Mitigating the Risk of Epidemics

Petra Wildemann, SAV, DAV, IFoA (Affiliate)

Date: Wednesday 19 October 2017
Time: Workshop D Stream 16.40-17.30
Agenda

- Epidemic Primer
 - Epidemic risks leading to a pandemic
 - WHO risk definition
 - From HIV to Zika
- Large Scale Risks in Reinsurance
- Economic Losses of Epidemic Risks
 - Some use cases
- Mitigating the Un-Seeable Risks of Epidemics
 - From prevention to insurance coverage
Agenda

- Epidemic Primer
 - Epidemic risks leading to a pandemic
 - WHO risk definition
 - From HIV to Zika
- Large Scale Risks in Reinsurance
- Economic Losses of Epidemic Risks
 - Some use cases
- Mitigating the Un-Seeable Risks of Epidemics
 - From prevention to insurance coverage
The Phases of Infectious Disease: When Animals Intersect Humans

Phase 1:
Influenza virus in birds

Phase 2:
Animal influenza in wild and domestic birds with infections to humans

Phase 3:
Sporadic cases or small clusters of diseases on people, no human-to-human transmission

Phase 4:
Human-to-human transmission with the ability to cause "community-level outbreaks" leads in a risk of a pandemic

Phase 5:
Human-to-human spread into at least two countries in one WHO region

Phase 6:
Community level outbreaks in at least one other country in a different WHO region - "global pandemic is under way"

Post-peak Period:
Pandemic disease levels with adequate surveillance drops below peak observed levels

Post-pandemic period: Influenza disease activity returns to level of normality → becomes a seasonal influenza

WHO: The Phases of An Influenza Pandemic
The Threat of Zoonotic Diseases

• Zoonoses are infectious diseases of animals that can naturally be transmitted to humans

• Major modern diseases include Ebola virus disease, salmonellosis and influenza

• HIV started as a zoonotic disease in the early 20th century; evolved to a human-only disease

• Zoonoses can be caused by a range of disease pathogens (1,415 pathogens known to infect humans; 61% are zoonotic)
 o Viruses
 o Bacteria
 o Fungi
 o Parasites
The Global Virome Project

- A COLLABORATION to document and characterize virtually all the viruses circulating in wildlife that pose a threat to humans
- A bold and doable visionary project
- The potential to change the way we do science
Case Study: Nigeria’s Major Infectious Diseases

Food or Waterborne Diseases:
Bacterial and protozoal diarrhea, hepatitis A and E, and typhoid fever

Vectorborne Diseases:
Malaria, dengue fever, and yellow fever

Water Contact Diseases:
Leptospirosis and schistosomiasis

Respiratory Diseases:
Meningococcal meningitis

Aerosolized Dust or Soil Contact Disease:
Lassa fever

Animal Contact Disease:
Rabies

Agenda

• Epidemic Primer
 – Epidemic Risks leading to a Pandemic
 – WHO Risk definition
 – From HIV to Zika

• Large Scale Risks in Reinsurance

• Economic Losses of epidemic Risks
 – Some use cases

• Mitigating the un-seeable risks of Epidemics
 – From prevention to insurance coverage
Key Principles of Insurance

Moral Hazard
- Incentive to guard against risk

Risk
- Uncertainty about future loss (timing, size, occurrence)

Peril
- Cause of loss

Adverse Selection
- Those with greater risk more willing to pay to transfer it

Information Asymmetry
- Entities know more about their individual risks than insurance companies

Law of Large Numbers
- Large, homogenous groups allow for greater certainty in estimating risks

Risk

Workshop D Stream 16.40-17.30
October 19, 2017
Risk Transfer

Various methods, beyond the control of insurance, by which a pure risk and its potential consequences are transferred to other parties.
Large-Scale Risks Assigned to Reinsurers

• Cover large risk-bound geographical areas
 – Mostly all are affected, once one is affected; but exceptions for individual items

• Prevent effective use of normal-based distributions
 – Introduction of correlations
 – Change of traditional insurance distributions

• Extending beyond boundaries of a single region or country
 – Multi-national and globally joint efforts

• Challenges
 – Different national entities with different regulations, facilities, capabilities and profiles
 – Considerations such as international traffic and quarantines, public immunizations and vaccinations
Classes of Reinsurance

- Coverage intended for insurance providers
- Reinsurance policy reduces the losses sustained by insurance companies by allowing them to recover all, or part, of the amounts they pay to claimants
- Reinsurers help insurance providers avoid financial ruin
 - When many policyholders make claims during a catastrophic event
 - When few policy holders make concurrently very large claims

Facultative
- individual risk
- specified risk
- contract

Treaty
- specified period of time
- all risks within the coverage

Proportional
- prorated share of the premium
- portion of losses
- agreed percentages for premium and losses
- ceding commission

