Longevity Trends, Past and Future: A Deep Dive into CPP and QPP Mortality

Andrew Cairns
Director, Actuarial Research Centre,
Institute and Faculty of Actuaries; and
Heriot-Watt University, UK

Joint work with Dr Torsten Kleinow and Jie Wen

Plan
- Motivation and background
- National and international mortality
- CPP and QPP socio-economic mortality
- Impact of:
 - pension level
 - evolving plan rules
 - immigration

Motivation
- Pension plans and life insurers
 - Seek to project future mortality
 - Value future liabilities, measure risk and manage risk
- Improved models for making projections using
 - Mortality data for specific socio-economic (or other) subgroups
 - Especially datasets with longer historical runs of data
 - Quantity and understand differences in level and trend
- Mortality rates:
 - Canadian national level
 - Zoom out: International comparisons
 - Zoom in: Canadian sub-populations

How to Process and Interpret Crude Mortality Data?
- How to improve the signal to noise ratio
- Empirical measures: ages standardised mortality rates
- Model-based methods

Historical Death Rates: Canada up to 2011

Age Standardised Mortality Rates (ASMR)
- The ASMR is a weighted average of the crude death rates over a defined age range
- Age range $x_0, ..., x_t$, year t

$$ ASMR(t) = \frac{\sum_{x} \hat{m}(t, x) \tilde{E}(x)}{\sum_{x} \tilde{E}(x)} $$

- $\hat{m}(t, x)$ = crude death rate in year t at age x
- $\tilde{E}(x)$ = “standard population” exposures
- Use of ASMR facilitates comparison of populations
- Use also reduces the impact of sampling variation
Canada: Improvements Relative to 1981

Recent Improvement Rates: Canadian Males

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30-39</td>
<td>2.0%</td>
<td>0.5%</td>
<td>2.1%</td>
</tr>
<tr>
<td>50-59</td>
<td>1.9%</td>
<td>0.5%</td>
<td>1.6%</td>
</tr>
<tr>
<td>70-79</td>
<td>2.4%</td>
<td>0.9%</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

Table 1: Annual mortality improvement rates by age group and over different time periods.

- A trend change seems likely
- But was the change in 2010 or 2011 or gradual?
- Makes a big difference when estimating and setting future improvement rates

Zoom Out: International Comparisons

Comparison with Other Countries

- Slowdown in Canada, England £ Wales, USA
- No slowdown in Japan, Sweden, Denmark
- Denmark is in a catch up phase
- Japan and Sweden have amongst the lowest mortality rates
- Hence
 - Will Japan and Sweden also slow down? Or
 - Is the Canadian slowdown temporary?

International Comparison

Zoom In: Socio-Economic Sub-Populations

- Introduction: English data by deprivation
- Canadian data:
 - Canada Pension Plan (CPP)
 - Quebec Pension Plan (QPP)
- Data acquisition facilitated by Canadian Institute of Actuaries project oversight group
Socio-Economic Mortality: England

CPP and QPP data
- Crude death rates for males and females
- Individual calendar years 1968-2015; and ages 65-89
- Subdivided into 11 pension bands
 - Group 1: 0-9% of the cohort maximum pension
 - Group 2: 10-19%
 - ... Group 10: 90-99%
 - Group 11: 100%
- Cohort maximum pension: contributing for at least 40 years with earnings above the Yearly Maximum Pensionable Earnings (YMPE: 2018 – CAD 55,900)

CPP Males and Females: ASMR's
- Initially "good" rankings
- Group 11 stands clear
 - Heterogeneity at top end
 - Conscientiousness (?)
- Middle groups behave well
- Smaller groups more volatile
- Inequality gap widens slightly
- Strange behaviour: Groups 1, 2
 - Supports the healthy immigrant effect

CPP Females: ASMR’s
- Similar spread to males
- Slightly slower improvements
- Group 1 stands clear
 - Large heterogeneous group
- Ordering of groups looks okay until 2006
- Strange behaviour: After 2006 Group 11 worsens significantly relative to other groups
- Reasons for this are not clear, although Group 11 is quite small.

CPP Females: Group 11 Heterogeneity
- Includes beneficiaries who get more than 100%:
 - converted from disability at age 65 or,
 - were already survivors at time of benefit uptake.
- These two groups (higher than average mortality) have gradually increased over time.
- Removing data for these two groups results in a "well behaved" plot.

Source: Office of Chief Actuary calculations, OSFI
QPP Males and Females: ASMR’s

- No obvious anomalies, unlike CPP
- Inequality gap widens more than CPP

 CPP Males: Group 1

- Groups 1 contains a mixture of
 - Low paid workers, long term unemployed, etc. → high mortality
 - People who migrated to Canada in the later part of their working lives → Group is potentially heterogenous
- **The healthy immigrant effect**
 - E.g. Vang et al. (2017)
 - Immigration permitted if:
 - Healthy
 - Fit to work
 - Selection effect diminishes over time
 - But income level does not diminish

Deeper Dive

- To understand better
 - The differences between groups
 - Trends over time
- Helpful to consider
 - How big is each group?
 - How has the calculation of pension benefits evolved over time?
 - How significant is immigration?

