Solvency II Risk Margins and SCR from First Principles

Wee Shen Teo and James Norman, RPCC
Introductions
Challenge of SII and approach outline
Solvency II
Definitions from EU SII Act

- “The value of technical provisions shall be equal to the sum of a best estimate and a risk margin”
- “The best estimate shall correspond to the probability-weighted average of future cash-flows, taking account of the time value of money (expected present value of future cash-flows), using the relevant risk-free interest rate term structure.”
- “The risk margin shall be calculated by determining the cost of providing an amount of eligible own funds equal to the Solvency Capital Requirement necessary to support the insurance and reinsurance obligations over the lifetime thereof.”
- “The Solvency Capital Requirement shall correspond to the Value-at-Risk of the basic own funds of an insurance or reinsurance undertaking subject to a confidence level of 99.5% over a one-year period.”
Practical Complications (I)
Inter-dependence of SCR/Risk Margin and One-year risk horizon

“the risk margin shall be calculated by determining the cost of providing an amount of eligible own funds equal to the Solvency Capital Requirement necessary to support the insurance and reinsurance obligations over the lifetime thereof.”

\[RM = CoC \cdot \sum_{t \geq 0} \frac{E(SCR_0(t))}{(1 + r(t + 1))^{t+1}} \]

* SCR\(_0\)(t) represents SCR for business on balance sheet at time 0

“The Solvency Capital Requirement shall correspond to the Value-at-Risk of the basic own funds of an insurance or reinsurance undertaking subject to a confidence level of 99.5% over a one-year period.”

\[SCR(t) + OpeningTP_t = VaR_{0.995} \left(\frac{ClosingTP_{t+1} + X_{t+1}}{1 + r(t + 1)} \right) \bigg| I_t \]

Where \(I_t \) refers to the information available at time \(t \).

Note we will ignore operational risk and reinsurance credit risk in this presentation.

25 September 2019
Practical Complications (II)
Inter-dependence of SCR/Risk Margin and One-year risk horizon

- SCR(0) is dependent on distribution of RM(1)
- Each potential observation of RM(1) is dependent on SCR(1) – future SCRs are stochastic in general
- SCR(1) is dependent on distribution of RM(2), conditional on time 1 experience…

In other words:
- To calculate the future values of the SCR and risk margin, we need to condition on experience observed up to that time
- To achieve this for N years and S paths, we need S^N paths in total.
Some Big Numbers

• 10,000 sims over 9 years:

\[1,000,000,000,000,000,000,000,000,000,000,000,000\text{ sims}\]
 - That is impossible currently, and for the foreseeable future
 - 1 billion cores processing 1 billion sims per second will take over 30 billion years

• 1,000 sims over 4 years:

\[1,000,000,000,000\text{ sims}\]
 - With cloud computing and modern vector processors, this is just about feasible
What do we do today?
Common market practices

• Modelling the one-year result
 – Emergence pattern on ultimate risk
 – Re-reserving / Actuary in the box
 – Merz-Wüthrich

• Ignore the effect of the risk margin on $\text{SCR}_0(0)$

• Project the initial $\text{SCR}_0(0)$ to produce $\text{SCR}_0(t)$
 – Run-off patterns based on expected reserves
 – Split of total uncertainty (Merz-Wüthrich)
 – Value at risk / standard deviation of unconditional profit/loss

• Other approaches e.g. analytical formula for lognormal/Gaussian copula

• We need to make simplifications to calculate, but we don’t know how much of an approximation we are making

25 September 2019
What can we learn from other fields?

Paths allowed *between* simulations at neighbouring time steps, with weight $w(t, X_t, X_{t+1})$.
One-year horizon
Formula for Best Estimate, Risk Margin, SCR

Assuming constant risk free rate rf

- Discounted Best Estimate/Reserve:
 \[R_t = \frac{\text{E}(X_{t+1} + R_{t+1}|I_t)}{(1 + rf)} \]

- Risk Margin:
 \[RM_t = \frac{\text{SCR}_t \cdot CoC + \text{E}(RM_{t+1}|I_t)}{(1 + rf)} \]

