Model Risk Management - Is there more to (non)life than validating an internal model?

Roger Dix MA, FIA, CMIRM – CRO, Wesleyan
Alistair Esson FIA – Risk Dynamics, part of McKinsey & Company
What do we mean by Model Risk Management (MRM)?

Why should we care about MRM?

State of the market

Simplified framework
What do we mean by Model Risk Management (MRM)?

- SR11-7 model risk definition:
  - The risk of adverse consequences (e.g. financial loss, poor business or strategic decisions, reputational damage) arising from decisions based on incorrect model outputs or misused model outputs
What do we mean by Model Risk Management (MRM)?

• SR11-7 model risk definition:
  – The risk of adverse consequences (e.g. financial loss, poor business or strategic decisions, reputational damage) arising from decisions based on incorrect model outputs or misused model outputs

• Model risk management aims to ensure that companies put in place the right level of controls for all material models supporting their business and decision-making processes…

  …and addresses the entirety of a firm’s model landscape, not just regulatory models
What do we mean by Model Risk Management (MRM)?

• SR11-7 model risk definition:
  – The risk of adverse consequences (e.g. financial loss, poor business or strategic decisions, reputational damage) arising from decisions based on incorrect model outputs or misused model outputs

• LTCM was a hedge-fund operating between 1994 and 2000. The fund’s strategy relied on using quantitative models to find arbitrage opportunities between liquid securities, combined with high financial leverage. In 1997/1998 markets moved unfavourably for LTCM, causing significant losses and redemption requests by capital providers. LTCM lost $4.6bn as a result of high leverage combined with a reliance on mathematical models that did not capture the potential market movements accurately
What do we mean by Model Risk Management (MRM)?

• SR11-7 model risk definition:
  – The risk of adverse consequences (e.g. financial loss, poor business or strategic decisions, reputational damage) arising from decisions based on incorrect model outputs or **misused model outputs**

• The Mercator projection converts the surface of a sphere onto a flat map in such a way that the straight lines maintain their bearing, helping sailors to reach their destination. To achieve this, North-South distances are stretched at higher latitudes and as a result the map is not appropriate for measuring distances or areas.
What do we mean by Model Risk Management (MRM)?

- Not just validation and definitely not just validation of the internal model!

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Model Validation</th>
<th>Model Risk Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature</td>
<td>Control activity</td>
<td>Control process:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Managing the model inventory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Setting model governance standards (e.g. development, testing and monitoring)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Measuring model risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ongoing monitoring of model risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reporting to the board on model risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Managing committee authorising exceptions for model use</td>
</tr>
<tr>
<td>Scope</td>
<td>Regulatory models</td>
<td>Material models (as defined by business)</td>
</tr>
<tr>
<td>Responsibility</td>
<td>2nd line of defence</td>
<td>All 3 lines of defence</td>
</tr>
<tr>
<td>When is it applied</td>
<td>Mostly at the end of the modelling process</td>
<td>Throughout the modelling process</td>
</tr>
</tbody>
</table>

24 October 2018
Contents

▪ What do we mean by Model Risk Management (MRM)?

▪ Why should we care about MRM?

▪ State of the market

▪ Simplified framework
Why should we care about MRM?

Number of models – global insurance company (example)

<table>
<thead>
<tr>
<th>Model type</th>
<th>Valuation</th>
<th>Pricing</th>
<th>Risk and Capital</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solvency TP</td>
<td>Profit testing</td>
<td>EC model s</td>
<td>Customer profiling models</td>
<td>43%</td>
</tr>
<tr>
<td></td>
<td>IFRS/GAAP reserves</td>
<td>Performance measurement</td>
<td>SII internal models</td>
<td>Fraud management models</td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td>Statutory reserves</td>
<td>Value of new business</td>
<td>ALM models</td>
<td>Financial planning models</td>
<td>7%</td>
</tr>
</tbody>
</table>

3 key challenges …

1. **Increasing cost** of building and maintaining large numbers of models. Models are at the heart of the insurance company, spread across all business, risks and support functions.

2. Issues in **model risk management oversight** and consistency of control activities leading to inefficiencies or wastage of resources.

3. **Financial losses** and **negative reputational impact** vis-à-vis external stakeholders due to deficiencies in the Model Control Framework (MCF).

