (eating too much)?
• Laziness (not enough physical activity)?
• Food Industry?
• Technology (less manual labour, etc.)?
• Comfort eating or habit eating?
• Lack of cooking skills?
• Genetics and/or epigenetics
• Microbiota

Obesity: the traditional view

- Energy Intake
- Energy-Dense, High-Calorie Diet
- Genetic Predisposition
- Sedentary Lifestyle
- Energy Expenditure

22 May 2018
Obesity: the revised view

Why do we care about obesity?

Or do we care too much?
Diseases related to obesity (*)

- **Pulmonary disease**
  - obstructive sleep apnea
  - Asthma/COPD

- **Nonalcoholic fatty liver disease**
  - steatohepatitis
  - cirrhosis

- **Gynaecologic abnormalities**
  - abnormal menses
  - infertility
  - polycystic ovarian syndrome

- **Diabetes**

- **Gall bladder disease**

- **Cancer**
  - breast, uterus, cervix
  - colon, esophagus, pancreas
  - kidney, prostate

- **Stroke**

- **Coronary heart disease**
  - Dyslipidemia
  - Hypertension

- **Gall bladder disease**

- **Stress incontinence**

- **Osteoarthritis**

- **Phlebitis**
  - venous stasis

- **Leg ulcers**
  - pressure sores

- **Hyperuricaemia and Gout**

- **Coronary heart disease**

* Speakers own opinion

Relative risk of health problems associated with obesity

<table>
<thead>
<tr>
<th>Disease</th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type II Diabetes</td>
<td>12.7</td>
<td>5.2</td>
</tr>
<tr>
<td>Hypertension</td>
<td>4.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>3.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Colon cancer</td>
<td>2.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Angina</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Gall bladder disease</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>1.7</td>
<td>-</td>
</tr>
<tr>
<td>Osteoarthritis</td>
<td>1.4</td>
<td>1.9</td>
</tr>
<tr>
<td>Stroke</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Risk of Major Depression with Extreme Obesity

![Risk of Major Depression with Extreme Obesity](image)


22 May 2018

Weight loss reduces mortality

Weight loss of 10 kg produces a marked improvement in mortality

<table>
<thead>
<tr>
<th>Mortality</th>
<th>Blood pressure</th>
<th>Diabetes</th>
<th>Lipids</th>
</tr>
</thead>
<tbody>
<tr>
<td>• &gt; 20-25% fall in mortality</td>
<td>• Fall of approximately 10 mmHg systolic and diastolic blood pressure</td>
<td>• Fall of 50% in fasting glucose</td>
<td>• Fall of 10% in total cholesterol</td>
</tr>
<tr>
<td>• &gt; 30-40% fall in diabetes-related deaths</td>
<td></td>
<td></td>
<td>• Fall of 15% in LDL-C</td>
</tr>
<tr>
<td>• &gt; 40-50% fall in obesity-related cancer deaths</td>
<td></td>
<td></td>
<td>• Fall of 30% in triglycerides</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Rise of 8% in HDL-C</td>
</tr>
</tbody>
</table>


22 May 2018
The evolution of man

• How do we stop this?

The cover of "The Economist", December 13-19, 2003

Obesity: the revised view - revisited

How can we solve a problem like obesity?

1) Tackle all 100+ causes
   - Nanny state or “nudge”
   - Increase physical activity
   - Decrease food consumption
   - Food tax/subsidy
   - Where is the evidence that we can “prevent” obesity?

2) Treat the overweight/obese
   - “Treating” the overweight “prevents” more obesity.
   - NICE Recommends (for adults):
     • Diet
     • Exercise
     • Behavioural therapy
     • Drug treatment
     • Surgery (if BMI >40, or >35 with co-morbidities)

Where should we focus our attentions?

