Managing Uncertainty with Professionalism
Members of the Working Party

GIRO Workshop October 2015
Pre-reading for 2017 workshop F2

21 October 2015
Agenda

• Introduction
• Uncertainty Principles
• Uncertainty vignettes
• Conclusions and next steps
Agenda

• Introduction
• Uncertainty Principles
• Uncertainty vignettes
• Conclusions and next steps
The threats to good decision making

We have an inherent desire for certainty. But there are challenges for both decision-makers and experts:

- Different perspectives
- Understanding
- Bias
- Communication
- Question Clarity
- Recognition of Uncertainty
- Role of analysis and quantification

How might decision-makers and experts manage uncertainty with greater professionalism?
Working Party scope and ambition

• Decision makers and experts
• Technical and social aspects
• Practical and constructive
• Relevant beyond insurance

Aiming to help and influence behaviours
Agenda

• Introduction
• **Uncertainty Principles**
• Uncertainty vignettes
• Conclusions and next steps
Uncertainty Principles

Aim: A set of high level principles for all

Criteria:

- Catchy and memorable
- Meaningful and useful
- A little provocative?

<table>
<thead>
<tr>
<th>Themes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Face up to uncertainty</td>
</tr>
<tr>
<td>2. Deconstruct the problem</td>
</tr>
<tr>
<td>3. Don’t be fooled (un/intentional biases)</td>
</tr>
<tr>
<td>4. Models can be helpful, but also dangerous</td>
</tr>
<tr>
<td>5. Think about resilience</td>
</tr>
<tr>
<td>6. Bring people with you</td>
</tr>
</tbody>
</table>
Agenda

• Introduction
• Uncertainty Principles
• **Uncertainty vignettes**
• Conclusions and next steps
1. Face up to Uncertainty
Start with a decision…

Is the problem well defined?

Clear context, objectives and scope

Inherently vague or poorly explained / understood
1. Face up to Uncertainty
Start with a decision…
How much the problem can be quantified?

A modelling challenge

A resilience challenge
1. Face up to Uncertainty

What decisions fit where?

How should typical insurance decisions be categorised?

Do decision makers and experts agree?
And are they right?

A simplified framework but how do we face up to uncertainty?
2. Deconstruct the problem

Frameworks and Taxonomies

Uncertainty is an inherently complex subject. More constructive guidance and techniques can be achieved from deconstruction into more manageable issues.

The primary taxonomy identified follows the process of decision making:

- **Framing**
  - What is the context, the question and are both understood properly?

- **Analysis and Modelling**
  - Is the work understood: approach and key uncertainties/limitations? (In light of the question)

- **Reporting results**
  - What are the results and how should they be interpreted? (In light of the question and analysis)
2. Deconstruct the problem
Frameworks and Taxonomies

Other taxonomies of potential use include “The Assumption Onion”, seeking to highlight different types of assumptions (and associated sources of uncertainty)

A key point here is the many assumptions which are implicit and often overlooked.
2. Deconstruct the problem
Frameworks and Taxonomies

Another deconstruction, “The Ladder”, looks at the difference between risk (traditionally managed through ERM) and uncertainty (requiring a different approach?)

<table>
<thead>
<tr>
<th>People: Emotive or unpredictable reactions by stakeholders; many unaligned stakeholders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biases: Existence of biases that may be known or unknown - might include commercial, political, organisational or other bias</td>
</tr>
<tr>
<td>Obscurity: underlying risk exposures are unknown or obscured, “worst” outcome is unknown</td>
</tr>
<tr>
<td>Complexity: of the system or the model being investigated</td>
</tr>
<tr>
<td>Context: for decision is not well understood</td>
</tr>
<tr>
<td>[...]</td>
</tr>
<tr>
<td>Understanding: of the underlying risks and their distribution</td>
</tr>
<tr>
<td>Stability: of the regime, no latent risks</td>
</tr>
<tr>
<td>Data: credible data set(s)</td>
</tr>
</tbody>
</table>

21 October 2015
3. Don’t be fooled

Two way communication: playing the game

Real life negotiations are often characterised by:

- Different information and perspectives
- Complex payoffs or incentives

It might not be optimal for either party immediately to disclose all facts to the other.

