Individual claims reserving
Opportunity as a Challenge

Alexandre Boumezoued and Jeff Courchene, Milliman
Introduction to individual claims reserving
Introduction

From aggregate

• The current reserving practice consists, in most cases, of using methods based on claims development triangles for point estimate projections as well as for capital requirement calculations.

• In the context of an increasing need within the reserving practice for more accurate models, taking advantage of the information embedded in individual claims data is a promising alternative compared with the traditional aggregate triangles.

• Traditional reserving methods (Chain-Ladder, Mack, Wüthrich,...) work well in relatively stable contexts and for standard business lines; today, however, the awareness of the insurance market about some possible limitations of traditional aggregate models to provide robust and realistic estimates in more variable contexts has reached a level which should be noted.

• Several potential limits of aggregate models based on triangles have indeed already been highlighted both from a practical and a theoretical point of view:
 • Huge estimation error for the latest development periods due to use of limited information in observed aggregate amounts,
 • The difficulty of these models in identifying and capturing the various sub-risks,
 • Over/under-estimation of the distribution when back-testing realized amounts with forecasts.
Introduction

... to individual-based modelling

• As noted in the report on worldwide non-life reserving practices from the ASTIN Working Party on Non-Life Reserving (June, 2016), there is ‘an increase in the need to move towards individual claims reserving and big data, to better link the reserving process with the pricing process and to be able to better value non-proportional reinsurance.’

The first research papers on individual models are concomitant with the development of stochastic methods on aggregated triangles:

• To be compared with the stochastic models for triangles in Mack (1993) and following contributions

• In a context of increasing need for more reliable quantification and management of reserve risk, it appears promising to take advantage of the information contained in detailed claims data; this alternative requires appropriate models to reveal the information inherent in these data.
Introduction
Zoom on the claim path and associated sub risks

- The claim development process is divided according to the following stages:

The joint modelling of occurrence and reporting allows to reprocess the observation biases caused by the underrepresentation in the database of claims with long reporting delay; this leads in particular to an accurate quantification of the IBNR claims.

The joint modeling of the occurrence, the reporting and the payments allows to characterize the payment trajectories according to their date of occurrence and their reporting delay → improvement of the prediction of RBNS according to their development time.
Why using individual reserving methods?

A better estimate of reserves and their components

- The primary objective of using individual models is to improve the Best Estimate of reserves, compared to the triangles-based methods.
 - The predictive capacity of these models relies on the fact that the whole life of each claim is taken into account (occurrence, reporting, payments, closing, …) as well as its covariates.

- Beyond the quantification of reserves, these models allow a separate estimation of reserve amounts for IBNR [Pure IBNR] (Incurred But Not Reported) and RBNS (Reported But Not Settled).
 - Note that this distinction is, by construction, more natural in the context of individual models, whereas it is non-trivial (and less easy to justify) for methods based on triangles.

- Adequate valuation of non-proportional reinsurance: due to the non-linearity of treaty valuation formulas, a stochastic individual approach is needed to produce an unbiased pricing.
 - The stochastic simulation of claims paths beyond a basic frequency x severity model makes it possible to solve adequately this problem.
Implementation process
Overview of the operational implementation process

- Individual reserving model is part of an overall process from data collection to monitoring of risk indicators over time:

<table>
<thead>
<tr>
<th>Data collection & preparation</th>
<th>Model specification & calibration</th>
<th>Simulation & model validation</th>
<th>Reserve risk Dashboard</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Design a rationalized collection strategy focusing only on the claims data used by the individual model.</td>
<td>- Specify the model components according to the lines of business to be addressed and the available data.</td>
<td>- Forecast IBNyR and RBNS individual trajectories using efficient simulation algorithms; alternatively, rely on closed-form formulas.</td>
<td>- Claim journey parameters are visualized through an automated dashboard.</td>
</tr>
<tr>
<td>- Perform the data transformation needed to feed the individual model.</td>
<td>- Estimate the parameters of the individual model using smart parametrization combined with advanced optimization procedures.</td>
<td>- Perform a model validation process based on goodness-of-fit analysis, back-testing procedures and comparisons with classical triangle-based methods.</td>
<td>- Know why things happened: identify the underlying risks which caused changes in aggregate payments.</td>
</tr>
</tbody>
</table>

![Diagram of the implementation process]

- **Reserve risk Dashboard**
 - Claim journey parameters are visualized through an automated dashboard.
 - Know why things happened: **identify the underlying risks** which caused changes in aggregate payments.
 - Monitor your key indicators periodically, and **leverage information to improve management actions**.

