ESGs for Capital and Beyond…
Smart decisions in an uncertain environment

Greg Isted, Jesse Power
Moody’s Analytics
Agenda

• Introduction

• ESGs for Capital Modelling
 • GI focus: Real World ESG for Internal Model
 • Current market challenges (Regulatory vs Economic)

• ESGs for beyond Capital…
 • SAA / Investment Decision Making
 • Stress / Scenario testing (Case Study: Brexit)
Introduction

“The past few years have seen an unprecedented combination of new insurance regulations, challenging investment conditions and unexpected geo-political events. In this session, we will explain how Economic Scenario Generators (ESGs) can help insurers navigate this uncertain environment.

The session will address some of the modelling and calibration challenges of using ESGs for capital modelling, strategic asset allocation (SAA) and stress testing. We will also address some of the practical considerations of gaining model approval.”
Economic Scenario Generator: Model Structure

- Equity Returns
- Property Returns
- Alternative Asset Returns (e.g. commodities)
- Corporate Bond Returns
- Initial swap and government nominal bonds
- Index linked government bonds
- Nominal short rate
- Real short rate
- Real-economy; GDP and real wages
- Nominal minus real is inflation expectations
- Realised Inflation and “alternative” inflation rates (i.e. Medical)
- Exchange rate (PPP or Interest rate parity)
- Foreign nominal short rate and inflation

- Joint distribution
- Correlation relationships between the shocks to different models
- Economically rational structure
Real World Modelling

What do our clients use the ESG for?

- **Capital calculation**
 Predominately used by clients for projection of credit, default, market and other risks over a 1 year or a similar short term horizon for Value at Risk calculation as part of Regulatory or Economic Capital framework.

- **SAA and Investments**
 Our asset and portfolio capabilities help our clients assess the performance of their investment strategies under a range of conditions.

- **Scenario Testing**
 What will happen to my business under a “hard Brexit” scenario? How will my investments perform under a “stagflation” scenario? Narrative real world projections provide our clients with that insight.

- **Product design/pricing**
 Many insurance contracts are dependent on the level of interest rates, inflation or asset returns. That's why our clients use our models to produce realistic distributions.

20 October 2017
Real World Modelling

Considerations & Challenges

In developing a solution for real world projection, firms must consider:

» Length of projections: 1yr, 10yrs, 50yrs,…
» Calibration data: use of current market data, length of history, pooling of data
» Risk/asset coverage & level of granularity
» Technical modelling considerations: e.g. fat-tails, stochastic volatilities
» Stylised-facts: Is a view of the world baked-in to the model?

A key question for the real world modeller is whether the need is for:

» Stability in projected paths & distributions: typical for risk management applications
» Stability in projected risk/return profile: typical for portfolio construction applications
ESGs for Capital Modelling
ESGs for Capital Modelling
1 Year VaR

Capital calculation
Predominately used by clients for projection of credit, default, market and other risks over a 1 year or a similar short term horizon for Value at Risk calculation as part of Regulatory or Economic Capital framework.

SAA and Investments
Our asset and portfolio capabilities help our clients assess the performance of their investment strategies under a range of conditions.

Scenario Testing
What will happen to my business under a “hard Brexit” scenario? How will my investments perform under a “stagflation” scenario? Narrative real world projections provide our clients with that insight.

Product design/pricing
Many insurance contracts are dependent on the level of interest rates, inflation or asset returns. That's why our clients use our models to produce realistic distributions.
Internal Model and 1 Year VaR

Considerations and Challenges

In developing a risk aggregation solution, firms must consider a number of aspects:

» What are our key risks and how shall we capture them adequately?
 – e.g. credit granularity, model choice, fat-tails, tail-dependency?

» How should we approach model calibration? (e.g. ‘Point-in-time’ vs ‘Through-the-cycle’?)

» How will we set assumptions, maintain and update these through time (to regulatory standards for data quality)?

» How shall we value assets and liabilities in projected scenarios?
 – Do we need to think about compatibility/mapping to valuation models?

» Do you have a strong ‘house view’ on the technical modelling approach to be used? Is it important to you to use the same set of risk projections for other applications?

» How many scenarios must be generated? How frequently? What runtimes are required?