- Mckinsey Report 2014

<table>
<thead>
<tr>
<th>Intervention group</th>
<th>Reduced impact across full population</th>
<th>Reduced average cost per DALY</th>
<th>Strength of evidence rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portion control</td>
<td>2,126</td>
<td>2,800</td>
<td>Sufficient evidence for weight gain</td>
</tr>
<tr>
<td>Reformulation</td>
<td>1,708</td>
<td>3,300</td>
<td>Sufficient evidence for weight change</td>
</tr>
<tr>
<td>High fibre foods/vegetable availability</td>
<td>1,137</td>
<td>1,600</td>
<td>Sufficient evidence for weight change</td>
</tr>
<tr>
<td>Weight management programs</td>
<td>667</td>
<td>2,000</td>
<td>Sufficient evidence for weight change</td>
</tr>
<tr>
<td>Parental education</td>
<td>562</td>
<td>600</td>
<td>Limited evidence for weight change</td>
</tr>
<tr>
<td>School curriculum</td>
<td>566</td>
<td>1,900</td>
<td>Limited evidence for weight change</td>
</tr>
<tr>
<td>Healthy meals</td>
<td>515</td>
<td>1,600</td>
<td>Limited evidence for weight change</td>
</tr>
<tr>
<td>Surgery</td>
<td>475</td>
<td>2,000</td>
<td>Limited evidence for weight change</td>
</tr>
<tr>
<td>peel</td>
<td>300</td>
<td>1,500</td>
<td>Limited evidence for weight change</td>
</tr>
<tr>
<td>Price promotions</td>
<td>200</td>
<td>1,000</td>
<td>Limited evidence for weight change</td>
</tr>
<tr>
<td>Pharmaceuticals</td>
<td>150</td>
<td>750</td>
<td>Logic based on parallel evidence</td>
</tr>
<tr>
<td>Media restrictions</td>
<td>120</td>
<td>50</td>
<td>Logic based on parallel evidence</td>
</tr>
<tr>
<td>50% tax on high-sugar, high-fat products</td>
<td>200</td>
<td>1,500</td>
<td>Logic based on parallel evidence</td>
</tr>
<tr>
<td>Workplace wellness</td>
<td>100</td>
<td>2,000</td>
<td>Logic based on parallel evidence</td>
</tr>
<tr>
<td>Active transport</td>
<td>57</td>
<td>200</td>
<td>Logic based on parallel evidence</td>
</tr>
<tr>
<td>Public health campaigns</td>
<td>40</td>
<td>200</td>
<td>Logic based on parallel evidence</td>
</tr>
</tbody>
</table>
So, what are the potential “cures” for obesity?

NICE Recommends (for adults):

- Diet
- Exercise
- Behavioural therapy
- Drug treatment
- Surgery (if BMI >40, or >35 with co-morbidities)
Diet – common pitfalls

- **All sugars are the same (4kcal/g)** i.e. sucrose = fructose, etc.
  - Coco pop straws 34g/100g = 2 finger KitKat
  - Fruit juice approximately 9g/100mls
- **All fats (satd/polyunsatd/monounsatd) are the same (9kcal/g)**
  - Jordan’s Country Crisp Cereal: 28.5g/100g = McDonalds McBacon Roll
  - Thick pork sausages: 20.3g/100g
- **Alcohol (think of each drink as a chocolate bar!)**
- **High fat foods vs Low fat foods**
  - Premium
    - likely to have high fat and high sugar (high calories)
  - Economy
    - likely to have high salt
  - Home cooked
    - likely to have high fat (depends on how it is cooked) – better?

---

### Diet – explaining calories

- **one night off** 4000 kcal
  - 1lb fat
  - >1 week of dedicated dieting

#### Daily calorie deficit

- **500 kcal**
- **1000 kcal**
  - intended calorie intake

- **3500 kcal**
  - Weekly calorie deficit = 7 x 500 kcal = 3500 kcal
  - 1lb FAT

1lb/week = 4lb/month = 1st/3m = 4st/year

---

22 May 2018
**Relationship between physical activity and health**

**Physical**
- Metabolic Syndrome
  - Insulin resistance
  - Type II Diabetes
- Asthma (pulmonary disease)
- Orthopaedic incl.
  - abnormal bone growth
  - degenerative disease
  - pain

**Psychological**
- Low Self-Esteem
- Substance abuse
- CVD
- Stroke
- Cancer
- Hypertension
- Hyperlipidemia
- Depression

---

*Figure 1.* The dose-response curve demonstrating the relationship between physical activity and risk of chronic disease. The more you exercise, the less likely you are to develop a chronic disease.

---

**Physical Inactivity**

- Risk of CVD mortality by cardiovascular fitness and BMI, 2,316 men with Type 2 diabetes

Source: Church et al. Arch Int Med 2005;165:2114-20
Can you be “fit and fat”

- The concept of metabolically healthy obese (MHO) is not unreasonable given that we have metabolically unhealthy thin people
- Meta-analysis (8 studies, 61,000 patients) in Annals of Internal Medicine found:
  - CVD lowest in metabolically healthy normal weight individuals
  - being metabolically unhealthy increased risks of CVD (even if normal BMI)
  - little difference between MHO and metabolically healthy normal weight
  - However, in those with 10yrs+ follow up, MHO had increased risk of death
  (Kramer et al, 2013)
- Other smaller studies also favour the idea that “simple obesity” (or MHO) still increases long-term risks of CVD/mortality
- For now, do NOT allow our patients to believe they are/can be “fit and fat”

Comfort eating and binge eating
Behavioural therapy

- Talking Therapies examples include:
  - Life coaching
  - Cognitive Behavioural Therapy (CBT)
  - Neurolinguistic Programming (NLP)
  - Emotional Freedom Techniques (EFT)
  - Hypnotherapy
  - Hypnobanding.