- SCR:
 \[\text{SCR}_t = \frac{\text{VaR}_{0.995}(R_{t+1} + RM_{t+1} + X_{t+1}|I_t) - R_t(1 + rf) - \text{E}(RM_{t+1}|I_t)}{1 + r} \]

where $r = CoC + rf$
Conditional Re-Weighting Visualisation

Assume cumulative claims follow a Markov process

Start with a set of simulations of future payments for each period up to maturity

At maturity N, $R_N = RM_N = SCR_N = 0$
Conditional Re-Weighting
Visualisation

At time N-1:
For each simulation at N-1:

• Determine weights of observing each simulation at N

• Use weights to determine R, RM, SCR at time N-1
Conditional Re-Weighting

Visualisation

After R, RM, SCR is determined for each simulation at $N-1$:

For each simulation at $N-2$:

- Determine weights of observing each simulation at $N-1$
- Use weights to determine R, RM, SCR at time $N-2$

And repeat for all previous time steps up to time 0.
Conditional Re-Weighting
Calculating the weights

• Using Broadie and Glasserman approach, weights are ratio of conditional to unconditional probability densities

\[w(N - 1, C_{N-1}, C_N) \propto \frac{f(C_N|C_{N-1})}{f(C_N|C_0)} \]

• Computational effort for above is of the order \(N \times S^2 \).

• Avoids \(S^N \) paths, recycles available simulations

• A different though related method using a maximum entropy approximation was explored in England and Czernuszewicz, GIRO 2009

25 September 2019
Illustration with Actuarial Model

Mack’s Additive Model
Mack’s Additive Model
(aka Incremental Loss Ratio Model)

Model of incremental claims X_{ij} in origin period i and development period j

- $E[X_{ij}] = E_i \beta_j$, $Var[X_{ij}] = \phi_j E_i \beta_j$
- X_{ij} independent
- E_i are known volume factors for the origin year (exposure, premiums)
- β_j are unknown parameters giving the expected burning cost emerging in the development period

β_j estimated by $\hat{\beta}_j = \frac{S_j}{\sum_{i=0}^{N-j+1} E_i}$ where $S_j = \sum_{i=0}^{N-j+1} X_{ij}$ are the column sums

25 September 2019
Generating a Stochastic Mesh

In Mack’s additive model, the cumulative column sums $S_j(t)$ are a Markov process

Given an initial claims triangle X_0, generate simulations of future payments (e.g. through bootstrapping or Bayesian methods), hence column sums $S_j(t)$. This generates the nodes of the mesh.

Given new simulated claims $S_j(t)$ after t periods, we want to calculate the conditional distribution of $S_j(t + 1)$, from the unconditional simulations.

We need two types of re-weighting (*details in appendix*):

1. To capture the reduction in parameter uncertainty due to new data
 \[
 w^{(1)}(t, S(t)) \propto \prod_{j=t+1}^{N} \frac{L(\beta_j | S_j(t))}{L(\beta_j | S_j(0))}
 \]

2. To calculate the likelihood of observing the unconditional simulation of the next column sums $S(t + 1)$, given the new data and parameters at time t
 \[
 w^{(2)}(t, S(t), S(t + 1)) \propto \prod_{j=t+1}^{N} \frac{f(S_j(t + 1)|S_j(t), \beta_j)}{f(S_j(t + 1)|\beta_j)}
 \]

The total weights are then the product of the individual weights
Numerical Example

