Measuring uncertainty beyond “Bootstrap”

Sarah MacDonnell, LCP
Tim Jordan, MPS
Jinnan Tang, Insight Risk Consulting
Gráinne McGuire, Taylor Fry

Beyond “Bootstrap”

Definition of “Bootstrap” - triangle techniques based on chain ladder, such as Mack or ODP bootstrap

A limited measure

The past is not necessarily a good guide to the future
Beyond “Bootstrap”

Is it realistic to define a distribution of outcomes at all?

MUQ (Measuring Uncertainty Qualitatively)
Stage 1: Bring together work that has done before into one place
Measuring uncertainty beyond “Bootstrap”

Framework elements
- Data uncertainty
- Expert judgement
- Effectiveness of methods
- Reserve risk appetite

Alternative approaches
- Models for aggregate triangles
- Individual claims reserving
- Interaction with capital models

Data uncertainty – matrix

• Data problems we often hear…
 - We’ve had a big change in our claims handling process
 - We just have the bordereaux available for that class
 - We had a few missing case estimates at year-end
 - The only triangle we have is net paid

• One example of data uncertainty matrix currently in use:

<table>
<thead>
<tr>
<th>Materiality (Reserve £m)</th>
<th>Data Uncertainty by reserve class (count)</th>
<th>Data quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poor</td>
<td>Below average</td>
</tr>
<tr>
<td>Low (£<£15m)</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Mid (£15m to £20m)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>High (£25m+)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

• A more detailed measure? As the level of data quality can be an aggregate effect of many other factors: location, measurability, nature, quantity and judgements.
Data uncertainty – additional dimensions

- Locating potential data uncertainty as a first step towards a finer measurement, the table below should provide a clearer path.

<table>
<thead>
<tr>
<th>Stages</th>
<th>Data uncertainty sources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operation</td>
</tr>
<tr>
<td>Target and obtain</td>
<td>Negligence in planning. Missing out certain classes</td>
</tr>
<tr>
<td></td>
<td>Inconsistent formats with claims input. Loose definition and</td>
</tr>
<tr>
<td></td>
<td>labelling.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Store and share</td>
<td>Incorrect data used. Error linking to model.</td>
</tr>
<tr>
<td></td>
<td>No documentation on claims data manipulation.</td>
</tr>
<tr>
<td>Use</td>
<td>Disposing incorrect policy records.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintain</td>
<td></td>
</tr>
<tr>
<td>Dispose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data uncertainty – matrix new view

- The data uncertainty matrix below should help to generate a qualitative overview of where most important uncertainties are, and how these can be further measured in a number of uncertainty dimensions.

<table>
<thead>
<tr>
<th>Data Uncertainty Matrix</th>
<th>Measurability of uncertainty (from determinism, through probability and possibility to ignorance)</th>
<th>Nature of Uncertainty</th>
<th>Qualification of knowledge base (backing)</th>
<th>Value-Ladenness of judgements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistical uncertainty</td>
<td>Scenario uncertainty</td>
<td>Recognised ignorance</td>
<td>Knowledge related</td>
</tr>
<tr>
<td>Data issues by source</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Framework

- Data uncertainty
- Expert judgement
- Effectiveness of methods
- Reserve risk appetite

Expert judgement uncertainty – current practice

- Challenges associated with uncertain data necessitate the use of expert judgement.
- A recognised method of measuring expert uncertainty is to look at its subjectivity against sensitivity.

- Any other factors that would also impact the level of expert judgement uncertainty?
Expert judgement uncertainty – other factors

- Quality of policy, governance, documentation, process, validation, system, data
- Fresh, focus, know your limits
- Expertise
- Qualification, experience level of experts
- Elicitation
- Interview with experts, unbiased communication with user and decision makers
- Subjectivity
- Plausible range
- Impact of changing judgements on reserving results

- Additional uncertainty which should not outweigh its benefit.
- A point based approach? Similar to safety rating used for cars and airplanes.

Communication - Language

- GI ROC paper “Quantification and Reporting of Uncertainty for GI Reserving” 2007 suggested standard vocabulary for communicating reserve uncertainty

<table>
<thead>
<tr>
<th>Indicative percentile</th>
<th>75%</th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wording 'below' percentile</td>
<td>Fairly likely that the outcome will lie below this estimate</td>
<td>Likely that the outcome will lie below this estimate</td>
<td>Very likely that the outcome will lie below this estimate</td>
<td>Extremely likely that the outcome will lie below this estimate</td>
</tr>
<tr>
<td>Wording 'above' percentile</td>
<td>Reasonable chance that the outcome could lie above this estimate</td>
<td>Possible but unlikely that the outcome will lie above this estimate</td>
<td>Possible but very unlikely that the outcome will lie above this estimate</td>
<td>There is a possibility, albeit remote, that the outcome will lie above this estimate</td>
</tr>
</tbody>
</table>

