Trends in Mortality by Pension Level: Evidence from the CPP and QPP

Andrew J.G. Cairns

Heriot-Watt University, Edinburgh
Director, Actuarial Research Centre, IFoA

Canadian Institute of Actuaries, Annual Meeting, June 2018
The Actuarial Research Centre (ARC) is the Institute and Faculty of Actuaries’ (IFoA) network of actuarial researchers around the world.

The ARC seeks to deliver cutting-edge research programmes that address some of the significant, global challenges in actuarial science, through a partnership of the actuarial profession, the academic community and practitioners.

The ‘Modelling, Measurement and Management of Longevity and Morbidity Risk’ research programme is being funded by the ARC, the Canadian Institute of Actuaries and the SoA.

www.actuaries.org.uk/arc
ARC Research Programme Themes

- Improved models for mortality; better data
- Key drivers of mortality
- Management of longevity risk
- Morbidity risk modelling for critical illness insurance
Plan

- Introduction and background
- National and international trends
- Subgroups: CPP, QPP, international
- Underlying demographic trends; immigration
- Stochastic mortality models; clustering
- Conclusions
Historical Death Rates: Males, England and Wales

Future forecasts ⇒ need for stochastic mortality models
Historical Death Rates: Canada Males (up to 2011)

(Source: Human Mortality Database)
Historical Death Rates: Canada Males (1980 to 2015)

(Source: Statistics Canada)
How to process and interpret crude mortality data?

- How to improve signal to noise ratio?
- Empirical measures: age standardised mortality rates
- Model based methods
- Clustering
Age Standardised Mortality Rates (ASMR)

- The ASMR is a weighted average of the crude death rates over a defined age range.
- Age range x_0, \ldots, x_1, year t:

$$ASMR(t) = \frac{\sum_{x_0}^{x_1} \hat{m}(t, x)\tilde{E}(x)}{\sum_{x_0}^{x_1}\tilde{E}(x)}$$

- $\hat{m}(t, x) = $ crude death rate in year t at age x
- $\tilde{E}(x)$ “standard” exposures (e.g. European Standard Population, 2013)

- Use of ASMR facilitates comparison of populations
- ASMR also reduces impact of sampling variation
Canada Males: Improvements Relative to 1981

Age Standardised Mortality Rates Relative to 1981
By Age Band

ASMR(t)/ASMR(1981) (log scale)

Year, t

Questions

- How significant is the slowdown observed at some ages?
- How do Canadian trends compare with other countries?
- Do we observe different trends amongst different socio-economic groups?
Recent Improvement Rates: Canadian Males

Average mortality improvement rates per annum:

<table>
<thead>
<tr>
<th>Age Group</th>
<th>2001-2011</th>
<th>2011-2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-49</td>
<td>1.8%</td>
<td>0.7%</td>
</tr>
<tr>
<td>50-59</td>
<td>1.9%</td>
<td>0.5%</td>
</tr>
<tr>
<td>60-69</td>
<td>2.8%</td>
<td>0.7%</td>
</tr>
<tr>
<td>70-79</td>
<td>3.0%</td>
<td>0.7%</td>
</tr>
<tr>
<td>80-89</td>
<td>2.4%</td>
<td>0.9%</td>
</tr>
</tbody>
</table>
Recent Improvement Rates: Canadian Males

Beware of noise in the data:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40-49</td>
<td>1.8%</td>
<td>0.7%</td>
<td>1.7%</td>
<td>1.0%</td>
</tr>
<tr>
<td>50-59</td>
<td>1.9%</td>
<td>0.5%</td>
<td>1.6%</td>
<td>1.0%</td>
</tr>
<tr>
<td>60-69</td>
<td>2.8%</td>
<td>0.7%</td>
<td>2.8%</td>
<td>1.1%</td>
</tr>
<tr>
<td>70-79</td>
<td>3.0%</td>
<td>0.7%</td>
<td>2.9%</td>
<td>1.3%</td>
</tr>
<tr>
<td>80-89</td>
<td>2.4%</td>
<td>0.9%</td>
<td>2.2%</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

- 2010: generally high mortality
- 2011: generally low mortality
Comparison With Other Countries: ASMR 40-69

- Canada, England & Wales, US: ⇒ slowdown
- Japan, Sweden, Denmark: ⇒ no slowdown

