Machine Learning and Fairness in Commercial Insurance
Paul Bassan and Oliver Laslett
Introductions

Paul Bassan, Lead Actuary
- London Market Pricing Actuary
- Research Scientist: applied machine learning
- PhD in Physics

Oliver Laslett, Senior Data Scientist
- Insurance Data Scientist
- PhD in Physics
Agenda

1. Machine learning primer
2. Explainable machine learning
3. Machine learning and fairness
4. Strategies for fair modelling
5. Key takeaways
Machine learning primer
What is machine learning?

Machine learning is a field of computer science that uses statistical techniques to give computer systems the ability to "learn" (e.g. progressively improve performance on a specific task) with data, without being explicitly programmed.

Topical use cases:

- Driverless cars
- Forecasting in equity prices in financial markets
How can ML be applied to actuarial pricing?

- ML models can be leveraged to predict expected frequency and severity for a risk through the ingestion of a multitude of data sources covering historical losses and risk features.
- Robustness of ML models enable relaxation of model assumptions.
- Risk premiums are directly derived from an ML model’s loss cost prediction.

External data
- Web data
- Open APIs
- Public reports

Internal data
- Claims
- Exposure
- Submissions

Machine learning models

Property Flood Storm Liability

£1,298
Current pricing vs machine learning

• Rating tables are created typically from risk modelling using generalised linear models (GLMs)
• Data requirements:
 – Policy list with meta information (inception dates etc.)
 – Exposure and covers (e.g. property with excesses & sum insured values)
 – Claims list with meta information
• Rating factors are extracted and dependant factors are encoded using interaction terms
 – Difficult to find and encode every combination of rating factors that have conditional relationship
Limitations of linear modelling

\[y = mX + c \]

Linear refers to the co-efficient

Good for this

Not good for this
Limitations of generalised linear modelling

$$E[Y] = g^{-1}(\eta) \quad \eta = \beta_1 x_1 + \beta_2 x_2 + \ldots$$

Linear refers to the coefficients

Good for this

Not good for this
GLM limitations and competitive pricing

Claim amount / £

Age of component

Adequate pricing

Under pricing

Over pricing

Linear fit

Log fit

True response
Complex relationships in data: implications for rating & pricing — interacting terms

Take 3 rating factors:
- Trade (categorical: Restaurant, Office, Shop etc.)
- Post code (categorical EC1, M20 etc.)
- Distance to fire station (continuous number: 0.2km, 3.14km etc.)

Independent rating factors

<table>
<thead>
<tr>
<th>Trade: Restaurant</th>
<th>Trade: Office</th>
<th>Trade: Shop</th>
<th>Postcode: EC1</th>
<th>Postcode: M20</th>
<th>Distance to fire station</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.14</td>
</tr>
</tbody>
</table>
Complex relationships in data: implications for rating & pricing (2)

\[y \sim \text{Trade} + \text{Postcode} + \text{Distance} + \text{Trade}^*\text{Postcode} \]

<table>
<thead>
<tr>
<th>Trade: Restaurant</th>
<th>Trade: Office</th>
<th>Trade: Shop</th>
<th>Postcode: EC1</th>
<th>Postcode: M20</th>
<th>Distance to fire station</th>
<th>Trade: Restaurant^* Postcode EC1</th>
<th>Trade: Restaurant^* Postcode M20</th>
<th>Trade: Office^* Postcode EC1</th>
<th>etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complex relationships in data: implications for rating & pricing (3)

- What if there are hundreds of rating factors, which are categorical and continuous in nature?
- What if the interactions are not easily identifiable?
- What if 5 rating factors, which have low predictable power when used independently, are actually very strong predictors when used in a joint (interacting) way?
- How feasible is it to assess every combination of rating factor interaction terms?
- Interactions are easier to deal with using machine learning methods.
Complex relationships in data: implications for rating & pricing (4)

Non-linear machine learning techniques narrow the gap between actual vs expected
Complex relationships in data: implications for rating & pricing (5)

- Machine learning makes it easier to deal with complex data with underlying structure
- No knowledge of the underlying structure is needed
- No interaction terms need to be “built”
Machine learning primer: key takeaway

Machine learning is the next generation of regression methods, which can be applied to pricing.

