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Abstract 
 
 

This thesis discusses three approaches to pricing insurance – Poisson-Gamma GLM’s for claim 

frequency and claim severity, Tweedie Compound Poisson GLM’s and Artificial Neural 

Networks. A brief mathematical and theoretical background of each model is discussed, along 

with an explanation of the underlying processes and relevant hyperparameters. 4 approaches are 

presented to asses and compare each model – test data MSE, residual plot analysis, AIC, 5-fold 

cross-validation and risk premium ratio analysis to determine which groups of policyholders 

carried the most risk. The models were trained and tuned on a one-year vehicle damage 

insurance claims dataset, and optimal values were found for Tweedie and Neural Network 

hyperparameters. It was found that the Poisson-Gamma GLM was the most accurate, but only in 

terms of test data MSE. In all other approaches, the Tweedie GLM and the Neural Network were 

found to be comparable and, in some cases, better than the Poisson-Gamma GLM. In terms of 

goodness-of-fit, all models were comparable. Overall, it was concluded that autonomous 

machine learning algorithms such as Neural Networks hold great potential for actuaries in 

insurance ratemaking. 
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1. Introduction 

 

Today’s age is that of big data. Data rules every decision that is taken in almost every field, be it 

economics, education or engineering. Insurance is also no stranger to this fact. It has now 

become much easier to collect, record and transport large datasets. Further, with increasing 

computing power and the development of statistical modeling tools and techniques, it has now 

become easier to analyze such large datasets and draw meaningful conclusions from them. This 

is something the insurance industry can really rely on. Due to the increased volume of data, it is 

now possible to asses risks more comprehensively and, thus, make better decisions and 

predictions on how to mitigate the same.  

 

A key issue in insurance ratemaking is that if premiums are too high, consumers will turn to 

other companies to purchase insurance. However, if premiums are too low, companies will not 

earn enough premiums to cover claims. Further, risk characteristics must be chosen appropriately 

such that it is reasonable to charge different groups of consumers different rates based on them. 

In deciding rates, companies need to have an adequate estimation of the expected amount a 

policyholder might claim in case of an accident. Hence, for example, it would make sense to 

charge someone owning a new Rolls Royce a much higher premium for auto insurance than 

someone owning a used Toyota Corolla. Thus, one of the biggest challenges that has faced the 

insurance sector, and particularly actuaries, is – how do we comprehensively, fairly and 

adequately price insurance products taking into account a given set of risk characteristics of 
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policyholders? How do we make sure that the rates adequately mirror the amount of risk that 

these characteristics may present? 

 

The introduction of Generalized Linear Models, or GLM’s, has provided an answer to this. 

However, as is outlined later in this thesis, GLM’s require us to have some knowledge of the 

underlying patterns in the data. Actuaries are realizing the need to automate the process by which 

underlying patterns and/or anomalies are detected in data and meaningful predictions are 

generated on the basis of these detected patterns. This is leading to a resurgence of interest in 

Artificial Neural Networks as a ratemaking tool. With increased computing power and better 

deep learning libraries, it is becoming easier to train neural networks that are efficient and robust. 

This thesis explores the underlying theory behind GLM’s and Artificial Neural Networks and 

discusses the applications of these in pricing auto insurance.  

 

2. Theoretical and Mathematical Background 

2.1 Expected Risk Premium and Gross Premium 

Let’s assume a policyholder has n risk characteristics, such as age, gender, vehicle type and 

vehicle age. Then, his/her specific set of risk factors would be given by a 1 × 𝑛𝑛 vector. Let 

𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛  be the space of all such vectors. The process of insurance ratemaking aims to 

determine a policyholder’s expected claim cost, which is known as the expected risk 

premium. Let P be the expected risk premium for a given policyholder. Then, given a set of 

risk characteristics, we have 

𝑓𝑓(𝑥𝑥) = 𝐸𝐸[𝑃𝑃|𝑋𝑋 = 𝑥𝑥] 
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where 𝑥𝑥 corresponds to the 1 × 𝑛𝑛 vector for this policyholder, the observations of which 

contain the policyholder’s specific set of risk characteristics. The goal of statistical learning 

is to approximate the function 𝑓𝑓(𝑥𝑥) that can model this expected risk premium. 

This risk premium, however, is only one part of the overall rate that policyholders pay. The 

overall rate, known as Gross Premium, comprises of the risk premium along with loadings 

for profit, administrative, business and expected loss adjustment expenses.  