Males Aged 40–69

<table>
<thead>
<tr>
<th>Year</th>
<th>EW</th>
<th>US</th>
<th>Denmark</th>
<th>Sweden</th>
<th>Japan</th>
<th>Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>0.005</td>
<td>0.010</td>
<td>0.015</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>1990</td>
<td>0.010</td>
<td>0.015</td>
<td>0.020</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>2000</td>
<td>0.015</td>
<td>0.020</td>
<td>0.025</td>
<td>0.030</td>
<td>0.030</td>
<td>0.030</td>
</tr>
<tr>
<td>2010</td>
<td>0.020</td>
<td>0.025</td>
<td>0.030</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
</tr>
</tbody>
</table>
Comparison With Other Countries: ASMR 65-89

Males Aged 65−89

<table>
<thead>
<tr>
<th>Year</th>
<th>EW</th>
<th>US</th>
<th>Denmark</th>
<th>Sweden</th>
<th>Japan</th>
<th>Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Andrew J.G. Cairns
Trends in Mortality by Pension Level
Socio-Economic Differences in Mortality: Denmark

Denmark: life expectancy by affluence decile

Males LE: Age 55

Males LE: Age 75
England: mortality by \textit{deprivation}

Age Standardised Mortality Rates England by Deprivation Deciles Males 65−89

Age Standardised Mortality Rates England by Deprivation Deciles Females 65−89

Andrew J.G. Cairns
Trends in Mortality by Pension Level 17 / 48
Socio-Economic Differences in Mortality: Canada

- Data acquisition facilitated through the research programme Project Oversight Group at the CIA
- Canada Pension Plan
- Québec Pension Plan
- Pensions in payment
- Deaths and exposures: $D(g, i, t, x), E(g, i, t, x)$
- $g = \text{gender}$
- $i = \text{pension band}$
- $t = \text{calendar year}$
- $x = \text{age last birthday (at date of death)}$
CPP and QPP data: 11 Groups by Pension Band

- Pension as a % of Cohort Maximum Pension
- Cohort Max ⇒
 - contributing to CPP/QPP for at least 39 years with earnings above Yearly Maximum Pensionable Earnings (YMPE; 2018: CAD 55,900)
 - Group $i = 1$ ⇒ 0% to 9% of Cohort Max
 - Group $i = 2$ ⇒ 10% to 19% of Cohort Max
 -
 - Group $i = 10$ ⇒ 90% to 99% of Cohort Max
 - Group $i = 11$ ⇒ 100% of Cohort Max
- Years: 1968-2015
- Ages: 60-64 / 65+
Age Standardised Mortality Rate
QPP Males and Females Aged 65–89

QPP Males
Cluster
Groups 1–5
Groups 6–8
Groups 9–10
Group 11

QPP Females
Groups 2–5
Groups 6–10
Group 11

Year

ASMR (log scale)
0.02 0.03 0.04 0.05 0.06 0.07
Group 11 stands clear of others
- Group 11 is quite heterogeneous (comfortable → wealthy)
- Achieving max requires conscientiousness

Females Group 1 also stands clear
(Why not males also? Females Group 1 much larger???)

Widening gap might reflect shrinkage of Group 11 (later slides)

Clustering creates larger, ‘similar’ groups with less sampling variation

Different rates of improvement before and after 2011 in all groups (although results are noisy)
Conscientiousness

Meanings and associations:
- wishing to do one’s work or duty well and thoroughly
- careful; diligent; hard working; dedicated; accurate

Correlated with (???):
- sustained success in employment
- more likely to have maximum years with earnings above YMPE
- more likely to visit doctor early
- more likely to follow doctor’s orders
CPP Mortality

Age Standardised Mortality Rate
CPP Males and Females Aged 65−89

CPP Males

CPP Femaless

Cluster

Year
0.02 0.03 0.04 0.05 0.07

CPP Males

Groups 2–4
Groups 5–9
Group 1
Group 10
Group 11

CPP Females

Group 11
Groups 2–4
Groups 5–8
Groups 9–10

Andrew J.G. Cairns
Trends in Mortality by Pension Level
CPP Mortality

- Group 11 stands clear of others
- Females Group 1 also stands clear
- Stable inequality spread
- Strange behaviour needing further investigation:
 - Males Group 1: possibly immigration in late middle age of wealthier and healthier people
 - Females Group 11
QPP vs CPP Mortality: (broadly similar)

Age Standardised Mortality Rate
QPP Males and Females Aged 65–89

QPP Males

QPP Females

CPP Males

CPP Females

ASMR (log scale)

Year

0.02 0.03 0.04 0.05 0.07

Andrew J.G. Cairns

Trends in Mortality by Pension Level
QPP vs CPP vs All Canada Mortality: Slowdown???