Legend

- **Green**
- **Blue**
- **Orange**
- **Pink**

Source: Institute and Faculty of Actuaries
Model specification & calibration
Claim path and associated sub-risks – specification details

- The individual claims paths are modelled with continuous time stochastic processes

Occurrences and reporting distributions have to be estimated jointly as observation is biased due to hidden Incurred But Not yet Reported claims (IBNyR)

Based on occurrence and reporting parameters, stochastic IBNyR occurrences and reporting delays can be simulated.

Payments and settlement events are modelled using three types of events (*):
1. settlement without payment at settlement
2. settlement with payment at settlement
3. payment without settlement

Each type of event (1, 2, or 3) occurs according to its specific intensity parameter $h_i(v)$, $h_2(v)$ or $h_3(v)$.

→ If an event $i \in \{2,3\}$ occurs v time units after reporting, then random payments $Y_i(v)$ are generated

(*) The corresponding interpretation is that over all event types in the claims pool, the proportion of event of type $i \in \{1,2,3\}$ is given by $\frac{h_i}{h_1 + h_2 + h_3}$. In addition, this gives information on the timing of these events, as for example, the time to wait between two intermediary payments (3) is $1/h_3$ in average, and the time to wait between two events (whatever their type) is $1/(h_1 + h_2 + h_3)$.
Zoom on the implementation steps
Forecasting: closed-formulas and simulation algorithm

- The total prediction error for the future claim trajectories includes the following sub-components, as classical for reserve risk:
 - **Process error**: pure stochasticity due to the intrinsic randomness of future paths,
 - **Estimation error**: linked to the uncertainty on the value of the parameters estimated

- Both types of error can be quantified by simulation or alternatively by using closed-formulas, see Boumezoued & Devineau (2017):

<table>
<thead>
<tr>
<th>Simulations</th>
<th>Closed-formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process error</td>
<td>Estimation error</td>
</tr>
<tr>
<td>Algorithm called thinning for the simulation of all types of events involved in claim path</td>
<td>Simulation based on the variance-covariance matrix of Maximum Likelihood Estimators (asymptotic normality result)</td>
</tr>
<tr>
<td>Closed-form formulas established in Boumezoued & Devineau (2017)</td>
<td>Asymptotic normality result and the use of the Delta method for obtaining closed-forms</td>
</tr>
</tbody>
</table>
Motor third party insurance case study
Motor third party case study

Database description

• The database used is made of Motor third party claims from 2010 to 2013. It comes from an emerging market with transactional data which reconciles to the financials.

• There are 238,747 observed claims in the database, including 234,454 settled claims and 4,293 reported but not yet settled (RBNS).

• Data structure and cleaning:
 • For each claim, one observation per quarter, from its reporting until its settlement.
 • Negative payments have been deleted.

• Claims are classified into 5 groups of initial reserves:

<table>
<thead>
<tr>
<th>Group</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Initial reserve = 0</td>
</tr>
<tr>
<td>B</td>
<td>0<Initial reserve ≤1000</td>
</tr>
<tr>
<td>C</td>
<td>1000<Initial reserve ≤10 000</td>
</tr>
<tr>
<td>D</td>
<td>10 000<Initial reserve ≤100 000</td>
</tr>
<tr>
<td>E</td>
<td>Initial reserve >100 000</td>
</tr>
</tbody>
</table>

Table OS
Claims with no payments
9,068
(565 open, 8,503 closed)

Claims with partial payments
35,095
(3,728 open, 31,367 closed)

Table payments
Payment but no OS: closed claims
194,584
Motor third party case study
Database description