 

2.2 Generalized Linear Models (GLM’s) 

GLM’s are an extension of the classical linear model, which is defined by the following 

equation: 

𝑦𝑦𝑖𝑖 = ∑𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘 + 𝜖𝜖𝑖𝑖 (∀𝑖𝑖 ∈ [1, 𝑛𝑛]) 

where n is the number of observations in the data. 

 

A GLM consists of three components (Fox 2016) –  

- A random component, which specifies the conditional distribution of the response 

variable 𝑦𝑦𝑖𝑖 (ith of n observations), given the values of the explanatory variables. Thus, the 

random component specifies the distribution of 𝐸𝐸[𝑦𝑦𝑖𝑖 | {𝑥𝑥1, … , 𝑥𝑥𝑘𝑘}], where k is the number 

of explanatory variables in the data. This distribution usually belongs to the exponential 

family, which includes distributions such as Gaussian (normal), binomial, Poisson, 

gamma or the inverse Gaussian families. 

- A linear predictor, also known as the systematic component, which is given by 

𝜂𝜂𝑖𝑖 =  𝛼𝛼 +  𝛽𝛽1𝑋𝑋𝑖𝑖1 +  𝛽𝛽2𝑋𝑋𝑖𝑖2 + ⋯+ 𝛽𝛽𝑘𝑘𝑋𝑋𝑖𝑖𝑘𝑘 
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- A smooth and invertible linearizing link function, which relates the random component to 

the systematic component. In other words, the link function transforms the expected 

value of the response variable, 𝜇𝜇𝑖𝑖 =  𝐸𝐸[𝑦𝑦𝑖𝑖 | {𝑥𝑥1, … , 𝑥𝑥𝑘𝑘}, to the linear component. Thus, we 

have 

𝑔𝑔(𝜇𝜇𝑖𝑖) =  𝜂𝜂𝑖𝑖 =  𝛼𝛼 + 𝛽𝛽1𝑋𝑋𝑖𝑖1 +  𝛽𝛽2𝑋𝑋𝑖𝑖2 + ⋯+  𝛽𝛽𝑘𝑘𝑋𝑋𝑖𝑖𝑘𝑘 

Since the link function is invertible, we get 

𝜇𝜇𝑖𝑖 = 𝑔𝑔−1(𝜂𝜂𝑖𝑖) 

As a result, a GLM can be interpreted as a linear model of the transformation of the 

expected value of a response variable, or as a nonlinear regression model for the response 

variable.  

 

An important and useful property of distributions in the exponential family is that the 

conditional variance of 𝑦𝑦𝑖𝑖 is a function of its mean 𝜇𝜇𝑖𝑖 and, in some cases, a constant 

dispersion parameter 𝜙𝜙 (Fox 2016). The primary function of this dispersion parameter is 

to indicate the specific distribution that is used. Some common distributions, their 

associated link functions and their variance functions are summarized below. 

 

Distribution Link Function Variance Function 

Gaussian Identity 𝜙𝜙 

Binomial Logit 
𝜇𝜇𝑖𝑖(1 −  𝜇𝜇𝑖𝑖)

𝑛𝑛𝑖𝑖
 

Poisson Log 𝜇𝜇𝑖𝑖 

Gamma Inverse 𝜙𝜙𝜇𝜇𝑖𝑖2 
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Inverse Gaussian Inverse square 𝜙𝜙𝜇𝜇𝑖𝑖3 

 

Table 1: Summary of Exponential Family Distributions. Here, 𝜇𝜇𝑖𝑖 = 𝐸𝐸[𝑦𝑦𝑖𝑖  | 𝜂𝜂𝑖𝑖] and 𝑛𝑛𝑖𝑖 is the number of trials for the binomial 

distribution (Fox 2016). 

This thesis discusses the two primary approaches to using GLM’s in modeling risk 

premiums. These are the standard Poisson-Gamma model for claim frequency and 

severity, and the Tweedie compound Poisson model for expected losses. 

 

2.2.1 Poisson-Gamma Model for Claim Frequency and Claim 

Severity 

The standard approach consists of fitting 2 separate GLM’s. The first is a model with 

Claim Frequency as the dependent variable having a Poisson distribution with a log link. 

The second is a model with Claim Severity as the dependent variable having a Gamma 

distribution with a log link (Andersen et al. 2004) Since the gamma distribution cannot 

take non-positive values, the severity model is only fitted on the subset of the data for 

which severity > 0.  

 

Claim Frequency is given by the number of claims in a given period, usually one year. 

Hence, when Claim Frequency is modeled, the dependent variable is usually claim count. 