Results and Observations
Example – Paid Triangle

<table>
<thead>
<tr>
<th>Accident Year</th>
<th>Exposure</th>
<th>Dev Yr 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>381,364</td>
<td>11,825</td>
<td>24,673</td>
<td>27,270</td>
<td>29,097</td>
<td>32,388</td>
<td>13,530</td>
<td>20,240</td>
<td>43,325</td>
<td>13,061</td>
<td>7,675</td>
</tr>
<tr>
<td>2011</td>
<td>536,238</td>
<td>10,965</td>
<td>31,188</td>
<td>47,734</td>
<td>42,687</td>
<td>62,449</td>
<td>75,356</td>
<td>46,503</td>
<td>11,822</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>563,501</td>
<td>10,591</td>
<td>42,384</td>
<td>66,881</td>
<td>92,102</td>
<td>48,806</td>
<td>24,568</td>
<td>20,178</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>586,200</td>
<td>20,438</td>
<td>61,917</td>
<td>66,616</td>
<td>50,885</td>
<td>40,036</td>
<td>32,817</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>629,365</td>
<td>29,901</td>
<td>55,092</td>
<td>65,339</td>
<td>65,731</td>
<td>34,430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>596,429</td>
<td>22,823</td>
<td>51,469</td>
<td>74,413</td>
<td>34,128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>510,807</td>
<td>17,570</td>
<td>58,787</td>
<td>80,207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>527,781</td>
<td>22,567</td>
<td>51,593</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>586,881</td>
<td>23,145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Institute and Faculty of Actuaries

25 September 2019
Implementation details

• 500,000 simulations
• 9 future time periods
 – (2 trillion weights to calculate!)
• Constant dispersion parameter
• No new business
• Over-dispersed Poisson distribution for claims
• $rf=0$
One-Year vs Ultimate Reserve Risk

Reserve Risk (ex RM)

Reserve Risk (incl RM)

25 September 2019
Risk Margin Projection Results
SCR Run-Off Results
Consistent SII Run Off

- Reserve at T0 matches Reserve at T1 + Payment in T1 at mean level
- Risk Margin at mean level reduced by 22k = 6% * SCR
- 1-in-200 Payment + TP at T1 matches SCR + TP at T0

<table>
<thead>
<tr>
<th>Item</th>
<th>Opening T0</th>
<th>Closing T1 - Mean</th>
<th>Closing T1 - 1 in 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payment in T1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserve</td>
<td>1,323 K</td>
<td>998 K</td>
<td>1,338 K</td>
</tr>
<tr>
<td>Risk Margin</td>
<td>74 K</td>
<td>51 K</td>
<td>63 K</td>
</tr>
<tr>
<td>SCR</td>
<td>383 K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,780 K</td>
<td>1,780 K</td>
<td></td>
</tr>
</tbody>
</table>
Example use of capital projection

- Can integrate capital management strategies based on future SCR
 - i.e. capital release if Solvency Ratio > threshold
- Could be used to analyse contingent convertible capital structures (CoCo’s)
 - Subordinated debt where the principle is converted to equity if Solvency Ratio < threshold
Lessons Learned
Underestimation of Proxy SCR by excluding risk margin

\[
ProxySCR_0 = \frac{VaR_{0.995}(R_1 - R_0 + X_1)}{1 + CoC}
\]

vs

\[
SCR_0 = \frac{VaR_{0.995}(R_1 - R_0 + X_1 + (RM_1 - E(RM_1)))}{1 + CoC}
\]

As risk margin is stochastic and correlated to reserves (and payment) at time 1, this approximation will tend to underestimate opening SCR.

Size of underestimation is dependent on relative volatility of the components.
SCR decreases as % of reserves initially

25 September 2019
Sqrt Reserve Run-Off Pattern not a good proxy for SCR Run-Off Pattern

- Sqrt Reserve Run-Off Pattern overestimates opening RM by about 46%
Unconditional One-Year Reserve Risk is a much better proxy for SCR Run-Off Pattern

$E [\text{VaR}(X_t | X_{t-1})] \text{ usually } < \text{VaR}(X_t)$

- Unconditional One-Year Reserve Risk Run-Off Pattern overestimates opening RM by about 8%
Risk Margin not a constant proportion of SCR or Reserve
Conclusion
Conclusion

• Calculating a risk margin and SCR consistently with Solvency 2 principles is a considerable challenge!