Age Standardised Mortality Rate
QPP Males Aged 65–89

Age Standardised Mortality Rate
CPP Males Aged 65–89

Andrew J.G. Cairns
Trends in Mortality by Pension Level 26/48
QPP vs CPP vs All Canada Mortality: Slowdown???

- QPP starts with higher mortality
- But QPP catches up by 2015
- Without pension bands, CA/Q/CxQ regional ASMR appear low but Groups 10+11 have ~50% of the pensioner population
- Source of Canadian slowdown is difficult to pinpoint

- CA: All Canada
- Q: Québec only (HMD data by province)
- CxQ: All Canadian provinces apart from Québec
QPP Pensions Bands vs English Deprivation Deciles

Age Standardised Mortality Rates
England by Deprivation Deciles
Males 65–89

Age Standardised Mortality Rate (log scale)

Year

ASMR (log scale)

Year

Most deprived

Least deprived

Andrew J.G. Cairns
Trends in Mortality by Pension Level
Factors Influencing Group Mortality

Everything else being equal:

- 10% in Group 11 (max) ⇒ lower mortality compared to
- 20% in Group 11 (max) ⇒ higher mortality

In practice:

- Group 11 is shrinking cohort by cohort
- Artificially high mortality improvements (?)
- Although checks suggest numerical impact is small (groups 10+11; 9+10+11)
Proportions in Each Group: CPP Males vs Females

CPP Males Age 65
Proportions of Pensioners by Group

CPP Females Age 65
Proportions of Pensioners by Group
Proportions in Each Group: QPP Males vs Females

QPP Males Age 65
Proportions of Pensioners by Group

QPP Females Age 65
Proportions of Pensioners by Group
Proportions in Each Group: CPP Males vs QPP Males

CPP Males Age 65
Proportions of Pensioners by Group

QPP Males Age 65
Proportions of Pensioners by Group
Varying Group Sizes

- Ability to attain a high pension depends on
 - Career salary profile
 - Career breaks
 - Real growth of the YMPE over time
 - Immigrants: age on arrival in Canada

- YMPE: growth \gg CPI and median earnings growth
- \Rightarrow declining proportion in Group 11

- Migration: Eligible Years $= 65$—Age on Arrival (or 18)
- Indirect estimation using HMD Canadian Province population and deaths
- Estimation requires lots of assumptions!
E.g. Québec dots link to low immigration around 1980
Immigration Remarks

- Québec (Q) immigration in adulthood much lower than the rest of Canada (CxQ)
- CxQ: highly variable immigration through time
- Q: declining immigration
- CxQ: significant levels of immigration amongst 55-65 year olds
- Peaks and troughs: link to periods of high/low immigration
- E.g. Québec dots link to low immigration around 1980
Motivation for Stochastic Mortality Models

- Data ⇒ uncertain future
- Modelling and measuring longevity risk is important in many actuarial applications
 - General risk assessment
 - Pricing: margin for systematic risk
 - Reserving: systematic risk in runoff
 - Reserving: systematic reserving risk over a 1-year horizon
 - Reserving: diversification benefit between two populations
 - Assessment of risk reduction in longevity hedges

- How do the results for different populations and sub-populations compare?
Mortality and Longevity Modelling & Risk Assessment

- Central forecasts
- How much uncertainty around central forecasts?

- Understand and document how stochastic models are currently used in practice: identify gaps
- New single population models: e.g.
 - wider age range
 - flexible and robust estimation procedures
 - greater flexibility in modelling central forecasts

- New multipopulation models: e.g.
 - Data driven modelling
 - How to handle smaller populations?
 - Robust models
 - Realistic correlation term structure
Multipopulation Stochastic Mortality Models

Genealogy:

- Single population:

 Lee-Carter \(\log m(t, x) = \alpha(x) + \beta(x)\kappa(t) \)

 \(\downarrow \)

 Renshaw-Haberman \(\log m(t, x) = \alpha(x) + \beta_1(x)\kappa_1(t) + \beta_2(x)\kappa_2(t) \).