Can we ever control appetite?
Which drugs work best for obesity?

Association of Pharmacological Treatments for Obesity with Weight Loss & Adverse Events: A systematic review and meta-analysis - Khera R et al. JAMA, 2016

- 28 RCTs (29,018 patients)
- Mean age 46 (74% women), weight 100.5kg, BMI 36.1

- Those reaching 5% weight loss:
  - Placebo 23%
  - Phentermine/topiramate 75% 8.8kg (7.42 – 10.20)
  - Liraglutide 63% 5.3kg (4.52 – 6.06)
  - Naltrexone/bupropion 55% 5.0kg (3.96 – 5.94)
  - Lorcaserin 49% 3.2kg (2.46 – 3.97)
  - Orlistat 44% 2.8kg (2.16 – 3.04)

- Liraglutide (OR 2.95) and Naltrexone/bupropion (OR 2.64) were associated with the highest odds of adverse event-related treatment discontinuation

But what about the miracle cures?

- Raspberry ketones
- Hydroxycut
- Garcinia Cambogia
- XLS Medical
- Meratrim
- Green coffee bean extract
- Alli (orlistat at a lower dose!)
- What do you think?
The next surgical frontier

Who Would Have Thought It? 1995
An Operation Proves to Be the Most Effective Therapy for Adult-Onset Diabetes Mellitus

2006
Surgery as an Effective Early Intervention for Diabetes

Why the reluctance?

The Early Effect of the Roux-en-Y Gastric Bypass on Hormones Involved in Body Weight Regulation and Glucose Metabolism

Gastric Balloon
Gastric Band
Sleeve Gastrectomy
Gastric Bypass
Duodenal Switch

Obesity surgical interventions

Adapted from http://www.nbsr.co.uk/. The United Kingdom National Bariatric Surgical Register.
Bariatric surgery and diabetes resolution

• The improvement or resolution of diabetes is thought to be due to:
  – decreased caloric intake, leading to decreased stimulation of incretins and insulin release
  – weight loss that occurs from the changes in fat mass and release of adipocytokines,
  – weight loss that occurs from the decrease of gut hormones(GLP1), resulting from the bypass of the distal stomach and proximal small intestine

• Results from NBSR showed that two years after primary surgery:
  – 65.1% of patients with type 2 diabetes returned to a state of no indication of diabetes, meaning, in practice, that they were able to stop their diabetic medications

<table>
<thead>
<tr>
<th>Author</th>
<th>Intervention</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pories et al. 1995</td>
<td>Gastric Bypass</td>
<td>89%</td>
</tr>
<tr>
<td>Torquati et al 2005</td>
<td>Gastric Bypass</td>
<td>74%</td>
</tr>
<tr>
<td>Schauer et al. 2003</td>
<td>Gastric Bypass</td>
<td>82%</td>
</tr>
<tr>
<td>Sugerman et al 2003</td>
<td>Gastric Bypass</td>
<td>86%</td>
</tr>
<tr>
<td>Dixon et al 2003</td>
<td>Lap Band</td>
<td>64%</td>
</tr>
<tr>
<td>Gagner (unpublished)</td>
<td>Sleeve Gastrectomy</td>
<td>65%</td>
</tr>
</tbody>
</table>

Homeostatic Adaptation

• Following weight loss:
  – Actual energy requirements may be up to 300kcals less than predicted
  – Gut hormones (+/- genes) encourage us to put weight back on
  – Increased hunger/cravings?
  – Supports the idea of a “SET POINT THEORY”

• Following weight gain:
  – Increased “NEAT” (Non Exercise Activity Thermogenesis)
  – Decreased hunger cravings?

• Influenced by “ENDOCRINE DISRUPTORS”
  – Eg, BPA in milk bottles, ?Viruses, ?Nature
Obesity – it’s a social problem, isn’t it?

- Yes... but, we treat social problems all the time
  - e.g. sporting injuries, smoking problems, common infections, etc.
- We treat the consequences of obesity anyway
  - e.g. dyslipidaemia, T2DM, hypertension
  - So why not treat the cause?
- Cost effective – prescribing savings
- Even a few kilos makes a difference to individuals
- Any weight loss reduces morbidity and mortality
- Weight regain is inevitable (whatever intervention)
- **Obesity is a chronic relapsing condition**

Overview of the presentation - revisited

- What is obesity and how is it measured? [Matt Capehorn]
- Current obesity statistics
- What causes obesity?
- What are the consequences of obesity?
- How can we tackle obesity?

- Impact on the Protection business [Nay Wynn]
- Concluding remarks
What is the issue?