On the other hand, Claim Severity is the average loss associated with a single claim, i.e. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆𝑦𝑦 =  
𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇 𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖𝐶𝐶 𝐴𝐴𝐶𝐶𝑇𝑇𝐴𝐴𝑛𝑛𝑆𝑆

𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖𝐶𝐶 𝐶𝐶𝑇𝑇𝐴𝐴𝑛𝑛𝑆𝑆
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In this approach, the Poisson and Gamma models are fitted on the data, and the final risk 

premium is predicted as follows: 

𝐸𝐸𝑥𝑥𝐸𝐸𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸 𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅 𝑃𝑃𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝐴𝐴𝐶𝐶

= 𝐸𝐸𝑥𝑥𝐸𝐸𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸 𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖𝐶𝐶 𝐹𝐹𝑆𝑆𝑆𝑆𝐹𝐹𝐴𝐴𝑆𝑆𝑛𝑛𝐸𝐸𝑦𝑦 (𝑓𝑓𝑆𝑆𝑇𝑇𝐶𝐶 𝑃𝑃𝑇𝑇𝑖𝑖𝑅𝑅𝑅𝑅𝑇𝑇𝑛𝑛 𝐶𝐶𝑇𝑇𝐸𝐸𝑆𝑆𝑇𝑇)

× 𝐸𝐸𝑥𝑥𝐸𝐸𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸 𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆𝑦𝑦 (𝑓𝑓𝑆𝑆𝑇𝑇𝐶𝐶 𝐺𝐺𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇 𝐶𝐶𝑇𝑇𝐸𝐸𝑆𝑆𝑇𝑇) 

 

2.2.2 Tweedie Compound Poisson model 

A tweedie distribution is one which satisfies  

𝑉𝑉(𝜇𝜇) = 𝜇𝜇𝑑𝑑 

 where d is a parameter that represents the distribution of the response variable, and 𝜇𝜇 is 

the mean of the response variable. 

 

This approach assumes that expected claim costs follow a compound Poisson distribution 

(Smyth & Jørgensen 2002). The approach is as follows: 

 

Assume 𝑁𝑁𝑖𝑖 is the observed claim count for the ith category and let 𝑍𝑍𝑖𝑖 be the observed 

claim amount for that category. Let 𝑤𝑤𝑖𝑖 be the number of units at risk for the given 

category (let this be 1 policy year). Then, observed claim cost for this category, 𝑌𝑌𝑖𝑖, is 

given by  

𝑌𝑌𝑖𝑖 =  
𝑍𝑍𝑖𝑖
𝑤𝑤𝑖𝑖

= 𝑍𝑍𝑖𝑖   

since we assume 𝑤𝑤𝑖𝑖 = 1. Thus, we are now directly modeling claim cost instead of 

modeling frequency and severity separately.  
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We assume that that 𝑁𝑁𝑖𝑖 follows a Poisson distribution with mean 𝜆𝜆𝑖𝑖, and claim size 

follows a Gamma distribution with mean 𝜏𝜏𝑖𝑖 and shape parameter 𝛼𝛼 (Smyth & Jørgensen 

2002). Them the conditional distribution of 𝑌𝑌𝑖𝑖 given 𝑁𝑁𝑖𝑖 also follows a Gamma 

distribution with mean 𝑁𝑁𝑖𝑖𝜏𝜏𝑖𝑖, whenever 𝑁𝑁𝑖𝑖 > 0.  

 

The Tweedie approach assumes that 𝜇𝜇𝑖𝑖 = 𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝜆𝜆𝑖𝑖𝜏𝜏𝑖𝑖, with the variance of the response 

variable follows an exponential distribution as 𝜇𝜇𝑖𝑖 varies. Hence, we have  

𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝜙𝜙𝜇𝜇𝑖𝑖
𝑝𝑝 

where p is the distribution parameter (also referred to as the variance power parameter), 

given in terms of the Gamma shape parameter as 

𝐸𝐸 =  
𝛼𝛼 + 2
𝛼𝛼 + 1

 

This implies that, since 𝛼𝛼 >  0, we must have 1 < 𝐸𝐸 < 2 for the distribution to be 

compound Poisson.  