24 October 2018
## Why should we care about MRM?

### Challenges

<table>
<thead>
<tr>
<th>Increasing cost of building and maintaining large numbers of models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issues in MRM oversight and consistency of control activities</td>
</tr>
<tr>
<td>Financial losses and negative reputational impact vis-à-vis external stakeholders</td>
</tr>
</tbody>
</table>

### What are the benefits of implementing MRM?

| Holistic View | ✓ Framework applied to material models beyond traditional SII regulatory models |
| Modelling cost reduction | ✓ Helps to communicate that insurer’s models and model outcomes are inherently uncertain. This can also help broaden the model risk culture across the organisation |
| Control and process optimization | ✓ Comprehensive validation framework that will meet regulatory requirements and leverage best practices. This can reduce potential redevelopment costs |
| ✓ Optimal allocation of resources based on where models are needed or need to be improved |
| Enhanced Reputation | ✓ Improve efficiency of the control framework to enable the identification of duplications or inefficiencies in the controls, processes, etc. (e.g. excessive use of manual procedures, overlapping controls, etc.) |
| Capital add-on | ✓ Enhance control framework for key processes i.e. business planning that enables portfolio optimizations and early warning systems |
| ✓ Improved understanding of model assumptions and limitations |
| ✓ Identify opportunities for process automation |
| ✓ Positive reputational impact vis-à-vis regulators and peers from reduced errors and model uncertainty |
| ✓ Better view on capital buffers, reduction of capital requirements through lower likelihood of internal uncertainty loadings |
| ✓ Low probability of a regulatory capital add-on due to model risk |

---

24 October 2018
Contents

- What do we mean by Model Risk Management (MRM)?
- Why should we care about MRM?
- State of the market
- Simplified framework
1. Model Risk Management is an emerging topic on the insurance CRO agenda across Europe. Some large insurers have or are looking into setting up MRM functions. Typically this has yet to appear on the agenda of firms who are still substantially focused on an IMAP process.

2. Most insurers remain focused on regulatory models. Large insurers have expanded their scope into mainly valuation and pricing models. Insurers involved in our discussions agree that MRM should focus on providing assurance that all material models (not just regulatory ones) are properly controlled.

3. Insurers participating in our discussions acknowledge that it is in the best interests of the industry to develop MRM from an industry perspective rather than to be led by regulation (as happened in the banking industry or for Solvency II internal model validation).

4. Most insurers see substantial benefit in a proportionate approach focussed on the most material models from a business use perspective. The list of the most material models needs to be determined by the institution and will be insurer specific.

5. All insurers we have spoken to prefer a top down approach starting from their model landscape and then identifying their most material models. Such an approach will be more efficient and effective in demonstrating the benefits of MRM.
State of the market

Which model control functions does your company have?

- Risk oversight function
- Financial control function
- Actuarial function
- MRM function
- Model validation function
- Other

Who is responsible for model approval?

- Validation committee
- Model approval committee
- Board risk committee
- Board
- Business function
- Other

Source: IMIF: The Journey from Model Validation to Model Risk Management

24 October 2018
Contents

- What do we mean by Model Risk Management (MRM)?
- Why should we care about MRM?
- State of the market
- Simplified framework
Developing the MRM framework

- Define model universe and landscape
- Define the MRM scope
- Define the model risk classification
- MRM policy and inventory

- Insurers should look to define a MRM framework that is in line with their general risk management and governance processes.
- However, despite specificities in implementation due to an insurers culture, the suggested framework components should be considered by all firms when establishing their model risk management framework.
Developing the MRM framework

- Define model universe and landscape
- Define the MRM scope
- Define the model risk classification
- MRM policy and inventory

- A model definition is required to identify what is and what is not considered a model
- Bottom-up or Top-down approach to defining the model universe?
  - Bottom-up theoretically provides a comprehensive coverage of all models
  - Top-down may be considered more focused
Developing the MRM framework

- Define model universe and landscape
  - At a minimum, the scope will cover all regulatory models
  - The scope could be extended to cover all models
  - An effective approach would allow insurers to effectively apply and manage their controls framework through a principles based approach with specific reference to their own view of risk and materiality

- Define the MRM scope

- Define the model risk classification

- MRM policy and inventory
Define the model risk classification

- The model risk classification approach should define the relative importance of each model to the insurer.
- Classification factors may include model materiality, use criticality, complexity and/or regulatory scrutiny.
- Regular review of the classification is required to ensure the relative extent of MRM activities remains appropriate for each model.