Non-proportional
- exceeding a specified limit

Excess-of-Loss
- losses exceeding a retained limit
- "catastrophic" events
- per occurrence or accumulative

Risk-Attaching
- covers all established losses

Loss-Occurring
- type of a treaty coverage
- all losses occurred
Types of Global Risks

- Earthquakes
- Hurricanes
- Cyber
- Drought
- Environment
- Hazards
- Epidemic / Pandemic
- Volcanic Eruptions
- Icebergs
- Sea Level Rise
- Eddies
- Floods
Capital and Catastrophic Events

- Catastrophic events are by definition long-tail
- Insurers covering such infrequent events collect premiums that may be insufficient to cover
- Regulations must prevent this from occurring
- Insurers must hold reserves invested in safe (usually low return) asset classes
 - Use combination of accumulation management and reinsurance to carefully manage capital levels
- Reinsurance
 - “Insurance for insurance companies”
 - Trade underwriting risk for counterparty/financial risk
 - Lower capital requirements
 - Increase ability to write more business
 - Smooth earnings
 - Retrocession is reinsurance for reinsurance companies
Why are Epidemic and Pandemic Risks of Concern

Factors driving the emergence of infectious disease

01 Land Use Change
- Demand for protein

02 Global Transportation
- Transportation network for pathogens

03 Markets and Trade
- Imports and exports for meat products

04 Migration and Conflict
- Unstable populations

05 Resource Extraction
- Expansion into new areas, exposure to pathogens

06 Water and Food Security
- Unsafe water and food sources

07 Bioterrorism
- Intentional releases of pathogens

08 Temperature Variability
- Pathogens that thrive in hotter areas

October 19, 2017
Workshop D Stream 16.40-17.30
Pandemic Influenza – Events which are underestimated

For outbreaks occurring from Pandemic Influenza in 35 countries for the duration of 91 years from Jan 1918 to Dec 2009, with 1 to 1,450,807 reported cases and 0 to 13,562 reported deaths, there are:

1 PATHGEN

1918 – 1921: More than one million reported cases with 23 thousand deaths

4 EVENTS

1956 - 1958: More than two million reported cases with 14 thousand deaths

4,237,194 REPORTED CASES

40,522 REPORTED DEATHS

91 YRS TIME FRAME

Source: Metabiota Analytics Platform

October 19, 2017 Workshop D Stream 16.40-17.30
Agenda

• Epidemic Primer
 – Epidemic Risks leading to a Pandemic
 – WHO Risk definition
 – From HIV to Zika

• Large Scale Risks in Reinsurance

• Economic Losses of Epidemic Risks
 – Some use cases

• Mitigating the un-seeable risks of epedemics
 – From prevention to insurance coverage
Five Deadliest Pandemics in History

There are more pandemics reported in all countries worldwide

- **The Peloponnesian War Pestilence**
 - 430 BC
 - during the Peloponnesian war between Athens and Sparta
 - 30 thousand died

- **The Antonine Plague**
 - 165 AD
 - bought to Rome by soldiers from Mesopotamia
 - 10 thousand died per day

- **The Plague of Justinian**
 - 541-542 AD
 - outbreak within Constantinople
 - 10 thousand died per day

- **The Black Death**
 - 14th century
 - from caravan trading routes used by merchants and soldiers
 - 25 million died

- **The Spanish Flu**
 - March 1918
 - US soldiers carried the flu from a camp in Kansas to all continents
 - between 20-100 million died, one billion people infected

October 19, 2017
Workshop D Stream 16.40-17.30
Elevated Risk has Resulted in Significant Economic Loss

$77.7B
Foodborne Illness (US, 2012)

$54B
SARS (Global, 2001)

$11.7B
Foot & Mouth (UK, 2001)

$8.2B
MERS (South Korea, 2015)

$3.3B
Avian Influenza (US, 2015)

$2.8B
Ebola (Guinea, Sierra Leone, Liberia, 2014-2016)

$330M
Enterovirus 71 (China, 2013)
From Past to Today - We Face Big Epidemic Risks

• Humanity is locked in a millennia-old battle to the death with diseases.

• The outbreak of Ebola remind us that as our cities get bigger and international travel easier, therefore the risks in an outbreak grow even higher.

• The Black Death swept into Europe on boats from the East in the 14th century, killing as much as half the population of the continent between 75 and 200 million people worldwide.

• The Spanish flu of 1918, killed between 50 and 100 million people – many more than died in the First World War itself, and maybe more than have died in any war.
19'663 reported cases, 25 reported deaths in 2013-2016
800 reported cases only in 1969

17'428 reported cases in 2011
Other year: 2005

1 or 2 cases in 1978 and 1971

Source: Metabiota Analytics Platform
Factors Crucial to Determine Epidemic Severity

Factor 1: Easiness of transmission of the disease
Factor 2: Feasibility in developing vaccines and treatments
Factor 3: Time between infections and outbreak
Factor 4: Severity of the disease

Source: Prof. Dr. Christophe Fraser, Medical Research Council for outbreak analysis, Imperial College, London
What Will We Face In The Future?