 

Using the conditional variance method, the variance of 𝑌𝑌𝑖𝑖 can be calculated directly as 

𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝐸𝐸𝑁𝑁𝑖𝑖𝑉𝑉(𝑌𝑌𝑖𝑖|𝑁𝑁𝑖𝑖) + 𝑉𝑉𝑁𝑁𝑖𝑖𝐸𝐸(𝑌𝑌𝑖𝑖|𝑁𝑁𝑖𝑖) = �
1
𝛼𝛼

+ 1� 𝜆𝜆𝑖𝑖𝜏𝜏𝑖𝑖2 

Equating this to the existing formula for the variance, we get 

𝜙𝜙𝜇𝜇𝑖𝑖
𝑝𝑝 =  �

1
𝛼𝛼

 + 1� 𝜆𝜆𝑖𝑖𝜏𝜏𝑖𝑖2 

 Now, we know, 

𝐸𝐸 =  
𝛼𝛼 + 2
𝛼𝛼 + 1

 

⟹ 𝛼𝛼 =  
2 − 𝐸𝐸
𝐸𝐸 − 1
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 This gives 

𝜙𝜙𝜇𝜇𝑖𝑖
𝑝𝑝 =  

1
2 − 𝐸𝐸

𝜇𝜇𝑖𝑖𝜏𝜏𝑖𝑖2 

⟹ 𝜙𝜙 = �
1

2 − 𝐸𝐸
�𝜇𝜇𝑖𝑖

1−𝑝𝑝𝜏𝜏𝑖𝑖2 

Using the fact that 𝜇𝜇𝑖𝑖 =  𝜆𝜆𝑖𝑖𝜏𝜏𝑖𝑖, we get 

𝜙𝜙 =  �
1

2 − 𝐸𝐸
� 𝜆𝜆𝑖𝑖

1−𝑝𝑝𝜏𝜏𝑖𝑖
2−𝑝𝑝  

Thus, we can estimate the dispersion parameter as a function of 𝜆𝜆𝑖𝑖, 𝜏𝜏𝑖𝑖 and the variance 

power parameter 𝐸𝐸 (Smyth & Jørgensen 2002). 

 

2.2.3 Offsets 

In GLM theory, an offset is a variable whose coefficient is constrained to 1 (Yan et al. 

2009). The standard model is given by 

𝑌𝑌 = 𝛽𝛽𝑋𝑋 + 𝜖𝜖 

where 𝑋𝑋 is an 𝑛𝑛 ×  (𝑅𝑅 + 1) matrix of the input variables, and 𝛽𝛽 is the matrix of model 

coefficients. When an offset is added to the model, the above equation is modified as 

follows –  

𝑌𝑌 = 𝛽𝛽𝑋𝑋 +  𝜁𝜁 + 𝜖𝜖 

Here, 𝜁𝜁 is the offset variable added (Yan et al. 2009). 
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In a GLM, the response variable is transformed by the link function to linearize an 

otherwise multiplicative model. Hence, the offset needs to be in the same scale as the 

model variables. For example, if a logarithmic link is used, we get  

 

log(𝐸𝐸[𝑌𝑌]) =  𝛼𝛼 +  𝛽𝛽1𝑋𝑋𝑖𝑖1 +  𝛽𝛽2𝑋𝑋𝑖𝑖2 + ⋯+  𝛽𝛽𝑘𝑘𝑋𝑋𝑖𝑖𝑘𝑘 + log (𝜁𝜁) 

 

where 𝜁𝜁 represents the offset variable. Since we use a logarithmic link function, the offset 

variable is also log-transformed.  

 

2.3 Artificial Neural Networks 

Artificial Neural Networks (ANN’s) are a type of computing system built based on the 

construction of the human brain. Just as the human brain learns and remembers by pattern 

matching and can apply these learned patterns to new situations by association, ANN’s too 

can detect patterns within data and apply these patterns to predict new cases. An ANN is a 

structured sequential model. It consists of an input layer, one or multiple hidden layers, and 

an output layer. Each layer comprises of neurons, which are the basic computing units in an 

ANN model. Neurons from each layer are connected to those from the next layer, thereby 

creating a network structure. Each neuron past the input layer receives data from the previous 

layer as a weighted sum of outputs from the previous layer. Each neuron in the input layer 

represents an input variable, and each neuron in the output layer represents an output 

variable. Thus, in the case of regression, there is one neuron in the output layer.  
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Data that comes into every neuron is transformed by an activation function. The result is then 

passed on to the next layer. Thus, in an ANN, every neuron in the hidden layer is a linear 

combination of the outputs from the previous neuron, transformed by the activation function 

as follows (Kuhn & Johnson 2016) –  

ℎ𝑘𝑘(𝑥𝑥) = 𝑔𝑔(𝛽𝛽0𝑘𝑘 + �𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖𝑘𝑘)
𝑛𝑛

𝑖𝑖=1

 

where ℎ𝑘𝑘(𝑥𝑥) represents the kth neuron in a hidden layer, and 𝛽𝛽𝑖𝑖𝑘𝑘 represents the coefficient of 

the ith previous-layer neuron on the kth neuron in a hidden layer. In the case of the first hidden 

layer, this represents the effect of the ith predictor on the kth neuron in a hidden layer. Here, 

𝑔𝑔( ∙ ) represents the activation function, which transforms the linear combination of inputs 

from one layer and outputs it to the next layer.  A sample ANN structure is shown below. 