- Multi-population Renshaw-Haberman

\[
\log m(i, t, x) = \alpha(i, x) + \beta_1(i, x)\kappa_1(i, t) + \beta_2(i, x)\kappa_2(i, t)
\]

- Many simpler special cases investigated

 E.g. Common Age Effect (CAE) Model

\[
\log m(i, t, x) = \alpha(x) + \beta_1(x)\kappa_1(i, t) + \beta_2(x)\kappa_2(i, t)
\]
The Common Age Effect Model (CAE)

\[\log m(i, t, x) = \alpha(x) + \beta_1(x)\kappa_1(i, t) + \beta_2(x)\kappa_2(i, t) \]

- CAE gives the best balance between
 - Goodness of fit
 - Model complexity (number of parameters to estimate)
- Stability in *new* retirees from late 1970’s
- Takes time to filter through to higher ages
- Some immature early cohorts but models can cope
Common Age Effects: QPP Males

Baseline Mortality
\(\text{Alpha}(x) \)

\begin{align*}
\text{Age, } x & \\
65 & \quad 75 & \quad 85 \\
-4.0 & \quad -3.5 & \quad -3.0 & \quad -2.5 & \quad -2.0 & \quad -1.5
\end{align*}

\text{Beta}_1(x): \text{Shift}

\begin{align*}
\text{Age, } x & \\
65 & \quad 75 & \quad 85 \\
0.0 & \quad 0.2 & \quad 0.4 & \quad 0.6
\end{align*}

\text{Beta}_2(x): \text{Tilt}

Andrew J.G. Cairns

Trends in Mortality by Pension Level
Group Specific Period Effects: QPP Males

Kappa_1(i,t)

Kappa_2(i,t)
Period Effects

\(\kappa_1(i, t) \)
- Picks up the main changes over time
- Very similar to the ASMR plots

\(\kappa_2(i, t) \)
- Much more noisy (sampling variation in deaths)
- Slight upwards trend
 \(\Rightarrow \) additional improvements at high ages
Clusters

- Some lower groups only 2-4% of total cohort
- Smaller groups:
 - Higher levels of sampling variation in deaths
 - Higher levels of sampling variation in estimated period effects $\kappa_1(i, t)$ and $\kappa_2(i, t)$
 - Introducing bias in forecast levels of uncertainty
- Clustering mitigates this problem
- Optimisation \Rightarrow (e.g. QPP males, 65-89, 1991-2015)

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Groups</th>
<th>Exposures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-5</td>
<td>1.745 M</td>
</tr>
<tr>
<td>2</td>
<td>6-8</td>
<td>2.069 M</td>
</tr>
<tr>
<td>3</td>
<td>9-10</td>
<td>3.861 M</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>2.743 M</td>
</tr>
</tbody>
</table>
ASMRs For QPP Clusters (Males)

Age Standardised Mortality Rate
QPP Males Aged 65–89
Fitted: 11 Groups vs 4 Clusters

Andrew J.G. Cairns
Trends in Mortality by Pension Level
Conclusions

- Analysis of CPP/QPP data by pension level provides insight into combined mortality
 - mortality rates
 - varying group sizes
 - immigration

- Further insight can be gained by looking outside Canada

- Multipopulation stochastic models will help assess future levels of uncertainty:
 - future funding levels
 - future contribution rates

- Clustering helps to improve signal to noise ratio ⇒ more reliable forecasts
Thank You & Questions/Discussion

E: A.J.G.Cairns@hw.ac.uk

W: www.macs.hw.ac.uk/~andrewc/ARCresources
Summary

This presentation provides an analysis and discussion of pensioners’ mortality data provided by the Canada Pension Plan (CPP) and the Québec Pension Plan (QPP). The presentation covers three aspects of the ongoing analysis of the CPP and QPP data: empirical analysis of historical data and comparison of CPP/QPP; process of fitting multi-population mortality models to the historical CPP/QPP data to determine the best choice of model, number of subgroups needed, and most appropriate historical period for calibration; and insights into forecasting mortality improvements at the subgroup level.

The underpinning research is part of the Modelling, Measurement and Management of Longevity and Morbidity Risk research program funded by the Actuarial Research Centre of the Institute and Faculty of Actuaries, and co-funded by the Canadian Institute of Actuaries.