How does this fit with professionalism and, in particular, the need for clear communication?
3. Don’t be fooled

Unintentional biases and traps

The overarching technique for responding to biases and traps is to stimulate Slow Thinking (Thinking Fast and Slow, Kahneman 2011)

Useful to consider in three categories:

<table>
<thead>
<tr>
<th>Latent Framing</th>
<th>Traps</th>
<th>Over-interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biases and heuristics that influence the perception of a problem and expectations of the outcome</td>
<td>Biases and heuristics that can deceive the decision maker and advisor</td>
<td>Biases and heuristics (rules of thumb) relating to reading too much or too little into data</td>
</tr>
</tbody>
</table>
3. Don’t be fooled
Unintentional biases and traps

The overarching technique for responding to biases and traps is to stimulate Slow Thinking (Thinking Fast and Slow, Kahneman 2011)

<table>
<thead>
<tr>
<th>Latent Framing</th>
<th>Traps</th>
<th>Over-interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• <strong>Affect heuristic</strong> the tendency for people to use their personal likes and dislikes to form beliefs about the world.</td>
<td>• <strong>Gambler’s fallacy</strong> the tendency of decision makers to underestimate the probability of a repetition of an event that has just happened.</td>
<td>• <strong>As if bias</strong> the potential to be optimistic when restating historic behaviour due to exposure revisions or past misfortune.</td>
</tr>
<tr>
<td>• <strong>Anchoring</strong> the process of using a starting point for evaluating or estimating unknown values.</td>
<td>• <strong>Illusion of validity</strong> the use of evidence to make confident predictions even after the predictive value of the evidence has been disproved.</td>
<td>• <strong>Availability heuristic</strong> the tendency for people to respond more strongly to risks when instances of those risks are more available to them (from memory, imagination, media, general social discourse, beliefs about the world).</td>
</tr>
<tr>
<td>• <strong>Confirmation bias</strong> tendency to seek evidence that is compatible with a given view.</td>
<td>• <strong>Law of Least Effort</strong> the tendency for people to seek the easiest way possible to complete a task.</td>
<td>• <strong>Causal thinking bias</strong> tendency for people to seek patterns and explanations rather than believe in chance.</td>
</tr>
<tr>
<td>• <strong>Halo effect</strong> the tendency to like (or dislike) everything about a person, including their opinions.</td>
<td>• <strong>Mean-reversion bias</strong> when decision makers assume that over time, a trend has to return to the mean.</td>
<td>• <strong>Hindsight bias</strong> the false belief that events are more predictable than they actually are.</td>
</tr>
<tr>
<td>• <strong>Myopic loss aversion</strong> a phenomenon whereby investors are particularly concerned with the potential for a short term loss, even in the context of long-term investments.</td>
<td>• <strong>Planning myopia</strong> the tendency to consider consequences over a too restricted time horizon.</td>
<td>• <strong>Illusion of skill</strong> the tendency for people to mistake good luck for skill.</td>
</tr>
<tr>
<td>• <strong>Trusting intuition</strong> the tendency for people to have a lot of confidence in their intuition.</td>
<td>• <strong>Primeing</strong> purposefully triggering thoughts or ideas.</td>
<td>• <strong>Small probabilities</strong> a group of biases that can arise when people reason about rare events. Small probabilities tend to receive too much, or too little weight depending on the decision context.</td>
</tr>
<tr>
<td>• <strong>Status quo bias</strong> the preference for things to stay the same.</td>
<td>• <strong>Temporal discounting</strong> the greater the delay to a future reward, the lower its present, subjective value.</td>
<td></td>
</tr>
</tbody>
</table>
3. Don’t be fooled
Reserving scenario example

Apparent scenario
Q. What should the level of reserves be?

