Is Solvency II Optimisation Dangerous?

Daniel Banks, P-Solve Investments
Shadrack Kwasa, P-Solve Investments
Unintended Regulatory Consequences - Pensions

Impact of Pension Scheme Funding Legislation 2005

As legislation takes hold Schemes pile into bonds

Source: P-Solve, Bloomberg
Unintended Regulatory Consequences – Life Insurance

Impact of Solvency II Legislation – Life Insurance

Spreads fall prior to Solvency II implementation

Source: P-Solve, Bloomberg
Is unseen investment risk accumulating in the market?

New Legislation

Solvency II
- Pillar I
- Pillar II
- Pillar III

General Insurers

SII motivated decisions lead to unintended consequences.

General Insurance Market

Accumulation of investment risk in the market

10 October 2017
Hypothesis

SII investment portfolio optimisation may expose the GI market to unintended consequences.

- TRUE
 - Regulations drive positioning – positioning is sub-optimal

- FALSE
 - SII portfolios exhibit consistent SII and Economic risks

10 October 2017
Testing our hypothesis: Background

1. Most General Insurers invest predominantly in bonds

2. Analysis performed over a range of economic scenarios

3. Bonds categorised by industry sector

4. Analysis restricted to standard formula

- Bonds
- Other

- Retail
- Utilities
- Finance
- Technology

- Downturn
- Recession
- Recovery

- Standard Formula
- Internal Model
Lenses through which you can view risk

Solvency II is part of a wider investment risk universe

What other lenses can we use to understand our investment portfolio and compare against Solvency II?
3 lenses to test our hypothesis

<table>
<thead>
<tr>
<th>Risk Lens</th>
<th>Risk Measure</th>
<th>Optimisation Objective</th>
<th>Lens in common use?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lens 1 = Volatility</td>
<td>Standard deviation of returns</td>
<td>Return</td>
<td></td>
</tr>
</tbody>
</table>
First Test of the hypothesis: Correlations

- Asset movements relative to each other are important.

<table>
<thead>
<tr>
<th>Correlations</th>
<th>Asset Movements</th>
<th>Investment Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ve</td>
<td>▶️▶️▶️</td>
<td>▼▼▼▼ Amplified</td>
</tr>
</tbody>
</table>
Default lens view on correlations

- Default correlation matrix covering the period from 2000 to 2017.

Source: P-Solve, Moody’s
Volatility lens view on correlations

- Volatility correlation matrix covering the period from 2000 to 2017.

Colour Key

<table>
<thead>
<tr>
<th>Correlation < 0</th>
<th>0 < Correlation < 1</th>
<th>Correlation = 1</th>
</tr>
</thead>
</table>

- Automotive
- Banking
- Capital Equipment
- Consumer Goods
- Finance
- Real Estate
- Healthcare & Pharmaceuticals
- High Tech Industries
- Media
- Retail
- Services Business
- Telecommunications
- Transportation
- Utilities

Source: P-Solve, Bloomberg

10 October 2017
Solvency II View on Correlation – Bond spreads

- Taking spread data over the period assumed when calibrating the standard formula for spread SCR.
- “EMU Corporates for different maturity buckets and rating classes between 1999 and February 2010.”

Source: P-Solve, Moody’s, EIOPA-14-322

10 October 2017
What does the correlation picture tell us?

<table>
<thead>
<tr>
<th>Lens</th>
<th>Bond universe correlations</th>
<th>Does diversifying across sectors reduce risk?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Both +ve and –ve correlations appear</td>
<td>✓</td>
</tr>
<tr>
<td>Volatility</td>
<td>Mid to high +ve correlation between sectors</td>
<td></td>
</tr>
<tr>
<td>Solvency II</td>
<td>High +ve correlation across sectors</td>
<td>✗</td>
</tr>
</tbody>
</table>

- In a Solvency II world investing across sectors does not reduce correlation risk.
- Consistent with spread SCR that assigns the same SCR to similar bonds regardless of sector.
Second Test of the Hypothesis: Portfolio Optimisation

- Long term portfolios optimised across economic cycles

- The Solvency II lens picks bonds across sectors due to the relationship between spread SCR and return.

- In most cases the lower the spread SCR the lower the return and vice-versa.

Source: P-Solve, Moody’s, Bloomberg

10 October 2017
How do the portfolios compare?

10 October 2017

Source: P-Solve, Moody’s, Bloomberg
Volatility vs Average Spread

Volatility vs Spread

Source: Moody's

10 October 2017
Comparing volatility to expected loss

Plotting expected losses against volatility shows no correlation between the two.

Source: Moody's
Are the results what we would expect?

<table>
<thead>
<tr>
<th>Lens</th>
<th>Any unexpected results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>• Relatively high spread SCR</td>
</tr>
<tr>
<td>Volatility</td>
<td>• Relatively high defaults</td>
</tr>
<tr>
<td></td>
<td>• No correlation between expected loss and volatility</td>
</tr>
<tr>
<td>Solvency II</td>
<td>None – nil benefit for sector diversification is in line with standard formula</td>
</tr>
</tbody>
</table>
What might influence the choice of lens?
What does this mean for insurers

Challenge

- Why do we use this lens?
- What is the impact of our choice?

Apply different lenses

- Do we understand all the risks we are exposed to?

Act

- Use lens to adapt portfolio to match the type of risks we want.

• Why do we use this lens?
• What is the impact of our choice?

10 October 2017
Finally…is Solvency II Optimisation Dangerous?

• The Solvency II lens, in this case, is not dangerous; although it may result in less sector diversification in a bond portfolio.

• The volatility lens produces more surprising results; this is more of a concern considering it is a widely used alternative to Solvency II.

• The choice of lens materially impacts the result.
The views expressed in this presentation are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this presentation.

The information and expressions of opinion contained in this presentation are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this presentation be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].