Define model universe and landscape

Define the MRM scope

MRM policy and inventory
Developing the MRM framework

Define model universe and landscape

Define the MRM scope

Define the model risk classification

MRM policy and inventory

- Inventory should contain all material models along with model metadata, outputs, classification results, risk assessment results, etc
- Model Risk Policy should cover the MRM function mandate, MRM committee, model identification, model classification and model risk scoring approach, MLC, MV and model risk mitigation approaches

24 October 2018
Once a framework has been established it is important to develop a robust ongoing MRM cycle. The cycle should ensure that each model adheres to the MRM policy in the sense of when the reassessment of risk takes place as well as how, when and to where the results are ultimately reported.

The diagram provides one possible approach, with a clear distinction drawn between activities of the model and validation lifecycles.
The ongoing MRM cycle

Each model should have a clearly defined owner for each purpose determined at model origination.

Model requirements are derived from the purpose and the mitigation of model risk should be considered.

Model developer should define acceptance criteria with the model owner during the model development.

Criteria should be defined with reference to the overall MRM policy and specifically the risk appetite and materiality set by the function.
The ongoing MRM cycle

**Model implementation** should take place in a secure production environment with sufficiently robust controls ensuring results are reliable.

The model users responsible for each model change and run should be recorded.

Controls should be applied to both the running of the **model** and the **use** of the results to ensure model risk is appropriately managed.

The provenance and sign-off of data and assumptions should be traceable from model input through to output.
The ongoing MRM cycle

Ongoing monitoring ensures models remain relevant and appropriate for use.

Regular board reports may feature metrics such as the proportion of models that are compliant with the policy or the number of risk events involving models.

The Model Inventory and Classification is an important element and will remain within the ongoing MRM cycle.

Some model inventory fields are shown on the next slide.
## Sample model inventory fields

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Sub-dimension</th>
<th>Field name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model characteristics</td>
<td>Item description</td>
<td>ID, name, version, category, champion/challenger, in-house/vendor, data source(s), methodology, output, platform/system</td>
</tr>
<tr>
<td></td>
<td>Model use</td>
<td>Use category, detailed use, use frequency</td>
</tr>
<tr>
<td></td>
<td>Model dependency</td>
<td>Upstream models, downstream models, associated challenger/champion models</td>
</tr>
<tr>
<td>Governance</td>
<td>Key stakeholders</td>
<td>Vendor (if applicable), legal entity, geography, business unit/LoB, owners, developers, validators, users, implementer, business sponsor</td>
</tr>
<tr>
<td></td>
<td>Key dates</td>
<td>Submission date, approval date, deployment date, last validation date, next scheduled validation date</td>
</tr>
<tr>
<td>Classification</td>
<td>Key dimensions</td>
<td>Materiality, model usage, external impact, classification result</td>
</tr>
<tr>
<td>Risk &amp; Control</td>
<td>Validation</td>
<td>Validation status, last validation type, model risk assessment results, validation frequency</td>
</tr>
<tr>
<td></td>
<td>Risk</td>
<td>Issues from validation (findings), regulatory/audit issues, limitations, ongoing monitoring status</td>
</tr>
<tr>
<td></td>
<td>Mitigation</td>
<td>Compensating controls, remediation action plans, use restrictions</td>
</tr>
</tbody>
</table>
The ongoing MRM cycle

Models should undergo an **initial validation** to ensure the model is fit for purpose and to reduce the probability of expensive failures due to late changes. **Periodic validation** should be carried out to ensure models remain relevant for their use within the decision making process.

The frequency and depth of any validation activities will be defined within the model risk policy documents with reference to the model classification. The general principle is that the more important the model, the greater depth/frequency of validation activities.
Key takeaways

- MRM does not seek to harmonise the controls applied to all models across an organisation but rather to ensure appropriate controls are in place to minimise the probability that models will produce misleading outcomes or outcomes that are misinterpreted and lead to poor decision making.

- By getting out in front of the MRM issue, the insurance industry is in a position to define a framework that best suits its needs rather than waiting for a regulatory lead approach as has been the case in the American banking industry.

- The model universe should include consideration of all model types; with the MRM scope being defined in a manner that allows for appropriate focus on the models that matter most to an insurer.

- MRM does not mean model validation! Model validation is a component of a robust model risk management framework.
The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this presentation.

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this presentation be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].