» How will senior management demonstrate understanding of the model used?
Market & Regulatory Themes

» Continued wave of Internal Model (IM) Applications
» Companies with IMs looking to see how they can leverage them to run their business better
 » Scenario testing, reverse stress testing, risk controls, KRIs, etc.
» Single calibration approach for both 1 Year and multi-year modelling
 » e.g. Capital team vs Investment team
» Challenging investment conditions - maximising returns in low rate environment
» More sophisticated modelling of ‘exotic’ asset classes
 » Modelling of illiquid assets, private debt, CDS, etc.
» Model Validation is a hot topic for Regulators in the UK and across Europe
ESGs for beyond Capital…

SAA and Investment Decision Making
ESGs for beyond Capital…
SAA and Investments

Capital calculation
Predominately used by clients for projection of credit, default, market and other risks over a 1 year or a similar short term horizon for Value at Risk calculation as part of Regulatory or Economic Capital framework.

SAA and Investments
Our asset and portfolio capabilities help our clients assess the performance of their investment strategies under a range of conditions.

Scenario Testing
What will happen to my business under a “hard Brexit” scenario? How will my investments perform under a “stagflation” scenario? Narrative real world projections provide our clients with that insight.

Product design/pricing
Many insurance contracts are dependent on the level of interest rates, inflation or asset returns. That's why our clients use our models to produce realistic distributions.
Strategic Asset Allocation and Investment Strategy Objectives

Diversification – look to build portfolios that are appropriately diversified across risks, where we may want to define those risks in relation to a liability or liability benchmark.

Risk Tolerance - should align with a Risk tolerance, possibly stated in quantitative terms.

Evolving Liabilities – may need to apply rebalancing rules, reflecting changing liabilities, requirements or risk tolerance.

Performance – optimise the overall portfolios return performance, again where return may be defined in relation to a liability.

Active benchmark - SAA should provide a clear benchmark for tactical or active management, performance, risk exposure.

Realistic Expectations - should enable realistic expectations for future performance given current market conditions.
The Problem: Complex liabilities, strategies or objectives

» SAA design is relatively simple when
 - Considering assets only
 - Single time period
 - Simple investment objectives

» Is more complicated when you have
 - Dynamic asset strategies
 - Dynamic liabilities
 - Asset-liability interaction
 - Options / guarantees
 - Multiple objectives
 - Path dependence

Example: UK Insurer - Investment team

Insurer has cashflows generated by their ALM system. Current portfolio duration substantially lower than liabilities. Propose more efficient investment strategies, to reduce capital risk / enhance earnings.

Management of collateral and transaction costs will determine value of hedging positions. Need to control cost of “portfolio churn”.

Key analysis / “what if”:
- Adjust yield curve exposure, duration, key rate durations, to better match liability
- Increase the credit risk exposure
- Include alt. illiquid assets: loans, infrastructure
- Change re-balancing rules for fixed income assets

Key metrics:
- Earnings, capital (SCR), transaction costs
Considerations for SAA

» Consider both assets and liabilities
 – The interaction between asset and liability is extremely important to asset allocation
 – Different interaction might change the shape of efficient frontier

» Return and Risk Metrics
 – MCEV, P&L, Economic / Regulatory Capital, Volatility

» Horizon
 – Long term vs short term? Which metrics?

» Objectives
 – EBR (Equity backing ratio) – optimizing growth asset mix
 – Considering allocating to different ratings / tenors
 – Dynamic allocation over the horizon (time-varying allocation)

» Internal investment constraints
Using Scenario-Based Models for SAA & Investment

Model Calibration

HISTORICAL DATA

CURRENT PRICES / YIELDS

STRATEGIC “VIEWS”

Portfolios: Current + Alternatives

Portfolio Management Strategy

- Re-investment of asset cash flows
- Payment of liability cash flows
- Rebalance asset allocation to targets (e.g. duration, credit rating)
- Apply constraints, e.g. book return limits

Balance Sheet Projection
Using Scenario-Based Models for SAA & Investment

Key Benefits

SAA and investment strategy modelling with an ESG provides the ability to:

» Assess the most useful metrics of risk and return
» Create bespoke portfolios to satisfy complex requirements and constraints
» Compare portfolio performance in a range of market conditions
» Analyse portfolios on a multi-timestep basis
» Include cashflows in portfolio projections
SAA and Investment Strategy Optimization
Standard and novel approaches

Analytical Solutions (MVO etc.)