- Is machine learning model behaviour reliable?
- Is machine learning a black box?
- Is it possible to audit a machine learning model?
- Is machine learning fair?
Explainable machine learning
Risk models must be explainable

How/why did we form a decision from the data?

Easy for rating tables
Risk models must be explainable

Model inspection
- How is it structured? Coded? Defined?
- What are the key features? Trends? Inputs? Outputs?
Risk models must be explainable

Output inspection

- How did we arrive at this specific output given the inputs?
- How much did each feature contribute?
Linear models have excellent explainability

- The effect of every variable is quantified
- Confidence bounds can be estimated
- Predicted value can be decomposed into feature contributions
- One-way and two-way analyses are easily visualised
- Understand coefficient and its effect
Additive feature explanations

Decompose the predicted output into an individual contribution for each feature in the model

\[y = f(x) = \phi_0 + \sum_{i=0}^{N} \phi_i x_i \]

e.g. of the £345 risk premium, £59 is attributed to flood risk
Explainability of common models

<table>
<thead>
<tr>
<th>Model name</th>
<th>Model explanations</th>
<th>Prediction explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLM</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GAM</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Graphical models</td>
<td>Yes</td>
<td>Approximate*</td>
</tr>
<tr>
<td>Random forests & GBMs</td>
<td>No</td>
<td>Approximate*</td>
</tr>
<tr>
<td>Deep learning</td>
<td>No</td>
<td>Approximate*</td>
</tr>
</tbody>
</table>

* Additive feature contributions can be approximated using linearisation techniques
The Explainability Frontier

How can we improve the explainability of complex but highly predictive ML algos?

T – 3 years
The Explainability Frontier

Predictive power vs. Explainability

Threshold

Today

How can we improve the explainability of complex but highly predictive ML algos?
The Explainability Frontier

Predictive power vs. Explainability

Threshold

T +3 years?

How can we improve the explainability of complex but highly predictive ML algos?
Machine learning and fairness
Fairness means treating individuals from different groups equally
Fairness through unawareness is not sufficient to guarantee equal treatment for individuals in protected groups.
Careful consideration is necessary when designing decision systems

Data
- Inherent data biases
- Reasoned vetting of variables
- True measures of latent risk
- Measure the protected attribute

Modelling
- Quantify feature contributions
- Tune for fairness
- Bias in, bias out
Protected attributes encoded in “harmless” rating factors

Strategies for fair modelling
Three strategies for fairness

Fairness is achievable in machine learning models, but we need to be active about seeking it out:

1. Observe relevant rating factors
2. Adjust premiums to optimise metrics of fairness
3. Design and train algorithms with fairness baked in
Protected attributes encoded in “harmless” rating factors

1. Observe relevant rating factors
2. Adjust premiums to optimise metrics of fairness

- Profit
- False positive rate, equal opportunity
- False negative rate
- Equalised odds
- Equality of opportunity
- Calibration
- Demographic parity

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>No loss</td>
<td>TP</td>
</tr>
<tr>
<td>Loss</td>
<td>FN</td>
</tr>
<tr>
<td></td>
<td>TN</td>
</tr>
<tr>
<td></td>
<td>FP</td>
</tr>
</tbody>
</table>

How does the confusion matrix compare between groups?

3. Design and train algorithms with fairness baked-in

- **Structural models**
 - Kilbertes *et al.* (2018) "Avoiding discrimination through causal reasoning"
 - Kusner, Loftus, Russell, Silva (2018) "Counterfactual fairness"

- **Penalised / constrained loss functions**
 - Zafar *et al.* (2017) "Fairness beyond disparate treatment and disparate impact"
 - Zhao *et al.* (2017) "Men also like shopping: reducing gender bias amplification using corpus-level constraints"

- **Model inspection**
 - Tan, Caruana, Hooker, Lou (2018) "Detecting bias in black-box models using transparent model distillation"
Key takeaways
Summary

1. Machine learning uses statistical techniques to give computer systems the ability to "learn" with data, without being explicitly programmed
2. Machine learning models can predict expected frequency and severity for a risk using a multitude of data sources covering historical losses and risk features
3. Machine learning makes it easier to deal with complex data with underlying structure, which can help rating and pricing
4. Machine learning is not a black box
5. Machine learning can be used as a tool to improve fairness (e.g. telemetrics, causal models, …)
The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].