 

 

Figure 1: A sample ANN structure. In this model, information flows from the input layer to the output layer in the form of 

connections between neurons. Since information only flows in one direction, this type of ANN is called a Feed Forward 

ANN. 
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The activation function should be bounded, monotonic, continuous and differentiable 

everywhere. Some examples of good activation functions are summarized below. 

 

Function 𝒈𝒈(𝒙𝒙) 

Sigmoid 1
1 + 𝑆𝑆−𝑥𝑥

 

Hyperbolic Tangent 𝑆𝑆−2𝑥𝑥 − 1
𝑆𝑆−2𝑥𝑥 + 1

 

Gaussian 𝑆𝑆−
𝑥𝑥2
2  

Identity 𝑥𝑥 

 

Table 2: Some commonly used ANN activation functions 

 

2.3.1 Backpropagation and Loss Optimization 

The weights in an Neural Network model are typically learned by the backpropagation 

algorithm, which is a 2-stage iterative process. At first, the weights are randomly 

initialized. In the forward propagation stage, the training data is passed into the model, and 

the randomly initialized weights are used to generate predictions from the model. These 

predictions are then compared with the observed values of the response variable. This 

comparison is done based on a pre-defined 𝐿𝐿. This could be the any metric that compares 

the deviation between the predicted and observed values of the response variable in the 

training data, such as the training MSE.   
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In the second stage, the weights are revised such that the training error is lowered. Thus, 

the model tries to minimize the gradient of the loss, given by 

∇𝐿𝐿 =  
𝛿𝛿𝐿𝐿
𝛿𝛿𝛿𝛿

 

Here, 𝐿𝐿 is the loss function (such as the training MSE) and 𝛿𝛿 is the weights and bias 

parameters in the network (Rumelhart et al. 1986).  The model stops when one of two 

things are attained – either a minimum is reached in the gradient function above, or the 

model runs for a pre-determined number of iterations, or epochs, at which point it is 

deliberately stopped.  

 

2.3.2 Optimization by Stochastic Gradient Descent 

Stochastic Gradient Descent is an optimization technique implemented to make the 

learning algorithm run faster. In this process, the training error is not calculated on the 

entire training dataset at each iteration. Instead, the loss function is computed for one 

randomly selected observation, and a step is taken in the negative direction of the gradient 

with respect to the selected observation (Hastie et al. 2009). Thus, the weights are revised 

in the direction in which the loss function is minimized the most. The size of the step taken 

is known as the learning rate. This is one of the most important hyperparameters in an 

ANN. The learning rate gives us an estimate of how drastically the model should “change 

its mind” in revising the weights in the direction in which the loss function is minimized 

the most. The higher its value, the larger the step taken in this direction.  
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Another way to make the model train faster is to run it on small subsets, or batches, of the 

training data at every iteration instead of training it on the entire training data. The batch 

size to be taken is another hyperparameter that can be tuned. 

 

3. Model Assessment and Comparison 

3.1 Test MSE 

The model is run on the entire training dataset, and predictions are generated for the test dataset. 

The observed values and predicted values are compared for the test dataset by computing the 

Mean Squared Error (MSE) on the test dataset, as follows.  

 

Let 𝑌𝑌𝑖𝑖 be the observed value of the response variable and let 𝑌𝑌𝚤𝚤�  be the predicted value. Then, 

the test MSE is given by 

𝑀𝑀𝑆𝑆𝐸𝐸 =  
1
𝑛𝑛

 ��𝑌𝑌𝚤𝚤� − 𝑌𝑌𝑖𝑖�
2

𝑛𝑛

𝑖𝑖=1

 

The test MSE’s are computed for every model trained on the data. Since the MSE gives an 

indication of the predictive power of the model, the model with the lowest test MSE is the most 

accurate. 