- Weather scientists also use a similar approach - The Intergovernmental Panel on Climate Change
- What’s the percentages for “fairly likely”, “likely” and “very likely” in your own interpretation?
- Why do you think it is not used more?
Effectiveness of Methods

- In selecting a best estimate for reserving it should be recognised that a range of methods are available to achieve this.
- Looking at the outputs of a range of methods can help measure the model uncertainty (the risk that your chosen model is wrong).
- The Effectiveness of Methods Working Party (2008/2009) listed the following methods and tested them for effectiveness:

<table>
<thead>
<tr>
<th>Possible Reserving Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain ladder (PCL, ICL)</td>
</tr>
<tr>
<td>Bornheutter-Ferguson (PBF, IBF)</td>
</tr>
<tr>
<td>ACPC-based methods (APC, AIC, PPCI, PPCF)</td>
</tr>
<tr>
<td>Case estimate-based methods (PCE)</td>
</tr>
<tr>
<td>Operational time (OpTime)</td>
</tr>
<tr>
<td>Probabilistic trend family (eg ICRFS)</td>
</tr>
<tr>
<td>Other (user-selected) methods…</td>
</tr>
</tbody>
</table>

![Effectiveness of Methods Chart](image-url)
Range of Methods

- Use of an “overview grid” of results can help the Actuary understand the variation in the result based on choosing different methods.

- Outputs can also be shown as graphs in order to aid communication.

Where wildly different results are being obtained this can indicate your choice of model is important and there may be model risk which should be discussed.

Model risk could also extend to choice of development factor exclusions and selection of tail factors.

Outputs can also be shown as graphs in order to aid communication.

Range of Methods

Graphical Representation

The graph titled "Range of Best Estimate Ultimates from various methods" displays a comparison of ultimate costs across different methods for various accident years. The x-axis represents the accident year, ranging from 2004 to 2015, while the y-axis represents the ultimate cost in £'000s, ranging from 0 to 8,000.

The methods compared include:
- PCL (8)
- PCL (12)
- ICL (8)
- ICL (12)
- AVCC (ex Nil)
- AVCC (inc Nil)
- PBF
- IBF
- Selected Ult

The graph visually illustrates the range and variation in ultimate costs across different methods, helping to identify the most reliable and consistent approach.

Table Example:

<table>
<thead>
<tr>
<th>Accident Year</th>
<th>EP</th>
<th>Paid</th>
<th>OS</th>
<th>Incurred</th>
<th>PCL (8)</th>
<th>PCL (12)</th>
<th>ICL (8)</th>
<th>ICL (12)</th>
<th>AVCC (ex Nil)</th>
<th>AVCC (inc Nil)</th>
<th>PBF</th>
<th>IBF</th>
<th>Selected</th>
<th>SDR</th>
<th>Reserves</th>
<th>ULB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>5,001</td>
<td>9,937</td>
<td>7,821</td>
<td>9,033</td>
<td>34,358</td>
<td>31,424</td>
<td>23,592</td>
<td>21,231</td>
<td>8,763</td>
<td>9,937</td>
<td>6,983</td>
<td>5,539</td>
<td>3,873</td>
<td>2,864</td>
<td>2,056</td>
<td>1,363</td>
</tr>
<tr>
<td>2001</td>
<td>5,200</td>
<td>10,000</td>
<td>8,000</td>
<td>9,200</td>
<td>34,500</td>
<td>31,600</td>
<td>23,700</td>
<td>21,300</td>
<td>8,800</td>
<td>9,940</td>
<td>6,990</td>
<td>5,550</td>
<td>3,880</td>
<td>2,870</td>
<td>2,060</td>
<td>1,370</td>
</tr>
<tr>
<td>2002</td>
<td>5,400</td>
<td>10,200</td>
<td>8,200</td>
<td>9,400</td>
<td>34,600</td>
<td>31,800</td>
<td>23,900</td>
<td>21,500</td>
<td>8,900</td>
<td>9,950</td>
<td>7,000</td>
<td>5,600</td>
<td>3,900</td>
<td>2,880</td>
<td>2,070</td>
<td>1,380</td>
</tr>
</tbody>
</table>

All data in £'000s

13/11/2015
Framework

- Data uncertainty
- Expert judgement
- Effectiveness of methods
- Reserve risk appetite

Reserve Risk and ERM – qualitative aspects

- Rating Agencies assess risks qualitatively as well as quantitatively
- Benchmark reserve risk qualitatively?
- Reserve Risk is also often considered as part of a risk appetite within an ERM framework
Risk Control Indicators
Reserve & Claims Management Control from rating agency perspective

- Track record of consistent reserve releases
- Independent centralised reserving function with effective feedback loops
- Assumptions robustly set and justified
- Information fed into economic capital models
- Robust review process, including both internal and third party actuarial reviews
- Well-defined and extensive claims management framework
- Experienced chronic adverse development
- Lack of adequate understanding and modelling of the risk of adverse loss development.
- Reserving is fragmented in business units without centralized coordination or supervision
- Reserving is disconnected from claims and might be pressured from underwriting
- The review process is unsatisfactory and has failed to reveal chronic issues
- There are no claims management authority levels or they're not applied in practice.