- Viruses can learn to propagate in a new host
- Genetic mutations
- Brand new viruses
- Hybrid of several viruses (example: HIV)
- Lack of vaccinations and treatments
- People denying vaccines for their children (example: Measles are back in Europe)
- Experts think that a likelihood for a pandemic is a strain of influenza
- Lack of preparedness (example: No one was prepared for Ebola in Africa)
Prevention, Forecasting and Mitigating the Risk

- Evaluate the losses of epidemics from the past
- Prevention done by governance and bilateral political agreements
- Including insurers for long tail coverages to obtain medication, treatment and vaccinations or handle travel restrictions for identified countries of risk

EXCEEDANCE PROBABILITY CURVE

<table>
<thead>
<tr>
<th>Return Period</th>
<th>Exceedence Probability</th>
<th>Loss</th>
<th>TVAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1000</td>
<td>0.13%</td>
<td>$369,577,340</td>
<td>$733,282,892</td>
</tr>
<tr>
<td>1/500</td>
<td>0.29%</td>
<td>$243,047,314</td>
<td>$614,738,434</td>
</tr>
<tr>
<td>1/200</td>
<td>0.69%</td>
<td>$147,339,846</td>
<td>$351,125,516</td>
</tr>
<tr>
<td>1/100</td>
<td>0.59%</td>
<td>$122,635,605</td>
<td>$307,781,860</td>
</tr>
<tr>
<td>1/50</td>
<td>1.09%</td>
<td>$62,833,732</td>
<td>$197,696,160</td>
</tr>
<tr>
<td>1/33</td>
<td>2.09%</td>
<td>$23,205,449</td>
<td>$118,280,537</td>
</tr>
<tr>
<td>1/33</td>
<td>3.03%</td>
<td>$4,741,947</td>
<td>$82,378,074</td>
</tr>
</tbody>
</table>
Insurability & Risk Differentiation

Insurers need to understand: Preparedness of a country and its neighbor countries to handle outbreaks, frequency and severity of events, and likely absenteeism for an event with a 20-50 year return period.

METABIOTA PREPAREDNESS INDEX

Allows insurers to view risks of a country/region with respect to other countries and regions.

Source: Metabiota Analytics Platform
Business Interruption Case Study: Point of Sale Travel Insurance

• **Product:** Travel Insurance policy against cancellations due to Zika outbreak
• **Target Customers:** Travelers to Latin America and 2016 Olympic games visitors
• **Coverage:** Trip cancellation or re-booking to another destination if the Zika outbreak gets worse

Trigger Considerations

• The trigger should be very simple and easy to understand
 – Described in two lines next to a check-box on tour operator website
• “Zika related” should be defined generously: Zika, microcephaly etc.
• Threshold of X Zika related cases in the respective country / in Latin America
• General travel alert by the Country’s Ministry of Foreign Affairs for the respective country due to Zika
 – Is meant for everybody, not only for pregnant women
Zika – What Countries Are Vulnerable

Source: Metabiota Analytics Platform
Agenda (Draft with Notes)

- Epidemic Primer
 - Epidemic Risks leading to a Pandemic
 - WHO Risk definition
 - From HIV to Zika
- Large Scale Risks in Reinsurance
- Economic Losses of Epidemic Risks
 - Some use cases
- Mitigating the un-seeable risks of epidemics
 - From prevention to insurance coverage
Pandemic Emergency Financing Facility (PEF) in collaboration with WHO and World Bank and supported by Japan and Germany

“How the Pandemic Emergency Financing Facility (PEF) Works

The PEF covers six viruses that are most likely to cause a pandemic. These include new Orthomyxoviruses (new influenza pandemic virus A), Coronaviridae (SARS, MERS), Filoviridae (Ebola, Marburg) and other zoonotic diseases (Crimean Congo, Rift Valley, Lassa fever).

“Pandemics are one of the most certain uninsured risks in the world today. There’s a high probability that the world will experience a severe outbreak in the next 10 to 15 years that could destabilize societies and economies. Recent economic work suggests that the annual global cost of moderately severe to severe pandemics is roughly $570 billion, or 0.7 percent of global income. The cost of a severe pandemic like the 1918 Spanish flu could total as much as 5 percent of global GDP.”

Source: The World Bank Group
Summary

• Epidemic Risks are un-seeable risks
• Epidemic Risks follow certain types of natural disasters
• Epidemic Risks are caused when protection and prevention are low

• We are more at risk than we think:
 – Climate Change results in heat waves and flood events
 – Urbanization and change of environments
 – Civil Conflicts and lack of health systems in countries of risk
 – Global travel and new levels of communication
Thank You!

Petra Wildemann
Head of Business Development EMEA
- Risk Products of Metabiota

E: pwildemann@metabiota.com