 

3.2 Akaike Information Criterion (AIC) 

AIC is given by the formula 

𝐴𝐴𝐴𝐴𝐶𝐶 =  −2 × log (ℒ�𝜃𝜃��𝑦𝑦� + 2𝐾𝐾 
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where ℒ�𝜃𝜃��𝑦𝑦� is the likelihood function for the distribution of the model parameters, given the 

data, and K is the number of model parameters, which is given by one plus the number of 

explanatory variables passed into the model. The AIC gives an estimate of the expected relative 

distance between a fitted model and the unknown true mechanism that actually generated the 

observed data (Burnham & Anderson 2002). In other words, the AIC gives an estimate of the 

goodness of fit of a model. The lower the AIC, the better the model can explain the variation 

in the data.  

 

The AIC can also be approximated by using the residual sum of squares as 

𝐴𝐴𝐴𝐴𝐶𝐶 = 𝑛𝑛 × ln �
𝑅𝑅𝑆𝑆𝑆𝑆
𝑛𝑛
� + 2𝐾𝐾 

where RSS is the sum of the squared residuals from the model, and n is the number of rows in 

the test data (Panchal et al. 2010).  

 

3.3 Risk Premium Ratios 

The risk premium ratio is given by 

𝑂𝑂𝑂𝑂𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸 𝐶𝐶𝑇𝑇𝑇𝑇𝑖𝑖𝐶𝐶𝑅𝑅 𝐶𝐶𝑇𝑇𝑅𝑅𝑆𝑆
𝐸𝐸𝑥𝑥𝐸𝐸𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸 𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅 𝑃𝑃𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝐴𝐴𝐶𝐶

 

where the Observed Claims Cost comes from the dataset, and the Expected Risk Premium is 

predicted by the model. For every model, this is calculated over the entire dataset, in order to 

determine whether or not the rates are actuarially fair, from a profitability and adequacy point 

of view. The risk premium ratio is also calculated for every risk factor in the dataset, where 

the values are compared between categories in order to determine which risk groups are riskier 
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than others. It is expected that all models will more or less show the same patterns in terms of 

mirroring the differences in risk between different categories of rating factors.  

 

3.4 Cross-Validation 

In this iterative approach, the data is randomly divided into k groups, called folds. The folds 

are created such that no 2 folds contain the same data points. In other words, the folds are 

created such that there is no correlation between them. In every iteration, one of the folds is 

left out as the validation set, and the model is run on the remaining k – 1 folds. (James et al. 

2013) The MSE is then computed for the fold that is left out, as is described above. This process 

is run k times, where, in every run, one of the folds is left out. The k-fold cross validation error 

is then computed as the mean of the errors computed for each fold, i.e. 

𝑀𝑀𝑆𝑆𝐸𝐸𝑐𝑐𝑐𝑐 =  
1
𝑅𝑅

 �𝑀𝑀𝑆𝑆𝐸𝐸𝑗𝑗

𝑘𝑘

𝑗𝑗=1

 

where 

𝑀𝑀𝑆𝑆𝐸𝐸𝑗𝑗 =  
1
𝑛𝑛

 ��𝑌𝑌𝚤𝚤� − 𝑌𝑌𝑖𝑖�
2

𝑛𝑛

𝑖𝑖=1

 

for the jth fold.  

 

Cross-validation gives us a good idea of how well a model would perform on an independent 

dataset (James et al. 2013). This is particularly useful when we are tuning the hyperparameters 

of a model, such as the variance power parameter in a Tweedie GLM, or the batch size and 

learning rate in an ANN.   
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4. Applications to Insurance Data 

4.1 The Data 

The data used contains policyholder-level information on one-year vehicle insurance policies, 

taken out in 2004 or 2005. It comes from the insuranceData package in R. It contains 67,856 

rows, each of which corresponds to a unique policyholder. A description of the rating factors 

is outlined below. 

 

Rating Factor Description 

veh_value 
Vehicle value in $10,000’s; a continuous 

variable 

veh_body 

Vehicle body type; a categorical variable that 

contains the following levels: BUS, CONVT, 

COUPE, HBACK, HDTOP, MCARA, 

MIBUS, PANVN, RDSTR, SEDAN, 

STNWG, TRUCK and UTE 

veh_age 

A categorical variable with levels 1, 2, 3 and 

4. Level 1 represents the newest vehicles and 

4 representing the oldest vehicles 

gender 

A categorical variable with 2 groups – F 

(Female) and M (Male); represents gender of 

driver/vehicle owner 
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area 

A categorical variable representing the 

location of the vehicle owner; grouped into 6 

categories – A, B, C, D, E and F 

agecat 

Age of vehicle owner grouped into 6 

categories – 1, 2, 3, 4, 5 and 6, with 1 

representing the youngest owners and 6 

representing the oldest 

 