Inspired by “S & P Insurance Enterprise Risk Management Criteria May 2013”

13 November 2015

True or false?

“A well defined claims management framework should lead to less reserve uncertainty than a poorly defined claims management framework, as the risk of adverse deviation in reserves and/or claims payments for operational reasons should be reduced”

“A disjointed actuarial function spread across many territories with no central oversight is more likely to lead to an out-turn that deviates from best estimate than an integrated actuarial function with central oversight”

“A reserving team that does not perform stress and scenario testing is less able to understand its reserve risks than a team which does and his hence more likely to assess reserve uncertainty incorrectly”

“A reserving function that obtains third-party review of its work is more likely to understand its reserves and risks and hence less likely to assess reserve uncertainty incorrectly”

13 November 2015
Reserve Risk within Risk Appetite

- Deterioration of reserves is not to exceed b% in any one quarter
- 1-in-200 deviation not to exceed c% of gross income
- “We have no appetite for significant deviations in earnings driven by reserving deficits”
- Reserves/premiums ratios…. be greater than x%
- Reserving Risk Capital Charge not be greater than x% of….
- Capital at risk from potential claims reserving losses (based on the VaR for the whole reserve portfolio) should not exceed x% (e.g. 20%) of own funds according to SII calculation

Analysis of Company Reports to understand treatment of Reserve Risk

Measuring uncertainty beyond “Bootstrap”

Framework elements
- Data uncertainty
- Expert judgement
- Effectiveness of methods
- Reserve risk appetite

Alternative approaches
- Models for aggregate triangles
- Individual claims reserving
- Interaction with capital models
Alternative modelling approaches

Current situation
- Frequent disconnect between central estimate and uncertainty models
- Consequences for the uncertainty estimate

Consider
- More refined stochastic models for both central and uncertainty estimates
- Target better alignment between both models

Systemic error
- Systemic error (a.k.a. model error) must always be allowed for
- Qualitative methods useful here

From the “Bootstrap” to the bootstrap

“Bootstrap”
- Specific application to a simple chain ladder model
- Often a poor model for the data

bootstrap
- A statistical tool for estimating uncertainty for a stochastic model

Better uncertainty estimates
- Construct better stochastic model of your data
- Bootstrap this
Extensions to aggregate models

- More refined modelling of triangles
 - E.g. GLMs, log incremental reserving
 - Model effects by accident, development, calendar periods
 - Some specific actuarial packages to do these (e.g. ICRFS but can be done in stats packages like R [free!])

- Frequency/severity modelling
 - E.g. for claims that settle as lump sums
 - Reported claims
 - Settlement rates
 - Average payments per settled claim

- Consider granularity level
 - Month/quarter/half-year/annual

Individual claim reserving

- Starting point is claims header and transactional data
- Framework something like this (see Parodi and others)
Specifying individual models

- Additional variables can lead to better estimates of claims costs, i.e. higher levels of discrimination.
- But prediction errors compound so uncertainty may increase with additional variables. Also more expensive to build/maintain.

Always consider the cost/benefit of additional variables!

Implications for uncertainty measurement

Simple models have similar variables to aggregate models but granularity enables better identification of data trends, as does separate modelling of size and claim counts.

Augment simple models by a small number of key predictors to improve reserve forecasts.

Alternative to manual case estimation. Use in reserving limited as prediction errors compound. Also expensive to build/maintain.
Practical suggestions (not exhaustive!)

Model
• Fit a good model and bootstrap this
• Target a closer match between central estimate and uncertainty models
• Possibly blend results of several models

Validate
• Model validation is crucial
• Poor model → poor uncertainty estimate

Systemic error
• Often a major source of error
• Make an appropriate allowance for this

Alternative approaches
• Models for aggregate triangles
• Individual claims reserving
• Interaction with capital models
Making more use of capital models?

Capital models
Reserve uncertainty

Not just the 1 In 200
Apples and pears?
Chicken or egg?
1 Year vs ultimate view

Measuring uncertainty
What next?
MUQ Stage 2

Do something about it!

- Join the working party
- Feedback your views
- Have a chat with a colleague
- See our website
 (find the GIROC page and follow your nose)

sarah.macdonnell@lcp.uk.com

13 November 2015
Questions

The views expressed in this presentation are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this presentation.

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this presentation be reproduced without the written permission of the IFoA.