• Ideas from option pricing can make it technically possible

• Computationally intensive, but can give useful insights
 – Square-root reserve run-off pattern is not a good proxy SCR pattern
 – Ignoring the risk margin in the calculation of $\text{SCR}_0(t)$ (*small understatement*)
 – Using unconditional VaR, rather than conditional VaR, for $\text{SCR}_0(t)$ (*small overstatement*)

• Results only sensible if model assumptions are reasonable
Future Enhancements

• Apply to other models (e.g. chain-ladder based Mack)
• Incorporating new business – ORSA
• Reinsurance (e.g. ADC)
• Inflation and other external drivers
• Simulation error – choice of weights
• IFRS17 risk adjustment
The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].
Appendix

Details for conditional re-weighting on Mack’s Additive Model
Generating Future Claims with Mack’s Additive Model

- Given a historical claims triangle, Mack’s additive model can be bootstrapped, or use Bayesian statistics to get a distribution of future payments
- Bayes approach taken here (little difference in results)
 - Assume \(X_{ij} \sim \phi_j \text{Poisson} \left(\frac{E_i \beta_j}{\phi_j} \right) \) (i.e. an over-dispersed Poisson)
 - Assume uniform prior for \(\ln \beta_j \)
 - Use plug-in estimate for dispersion:
 \[
 \hat{\phi}_j = \frac{1}{n_j - 1} \sum_i \frac{(X_{ij} - E_i \hat{\beta}_j)^2}{E_i \hat{\beta}_j}, \text{ or } \hat{\phi} = \frac{1}{N(N-1)/2} \sum_{i,j} \frac{(X_{ij} - E_i \hat{\beta}_j)^2}{E_i \hat{\beta}_j}
 \]
 - Then \(\beta_j | X \sim \text{Gamma} \left(S_j / \phi_j, \sum_{i=0}^{N-j+1} E_i / \phi_j \right) \), where \(S_j = \sum_{i=0}^{N-j+1} X_{ij} \) are the column sums
 - Generate simulations of \(\beta_j \) to incorporate parameter error, then, given the parameters generate future payments from an over-dispersed Poisson
Conditional Re-Weighting – Parameter Error

- From the original triangle X_0, we have
 \[
 \beta_j | X_0 \sim \text{Gamma} \left(\frac{S_j(0)}{\phi_j}, \frac{\sum_{i=0}^{N-j+1} E_i}{\phi_j} \right)
 \]

- At time t, we will have observed new data X_t and will have
 \[
 \beta_j | X_t \sim \text{Gamma} \left(\frac{S_j(t)}{\phi_j}, \frac{\sum_{i=0}^{N-j+1+t} E_i}{\phi_j} \right)
 \]

- Rather than generating new simulations, we can just reweight the original simulations of β_j by the likelihood of the new observations
 \[
 w_j^{(1)}(t, S_j(t)) \propto \frac{f(\beta_j | X_t)}{f(\beta_j | X_0)} \propto \beta_j^{(S_j(t) - S_j(0))/\phi_j} e^{-\beta_j \sum_{i=N-j+2}^{N-j+1+t} E_i / \phi_j}
 \]
Conditional Re-Weighting - Second Step

- In Mack’s additive model, every quantity is a function of the column sums $S_j(t) = \sum_{i=0}^{N-j+1+t} X_{ij}$ (they are a sufficient statistic)

- The conditional probability of observing a given column sum at time $t + 1$, given the value at t

$$f(S_j(t + 1)|S_j(t), \beta_j) = \frac{\left(\frac{E_i\beta_j}{\phi_j}\right)^{\Delta S_j(t+1)} \frac{S_j(t+1)}{\phi_j} e^{\sum E_i\beta_j}}{S_j(t + 1)!}$$

- The unconditional probability is

$$f(S_j(t + 1)|\beta_j) = \frac{\left(\frac{\sum E_i\beta_j}{\phi_j}\right)^{S_j(t+1)} \frac{\sum E_i\beta_j}{\phi_j} e^{\sum E_i\beta_j}}{S_j(t + 1)!}$$

- The second set of weights are then

$$w_j^{(2)}(t, S_j(t), S_j(t + 1)) \propto \frac{f(S_j(t + 1)|S_j(t), \beta_j)}{f(S_j(t + 1)|\beta_j)}$$

25 September 2019