Table 3: A description of the rating factors in the dataset 

 

There are three response variables that are modeled in this dataset. The primary response 

variable is claimcst0, which gives the observed claim cost when there is a claim. The variable 

numclaims gives the claim count when there is a claim. If there is no claim, then both 

claimcst0 and numclaims are 0. The third variable is severity, which is created in the dataset 

as per the formula 

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆𝑦𝑦 =  
𝐸𝐸𝑇𝑇𝑇𝑇𝑖𝑖𝐶𝐶𝐸𝐸𝑅𝑅𝑆𝑆0
𝑛𝑛𝐴𝐴𝐶𝐶𝐸𝐸𝑇𝑇𝑇𝑇𝑖𝑖𝐶𝐶𝑅𝑅

 

If there is no claim, then the value of severity is set to 0. 

 

The distribution of claim costs is highly asymmetric, with almost all the values at 0, and very 

few values above 0, as is seen in the histogram below. 
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Figure 2: Histogram of Raw Claim Sizes 

 

On the other hand, the distribution of the log of claim sizes seems to much more symmetric, 

although still slightly left skewed. 

 

 Figure 3: Histogram of log-transformed Claim Sizes 
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The data was aggregated over the rating factors outlined in Table 3, and the aggregated   

dataset contains 45,220 observations. 80% of the data was used as the training/validation 

dataset, and 20% was used as the test dataset.  

 

4.2 The Models 

4.2.1 Poisson-Gamma GLM 

The Poisson model was fitted with numclaims as the response variable and the rating 

factors in Table 3 as the explanatory variables. A logarithmic link was used. The offset 

was set to the log of the variable exposure. Since exposure measures propensity to risk, it 

has a direct interaction with claim frequency, which cannot be modeled. It is a constant 

term that is added to the linear predictor without the term being estimated. Hence, its 

effect is added outside of the model as an offset.  

 

The Gamma model was fit with severity as the explanatory variable and the rating factors 

outlined in Table 3 as the explanatory variables. The variable exposure was not used 

since it has no effect on the average loss per claim. A logarithmic link was used again. 

 

4.2.2 Tweedie GLM 

A log-link Tweedie compound Poisson GLM was fitted, with claimcst0 as the 

explanatory variable. The log of exposure was added as an offset to take into account the 

claim frequency side of the compound model. For the variance power parameter, the 

following values were tested: 

𝐸𝐸 = {1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9} 
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The optimal tweedie variance power parameter was found by maximum likelihood 

estimation. Using the formula described in Section 2.2.2, the algorithm computes the 

value of 𝜙𝜙 for each of the given values of 𝐸𝐸. It then computes the value of the log-

likelihood function for each value of 𝐸𝐸, using the distribution approximated by 𝜙𝜙, and 

uses these to estimate the optimal value of 𝐸𝐸. The results are shown below. 

 

𝒑𝒑 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝝓𝝓 𝑳𝑳𝑳𝑳𝒈𝒈 − 𝒍𝒍𝑬𝑬𝒍𝒍𝑬𝑬𝒍𝒍𝑬𝑬𝒍𝒍𝑳𝑳𝑳𝑳𝑬𝑬 𝒂𝒂𝑬𝑬 𝒑𝒑 

1.1 816.24 −5.2 × 105 

1.2 702.71 −4.57 × 105 

1.3 524.23 −4.33 × 105 

1.4 376.5 −4.22 × 105 

1.5 271.47 −4.1755 × 105 

1.6 201.81 −4.1764 × 105 

1.7 180.52 −4.27 × 105 

1.8 No convergence No convergence 

1.9 No Convergence No Convergence 

 

Table 4: Log-likelihood estimates of Tweedie variance power parameter and estimates of dispersion parameter 

 

A smoothed plot of the log-likelihood values for different value of 𝐸𝐸 is also shown below. 



 24 

 

Figure 4: Plot of log-likelihood values for different value of 𝐸𝐸  

 

The most optimal value of 𝐸𝐸 was found to be 1.553. This was, thus, the variance power 

parameter used to train the Tweedie compound Poisson model with a log link.  