CPP Males: Pension Level By Cohort

- E.g. 1990 age 65 retirees:
 - Group 11: 26%
 - Group 10: 36%
 - Group 1: 2%
 - Pre 1977 transition phase
 - Groups 10, 11 largest
 - Lower pension groups very small
 - Gradual decline in numbers attaining high pensions
 - This might artificially push up group-specific improvement rates

CPP Females: Pension Level By Cohort

- Much lower pensions than males
- Likely reasons:
 - Career breaks, part time working; gender pay gap
 - Declining Group 1 later
 - Large Group 1 might explain why Group 1 mortality much worse than Group 2;
 - Heterogeneity within group
Males: Decline in Proportion With High Pensions

- Eligible contribution period 1966 to retirement; max 47 years
- Contributions: % of Earnings capped at Yearly Maximum
- Pensionable Earnings (YMPE)
- Pension based on best 85%
- 2010 age 65 retiree: best 37 out of 1966 to 2009
- Lower earnings early in career mean less likely to attain the maximum

Immigrant Pensions

- Immigrant A:
 - Enters at age 58 in 1983
 - Even if he/she pays maximum contributions:
 - Can’t do better than Group 4
- Immigrant B:
 - Enters at age 58 in 2006
 - Can’t do better than Group 2
- Conclusion:
 - Assuming immigration is stable
 - Group allocations of immigrants will have shifted towards lower groups (stable from 2013)

Immigration: Canada Excluding Québec (CPP)

- E.g. 1990:
 - 75% of retirees (age 65 in 1990) in Canada for at least 40 yrs
 - 5% of retirees arrived after age 55
 - Estimates based on past patterns of net immigration (warning: => NOT reliable)
 - Volatile but also "stable"
- 2015 retirees:
 - Immigration in the last 0-4 years => Group 1 (at 65): ~1.3% of all retirees
 - Potentially 30% of Group 1 are recent healthy immigrants

Immigration: Québec versus Rest of Canada

- Québec
 - Significantly lower immigration
 - So healthy immigrant effect is not easily identified in QPP Group 1
- Both: Females
 - Similar patterns of migration in both regions
 - But for CPP females Group 1 is much bigger
 - So a healthy immigrant effect is not easily identified in Group 1
- CPP Group 1 has a high proportion of late retirees
 - Significant late retirement into mid 70’s
 - (?): Earning and contributing between 65 and late retirement
 - (?): Possibly late retirees are mostly immigrants
 - “Lifetime” Canadians unlikely to benefit

Zoom In Even Closer: CPP Males 2015

- Smoothed mortality curves
- Spread:
 - Wide spread at low ages
 - Convergence at high ages; typical of most socio-economic analyses
- Group 11: well below other groups <80
- Group 1:
 - Age 65: similar to Groups 2-5
 - Older ages: gradual cross over
 - Age 80+: similar to Group 11
- Conclusion: Pattern is consistent with considerable heterogeneity in Group 1
 - A: low-income, lifetime contributors who die off quickly
 - B: vary (!) healthy immigrants
Conclusions

• For forecasting it can be useful to
 – Zoom out – exploit the wider international context
 – Zoom in – understand the detail of your own data
• Healthy immigrant effect – implicit but important
• Evolving accrual rules can impact on pension level
 – Shift towards lower pensions can inflate historical group-level
 improvement rates
• Overall: if forecasting subgroup mortality, it is important to understand the
 nuances in the underlying data
• Some evidence for a widening inequality gap
• So don’t lose sight of what is happening at the national level!

Questions

The views expressed in this presentation are those of the presenter.
Email: A.J.G.Cairns@hw.ac.uk
Internet: www.macs.hw.ac.uk/~andrewc/ARCresources

The Actuarial Research Centre (ARC)

A gateway to global actuarial research

The Actuarial Research Centre (ARC) is the Institute and Faculty of Actuaries’ (IFoA) network of actuarial researchers around the world.

The ARC seeks to deliver cutting-edge research programmes that address some of the significant, global challenges in actuarial science, through a partnership of the actuarial profession, the academic community and practitioners.

The ‘Modelling, Measurement and Management of Longevity and Morbidity Risk’ research programme is being funded by the Actuarial Research Centre, and co-funded by the Society of Actuaries and the Canadian Institute of Actuaries.

www.actuaries.org.uk/arc

CPP and QPP data

\[\hat{m}(g,i,t,x) = \frac{D(g,i,t,x)}{E(g,i,t,x)} \]

- \(D(g,i,t,x) \) death counts
- \(E(g,i,t,x) \) exposures
- \(g \) =gender
- \(i \) =pension band (0-9%, 10-19%,…, 90-99%, 100% of \(\text{max} \))
- \(t \) =calendar year
- \(x \) =age last birthday (at date of death)
- Cohort maximum pension: contributing for at least 40 years
 with earnings above the Yearly Maximum Pensionable
 Earnings (YMPE: 2018 – CAD 55,900)
- Years 1968-2015; Ages 65-89
Smoothing and Projecting Mortality

- **Stochastic mortality models**
 - E.g. Lee-Carter, CBD
 - Socio-economic data requires multi-population models
 - Smoothing within calendar years: fitted $m(i, t, x)$
 - Genuine volatility from year to year
 - Many models considered: ‘common age effect’ model best overall

- **Common Age Effect Model:**
 $$\log m(i, t, x) = \alpha(x) + \beta_1(x)i + \beta_2(x)i^2$$
 - $\alpha(x)$: common "base table"
 - $\beta_1(x)$: changes in the level of mortality at all ages
 - $\beta_2(x)$: changes in the slope of the mortality curve

Parameter Estimates: Common Age Effects

Group-Specific Period Effects

- Spread:
 - Wide spread at low ages
 - Convergence at high ages: typical of most socio-economic analyses
- Group 11: well below other groups <80
- Group 1:
 - Age 65: similar to Groups 2-5
 - Older ages: gradual cross over
- Age 80+: similar to Group 11
- Conclusion: Pattern is consistent with considerable heterogeneity in Group 1
 - A: low-income, lifetime contributors who die off quickly
 - B: very (!) healthy immigrants

Fitted Period Mortality: E.g. CPP Males 2015