Actuary’s knowledge and perspective:
• Assumptions, stated and unstated, underlying a proposed outcome
• Sensitivity of analysis to different modelling approaches
• Level of diligence in performing the work
• View on how far prepared for answer to move but still sign off
3. Don’t be fooled

Reserving scenario example

Actual scenario?

Q. What should the level of reserves be \textit{given currently X and pressure on profits for results announcement}?

Questioner’s knowledge and perspective:

- How much information relating to the business has been disclosed to the actuary, and what has been withheld
- How a particular outcome affects the bonus and career prospects of the questioner and other colleagues
- Guesses at the outcome from other colleagues (actuarial or not)
- The acceptable range for the answer, beyond which the actuary will be replaced by someone else more accommodating
3. Don’t be fooled
Reserving scenario example

Actual scenario?

Q. What should the level of reserves be given currently X and pressure on profits for results announcement?

Questioner and Actuary especially vulnerable to these unintentional biases and traps:

**Latent Framing**
- Anchoring
- Confirmation bias
- Status quo bias
- Trusting intuition

**Traps**
- Gambler’s fallacy
- Illusion of validity
- Law of Least Effort
- Mean-reversion bias

**Over-interpretation**
- Availability heuristic
- Hindsight bias
4. Models can be helpful, but also dangerous

Honing your “unknowability radar”

Important to

• Identify limits to knowledge
• Spot bad (actuarial) science
• Spot hard problems
  – Smooth v knotty v unknowable
• Work hard to make this instinctive…

Source: Compound Interest
http://www.compoundchem.com/2014/04/02/a-rough-guide-to-spotting-bad-science

21 October 2015
4. Models can be helpful, but also dangerous
Honoring your “unknowability radar”

Spotting hard problems…

<table>
<thead>
<tr>
<th>Smooth</th>
<th>Knotty</th>
<th>Unknowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reserving a stable book with good data</td>
<td>• Assessing reserve risk</td>
<td>• Predicting “1 in 200” events</td>
</tr>
<tr>
<td>• Assessing scenario severities, based on</td>
<td>• Assessing relative scenario likelihood</td>
<td>• Assessing scenario return periods</td>
</tr>
<tr>
<td>assumed events</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21 October 2015
4. Models can be helpful, but also dangerous

Prudence and Best Estimates

Ten losses: 10, 20, 21, 34, 48, 82, 84, 167, 241, 293

What is the 1 in 100 loss exceedence estimate?

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Information</th>
<th>1 in 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREEN</td>
<td>Losses from an exponential distribution with mean of 100</td>
<td>461</td>
</tr>
<tr>
<td>AMBER</td>
<td>Losses from an exponential distribution with unknown mean</td>
<td>Higher? True mean may be higher than 100</td>
</tr>
<tr>
<td>RED</td>
<td>No more information</td>
<td>Further concerns that true distribution may be different and also may change over time</td>
</tr>
</tbody>
</table>

Extra uncertainty in the red and amber scenarios relates to a lack of knowledge, rather than inherent randomness. Can this be quantified?
5. Think about resilience

Resilience thinking in action

• It’s the beginning of the credit crisis you are reviewing your company’s exposure to financial guaranty insurance, providing ‘credit enhancement’ for issuers of CDO’s relating to residential mortgage backed securities

• …. the underlying securities have started to downgrade and default

• …. it’s clear that existing views on the risk and valuation need to radically change. Available pricing and valuation models are no longer credible

You are given one weekend by the Board to value a potential sale of these securities. What do you do?
5. Think about resilience

The Resilience Toolkit

Controlling “exposures to adverse scenarios” - even those that are unknown, and highly unlikely – is known as resilience. Resilience can be overlooked in ERM …
6. Take people with you
Understanding, engagement and trust