- For each claim, we potentially have the following information:
 - Occurrence date
 - Declaration date
 - Payment dates and associated amounts
 - Closing date

Observed occurrence dates

Relatively constant (but for seasonality) occurrence frequency

Observed reporting delays

(zoom on the first 6 months)

Line of business with longer reporting delays

Until 48 months of reporting

Remark: 5 groups are considered here due to data at hand, however the method is flexible enough to consider other categorizations based on additional claim characteristics (clustering)

Reporting delays distribution (years) vs the initial reserve
• Calibration of occurrence frequencies and reporting delays are given below for each of the 5 groups considered:

Occurrence frequency

- The frequency of claims occurrence is captured (in red) by the model, **restoring the bias related to non-observation of IBNyR**.
- A calculation directly based on observation (in blue) would underestimate the frequency of claims occurrence.
- A joint estimation of the two parameters, which is more realistic, leads to higher parameters.

Average reporting delay

- The **reporting delays calibrated by the model** (in red) capture the specific reporting dynamics for each of the 5 groups.
- A 'naive' estimate (in blue) would lead to an underestimation of the reporting delay (claims with a low reporting delay are over-represented in the sample).
Motor third party case study
IBNR simulation, backtesting and comparison with Mack model

• In order to have a comparative dataset, the individual model and the Mack Chain Ladder model (1993) are calibrated on a common history of 4 years.

<table>
<thead>
<tr>
<th>Group</th>
<th>Individual Model</th>
<th>Mack Chain Ladder</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1675</td>
<td>2854</td>
</tr>
<tr>
<td>B</td>
<td>271</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>109</td>
<td>18</td>
</tr>
<tr>
<td>D</td>
<td>55</td>
<td>20</td>
</tr>
<tr>
<td>E</td>
<td>34</td>
<td>37</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2092</td>
<td>2667</td>
</tr>
</tbody>
</table>

• Higher **predictive power** of the individual model in this context

• The Mack Chain Ladder approach seems to **overestimate** the number of IBNyR claims

• The Mack Chain Ladder approach results in a **much larger uncertainty estimate**

Prediction of IBNyR number with individual model

Prediction of IBNyR number with Mack Chain Ladder model

Lack of sub-additivity of the MCL approach here, to be compared with the “stability by summation” property of the Individual model
Recall of the methodology

Payments and settlement events are modelled using three types of events (*):

1. settlement without payment at settlement
2. settlement with payment at settlement
3. payment without settlement

Each type of event (1, 2, or 3) occurs according to its specific intensity parameter $h_1(v)$, $h_2(v)$ or $h_3(v)$.

→ If an event $i \in \{2, 3\}$ occurs v time units after reporting, then random payments $Y_i(v)$ are generated

Interpretation

• Over all event types in the claims pool, the proportion of event of type $i \in \{1, 2, 3\}$ is given by $\frac{h_i}{h_1 + h_2 + h_3}$.

• This gives information on the timing of these events, as for example, the time to wait between two intermediary payments (3) is $1/h_3$ in average, and the time to wait between two events (whatever their type) is $1/(h_1 + h_2 + h_3)$

Example

Let’s take $h_1 = 0.5$, $h_2 = 3.5$, $h_3 = 1.0$.

- There are 10% of settlement without payment at settlement , 70% of settlement with payment at settlement and 20% of payment without settlement.
- The average time between two payments is 1/1=1 year.
- The time to wait between two events is $1/(0.5+3.5+1.0)=0.2$ years.
Motor third party case study
Calibration of payments and settlement frequencies (2/3)

- Computation of the frequency parameters related to payments and settlement.

1. **Settlement without payment**
 - Frequency - settlement without payment
 - E
 - D
 - C
 - B
 - A

2. **Settlement with payment**
 - Frequency - settlement with payment
 - E
 - D
 - C
 - B
 - A

3. **Payment without settlement**
 - Frequency - payment without settlement
 - E
 - D
 - C
 - B
 - A

- Whereas settlement without payment frequencies (1) are relatively similar among all 5 groups, different Group frequencies for settlements with payment (2) and payments without settlement (3) allow the model to reflect the claim history of each group.