- Fast and easy to explain
- Restrictive assumptions: single period, mean & variance only
- No treatment of liabilities or path dependency

Monte-Carlo (Brute force)

- Account for complex scenarios
- ALM/Cashflow evaluation can be slow. Requires large number of evaluations to sample parameter space
- Efficient frontier is typically noisy/badly sampled
SAA and Investment Strategy Optimization

Standard and novel approaches

What-if Scenario Testing

- Capture dependence of risk/return metrics on strategy weights using a fitting (“Proxy”) function
- Require a relatively small number of ALM model evaluations
- Quickly evaluate required metrics under any potential asset allocation

Semi-analytic approach
ESGs for beyond Capital…

Scenario Testing (Case study: Brexit)
ESGs for beyond Capital…
Scenario Testing

Real World Modelling

Capital calculation
Predominately used by clients for projection of credit, default, market and other risks over a 1 year or a similar short term horizon for Value at Risk calculation as part of Regulatory or Economic Capital framework.

SAA and Investments
Our asset and portfolio capabilities help our clients assess the performance of their investment strategies under a range of conditions.

Scenario Testing
What will happen to my business under a “hard Brexit” scenario? How will my investments perform under a “stagflation” scenario? Narrative real world projections provide our clients with that insight.

Product design/pricing
Many insurance contracts are dependent on the level of interest rates, inflation or asset returns. That’s why our clients use our models to produce realistic distributions.
Scenario Testing

• Combining Narrative Scenarios with Stochastic Real World Modelling

• This scenario analysis can be used for business planning around specific postulated outcomes, such as “bad Brexit”, or a given election or policy outcome

 – Business Planning / ‘What-if’ Analysis
 – Portfolio projection and risk attribution
 – Asset allocation and portfolio optimization
 – Valuation and reserving
 – ORSA
Case Study: Brexit-based ESG Calibrations

An in-house team of Economists have produced a number of Brexit related scenarios covering the following types of narrative (with associated probabilities):

- Alternative UK Baseline
- Reject Brexit
- UK Splintering
- EU Partial Fracture
- Euro Zone Crack Up

We are producing ESG Calibrations where the mean/average path of the key variables follows the paths identified in the narrative scenarios. Key variables are

- Nominal Short Term and Long Term Rates
- Inflations
- Equity Returns
- Credit Spreads
- FX rates

These provide an alternative to the expected paths in the current Best Views Calibrations.
Brexit Stress Calibrations: Example Validation

Stress Path – relative to standard calibrations
Colour palette for PowerPoint presentations:

Dark blue
- RGB: R17 G52 B88

Gold
- RGB: R217 G171 B22

Mid blue
- RGB: R64 G150 B184

Secondary colour palette:

Light grey
- RGB: R220 G221 B217

Pea green
- RGB: R121 G163 B42

Forest green
- RGB: R0 G132 B82

Bottle green
- RGB: R17 G179 B162

Cyan
- RGB: R0 G156 B200

Light blue
- RGB: R124 G179 B225

Violet
- RGB: R128 G118 B207

Purple
- RGB: R143 G70 B147

Fuscia
- RGB: R233 G69 B140

Red
- RGB: R200 G30 B69

Orange
- RGB: R238 G116 29

Dark grey
- RGB: R63 G69 B72

Nominal Short Rates:

- **EU Crack Up**
- **UK Splintering**

Nominal Short Rate: **EZ Crack Up**
Colour palette for PowerPoint presentations

- Dark blue: R17 G52 B88
- Gold: R217 G171 B22
- Mid blue: R64 G150 B184
- Light grey: R220 G221 B217
- Pea green: R121 G163 B42
- Forest green: R0 G132 B82
- Bottle green: R17 G179 B162
- Cyan: R0 G156 B200
- Light blue: R124 G179 B225
- Violet: R128 G118 B207
- Purple: R143 G70 B147
- Fuscia: R233 G69 B140
- Red: R200 G30 B69
- Orange: R238 G116 29
- Dark grey: R63 G69 B72

Nominal Short Rate: UK Splintering

Year	EU Crack Up	UK Splintering
The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].