What part of

\[
\begin{align*}
\tilde{v}_e^{(1)} &= -4\frac{e}{\alpha}v_e^{(1)} - \frac{1}{2}e\pi_e^{(1)}, \\
\pi_y^{(1)} &= \dot{\nu} - (1 - 3c_y^2)\frac{e}{\alpha}(\nu_e^{(1)} - \nu) - \frac{1}{2}e\frac{\nu}{1 + \nu} \pi_e^{(1)},
\end{align*}
\]

don’t you understand?
6. Take people with you
Engaging others: framing (1)

Two key elements:

1. The need for engagement of questioner
2. Importance of clarity over scope (context, question and approach)

Engagement top tips:

- Ask rather than just tell
- Put in broader context (what are the upside, downside implications?)
- Seek input on key judgements (e.g. advice on use of experts)
- Bring out “carrots” (positive benefits) and “sticks” (negatives to avoid)
6. Take people with you

Blip or Trend?

Scenario

Q. You are an actuary addressing the reserving committee at a commercial insurer. You have observed a spike in claims in a particular quarter and make a recommendation on whether this is a “blip” or a “trend”?

• Current financial pressures may colour management views and perspectives
• Ideally this possibility should have been addressed with the committee prior to this quarter. Important to educate on the range of possible outcomes and possible responses in advance
• If this is the first time the committee is exposed to this issue, its too late …
6. Take people with you

Understanding perceptions

The way the decision maker currently perceives the analysis

How the Actuary believes the decision maker should perceive the analysis

Analysis Essential

Problem Simple

Problem Complex

Analysis Not useful
6. Take people with you
Engaging others: discussing results (2)

Revisit scope, objectives (upside?)

Engage a range of specialists and non specialists in how to communicate

Avoid vagaries, use scenarios, numbers

How have results been validated against the real world?

Share a basic cognitive map of the problem

Listen to users, fill in their understanding

Discuss where experts agree, as well as where they differ

I think X, but the outcome is very uncertain. It could be Y or Z.

Don’t provide certainty where there is none

People tend to do better if things are kept simple.

How have results been validated against the real world?

21 October 2015
Agenda

• Introduction
• Uncertainty Principles
• Uncertainty vignettes

• Conclusions and next steps
Benefits of managing uncertainty

• Better decisions, including:
  – Ensuring relevant information is used
  – Appropriate understanding of risks
  – Saving time

• Reduced risk of misunderstanding

• Increased trust (eg Actuary of CEO; CEO of Actuary)
Uncertainty Principles

Aim: A set of high level principles for all

Criteria:
• Catchy and memorable
• Meaningful and useful
• A little provocative?

Themes
1. Face up to uncertainty
2. Deconstruct the problem
3. Don’t be fooled (un/intentional biases)
4. Models can be helpful, but also dangerous
5. Think about resilience
6. Bring people with you
Any questions or comments? Please get in touch

- Chris Bird
- Andrew Cox
- Tom Durkin
- Henry Johnson
- Tim Jordan
- Tony Jordan
- Neil Hilary
- Paul Kaye (co-chair)
- Natasha Regan
- Andrew Smith (co-chair)
- Richard Stock
- Melinda Strudwick (co-chair)
- James Turner
- Martin White (co-chair)
- Martin White (co-chair)
- Stuart White
- Robin Wilkinson
Any questions or comments?
Please get in touch

Co-chair email addresses:

• Paul Kaye  paul.kaye@aonbenfield.com
• Andrew Smith  andrewdsmith8@deloitte.co.uk
• Melinda Strudwick  melinda.strudwick@uk.pwc.com
• Martin White  Martin.White@RESMSL.co.uk
The views expressed in this presentation are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this presentation.

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. Unpaid volunteers have produced this presentation to promote discussion in the public interest. You are free to redistribute it or quote from it (with acknowledgement) without further permission or payment but you should quote from our work accurately and in context.