• Policies underwritten at the outset
  – what is their health status in 10, 20, 30 years time?
  – it is still an issue for policies that keep in touch with the policyholders
  – the current direction of obesity trends means experience is likely to deteriorate

• Anti-selective lapsing

• Obesity is particularly an issue for:
  – policies with long term
  – policies on guaranteed rates
  – when policyholders can increase cover without further underwriting

Modelling the impact on CI

• Hannover Re trends for Cl vary by condition, however to simplify:
  – Base scenario: zero trends
  – Starting point: 100% of lives with normal BMI
  – End point: 50% of lives with normal BMI and 50% obese

• Run 1: allow for increase in rates over 30 years (~2050)
• Run 2: allow for increase in rates over 20 years (~2040)

• The impact is determined by calculating levelised rates by age and term for various sex/smoker splits

• Summarise using a typical business mix to get a single percentage
Run 1: assumptions and impact

- Run 1 (obesity impact over 30 years) assumes the following increase in trends:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart attack</td>
<td>+0.7%</td>
<td>+2.5%</td>
</tr>
<tr>
<td>Stroke</td>
<td>+0.5%</td>
<td>+0.5%</td>
</tr>
<tr>
<td>Other digestive cancers</td>
<td>+0.5%</td>
<td>+0.5%</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>N/A</td>
<td>+0.2%</td>
</tr>
<tr>
<td>Upper aerodigestive cancers</td>
<td>+1.4%</td>
<td>+1.4%</td>
</tr>
</tbody>
</table>

- Slide 14 shows that the relative risk for female heart attack for someone obese was 3.2; assuming 50% at this rate and 50% at normal 1 rate, the average is 2.1.

- The compound rate over 30 year works out at 2.5%.

- For cancers, the estimates comes from National Cancer Institute but we follow a similar methodology to heart attack and stroke

- Overall impact:

<table>
<thead>
<tr>
<th>Run 1</th>
<th>MN</th>
<th>MS</th>
<th>FN</th>
<th>FS</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
<td>3%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Run 2: assumptions and impact

- Run 2 (obesity impact over 20 years) assumes the following increase in trends:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart attack</td>
<td>+1.1%</td>
<td>+3.8%</td>
</tr>
<tr>
<td>Stroke</td>
<td>+0.7%</td>
<td>+0.7%</td>
</tr>
<tr>
<td>Other digestive cancers</td>
<td>+0.7%</td>
<td>+0.7%</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>N/A</td>
<td>+0.4%</td>
</tr>
<tr>
<td>Upper aerodigestive cancers</td>
<td>+2.0%</td>
<td>+2.0%</td>
</tr>
</tbody>
</table>

- Slide 14 shows that the relative risk for female heart attack for someone obese was 3.2; assuming 50% at this rate and 50% at normal 1 rate, the average is 2.1.

- The compound rate over 20 year works out at 3.8%.

- For cancers, the estimates comes from National Cancer Institute but we follow a similar methodology to heart attack and stroke

- Overall impact:

<table>
<thead>
<tr>
<th>Run 1</th>
<th>MN</th>
<th>MS</th>
<th>FN</th>
<th>FS</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
<td>5%</td>
<td>4%</td>
</tr>
</tbody>
</table>

22 May 2018
Improving the model

• You can improve the model by allowing for:
  – Obesity prevalence differences by age, socioeconomic status, ethnicity
  – anti-selective lapse risk
  – severity based pay-outs
• Your own results be different if you:
  – place difference weights on the CI condition
  – a different starting point for trends
  – a different methodology for setting trends and evaluating the impact
  – different CI conditions covered in your ‘standard CI’ product

Impact on Term Assurance

• Historic reductions in smoker prevalence has had an impact on reducing mortality from cardiovascular diseases, stroke and cancers
  – would the rise of obesity prevalence reverse this?
  – could see start projecting mortality deteriorations in the future?
• NHS (June 2016) estimates that:
  – obesity reduces life expectancy by an average of 3 to 10 years, depending on severity
  – obesity and being overweight contribute to at least 1 in every 13 deaths in Europe
• Impact on TA may be less than CI?
  – you could be diagnosed with a heart attack/stroke as a result of your obesity (get a pay-out under CI) but still take preventative measures to delay death
Summary

• Obesity is a social problem
• Very cost-effective to treat obesity and it makes a huge difference physically and psychologically
• Obesity is a chronic relapsing condition – we cannot expect to cure it
  – instead we need a lifelong management plan
• Rising obesity prevalence is a concern for insurance products that underwrite at the outset
• Impact on CI of around 2% to 4% but could be higher
• Have you allowed for obesity prevalence for setting future trends?

Questions

Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff are encouraged.
The views expressed in this presentation are those of the presenter.