- For instance, one can identify that group A is characterized by high frequency of settlement with payments (2) and without payments (1) but no payment without settlement (3). The model shows that claims with no initial reserve (A) either close without a payment or close with a unique payment. This contrasts with claims of group B through E, which have more frequent payments during the claims paths.
Motor third party case study
Calibration of payments and settlement frequencies (3/3)

- Refinement of the calibration to allow **for time-varying frequency parameters**: the frequencies are allowed to vary from one claim development period to the next.
 - This makes it possible to have a **more realistic model** and to anticipate the future dynamics of **claims according to their development time**.

- **Closing frequencies** (1) clearly depend on the group: for groups C to E, they are maximum for claims of age around 2 years;
- **Settlement with payment** (2) are higher the first year for all claims.
- **Payments (without settlement) frequency** (3) show a very different pattern: here they indicate that an IBNR (zero age) claim has **potentially more future payments** in the short term than claims that have been developed for 2 to 3 years.
Graphical Help Slide (as simple as possible)
From claim data to estimated # open claims during future periods

Data

incremental reported claims (Group 1)

Reported claims (Group 1) as at valuation dates

incremental open claims during period (Group 1)

\[
\begin{align*}
\lambda & = 13.0 \quad \text{13 claims per year} \\
\theta & = 1.1 \quad \text{Average delay is 0.91 years (1.0/1.1)} \\
0.91 & = (0 \times 6 + 1 \times 3 + 2 \times 3 + 3 \times 1) / 13
\end{align*}
\]
Motor third party case study

Computation of future payments for each type of claim

- The closed formulas that we have developed make it possible to instantaneously compute the expected payment amount and the associated variance (prediction error) for each type of claim (group) and according to its duration of development.

- For each group, the expected future aggregate payments decrease over the first two years, due to a combination of a decrease in payment frequency and a growth in the settlement frequency (see groups B to E in particular on the previous slides).

- Depending on the group, the expected payments increase or decrease as claims develop:
 - One can observe an increase in payments for group A, B and D, due to a lower settlement frequency without payment (1) and a higher frequency of settlement with payments (2).
 - One can observe a monotonic decrease in payments for group C and E because of the absence of payments with or without settlement.

- Based on the inherent CoVs, groups B and C are characterized by higher levels of uncertainty.
Motor third party case study
Computation of future payments for each type of claim

- We assess separately the IBNyR and RBNS reserves based on the individual model; this allows for computing the relative importance of the IBNyR both in number and amount:

- The repartition between IBNyR and RBNS depends a lot on the group. In group B, for example, the expected number of IBNyR represents around 6% of the number of claims number to be paid (both RBNS and IBNyR), but up to 27% of the amount to be paid.

- The use of the individual model makes it possible to quantify the IBNR reserves in a coherent and appropriate way, in particular for the lines of business with high reporting delays.

- We compare the total reserve provided by the individual model with the Chain-Ladder prediction:

- The comparison shows that a Chain-Ladder approach produces a much higher reserve (for groups A and E) or a slightly lower reserve (for groups B, C, and D) compared to the individual model.

- The differentiated estimation makes the individual model particularly attractive for LOBs with complex and/or atypical development.
Motor third party case study
Prediction error and comparison with Mack model

- The graph below represents the coefficient of variation (standard deviation divided by expectation) for the estimation error and the process error. It also makes the comparison between the individual model and the Mack model.

 ![Coeficients of variation graph]

- The estimation error is clearly reduced with the individual model, which is a fundamental property. The individual model takes advantage of the detailed claims information ('line-by-line') in order to calibrate more reliably, and relies on a more 'natural' specification of the model into several sub-blocks (occurrence, reporting, payment, flow, …) which avoids errors of parametrization at the aggregated level.

- The process error is also reduced in the individual model, thanks to its specification. In this case study, use of the Poisson is intrinsically less dispersed compared to the distribution-free Mack model.

Boumezoued, A., & Devineau, L. 2017. Individual claims reserving: a survey. (hal-01643929)