 

4.2.3 Artificial Neural Networks (ANN’s) 

4.2.3.1 Data Preparation 

There were two additional steps that were taken to prepare the data before training an 

ANN on it. Unlike GLM’s, ANN models cannot handle categorical data. Hence, 

categorical variables had to be manipulated so that they are passed into the model as 

numbers. This was done by a process known as one-hot encoding, which transforms 

categorical variable into numerical variables to be used in machine learning 

algorithms to improve prediction accuracy and efficiency. Categorical variables were 

identified in the data, and dummy indicator variables were created for each unique 
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category in these variables. Thus, for example, if a certain row in the data has a 

vehicle body of BUS, the dummy indicator for veh_body_BUS was assigned a value 

of 1. Wherever the body type was not bus, this variable was assigned a value of 0. As 

a result of dummification, we now had 32 nodes in the input layer. 

 

For this model, exposure was added as a predictor variable. Since we do not assume 

anything about the underlying distribution of the response variable and the patterns in 

the data, we use exposure as an input node rather than estimating it outside the model 

as an offset, as was done in the case of the GLM’s. Thus, in total, we had 33 nodes in 

the input layer. 

 

The next step in transforming the data was to normalize it. Since all the variables 

have difference scales, it is advisable to bring them all to one common scale in order 

to improve efficiency and prediction accuracy. The data was, thus, min-max scaled. 

As a result, all the data was in the range of (0, 1). This was done for each row 

according to the formula 

𝑥𝑥𝑖𝑖𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 =  
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚

𝑥𝑥𝑀𝑀 − 𝑥𝑥𝑚𝑚
 

where 𝑥𝑥𝑀𝑀 and 𝑥𝑥𝑚𝑚 are vectors representing the maximum and minimum values of each 

variable in the data, respectively, and 𝑥𝑥𝑖𝑖 is a vector representing the ith row in the data, 

i.e. the vector [𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑘𝑘] where k is the number of predictor variables in the data. 

The predictions were scaled back by applying the inverse of the above formula to the 

same. 
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4.2.3.2 Choice of Activation Function 

The sigmoid activation function was chosen to train the neural networks. The function 

is given by 

𝑓𝑓(𝑥𝑥) =  
1

1 + 𝑆𝑆−𝑥𝑥
 

There are two reasons for choosing the sigmoid activation function. First, we do not 

expect any negative risk premiums. The range of the sigmoid function is (0, 1), which 

is best suited for positivity. This is also the motivation behind normalizing the data to 

the (0, 1) range.  

 

The choice of the sigmoid activation function is also the result of Cybenko’s Universal 

Approximation Theorem, which states that any real, continuous and bounded 

multivariate function can be approximated by a feed forward ANN with one hidden 

layer and a sigmoidal activation function, provided that there are no constraints placed 

on the number of nodes and the size of the weights (Cybenko 1989). The general form 

of a sigmoidal activation function is given by the following graph. 

 

Figure 5: General form of sigmoidal functions (Lowe & Pryor 1996) 
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4.2.3.3 Choice of Network Architectures and Hyperparameters 

In the space of possible neural network architectures, there are an infinite number of 

models that can be trained. For the scope of this thesis, the following architectures 

were chosen: 

 

Single-layer architectures: (33-40-1), (33-80-1), (33-100-1), (33-120-1) 

Double-layer architectures: (33-80-40-1), (33-100-60-1), (33-120-60-1) 

 

For each model, the baseline value of learning rate was set to 0.05, and that of batch 

size was set to 8000. A 5-fold cross-validation was performed in order to determine 

its predictive power. The CV MSE’s for the above tested models are shown below. 

 

Model MSE 

33-40-1 1.8 × 106 

33-80-1 1.68 × 106 

33-100-1 1.65 × 106 

33-120-1 1.64 × 106 

33-80-40-1 1.72 × 106 

33-100-60-1 1.67 × 106 

33-120-60-1 1.78 × 105 

 

Table 5: 5-fold CV Results on Baseline Model Architectures 
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In general, two conclusions can be made. First, we see that, in general, networks with 

two hidden layers perform better than those with one hidden layer. Second, for both 

single-layer and double-layer networks, the more number of nodes there are in the first 

hidden layer, the better the model performance. Given the baseline values of the 

hyperparameters outlined above, the (33-120-60-1) model performs best. Hence, this 

was chosen for further tuning of hyperparameters. For learning rate and batch size, the 

following values were considered. 

 

Learning Rate: 0.01, 0.05, 0.1  

Batch size: 3000, 8000, 10000 

 

For every value of batch size, 3 models were tested, one for every value of learning rate 

considered. Thus, for this step, 9 models were tests. A 5-fold CV was performed on 

each model in order to determine and compare predictive accuracy.  

 

Batch Size Learning Rate MSE 

3000 0.01 3.61 ×  105 

3000 0.05 7.1 ×  104 

3000 0.1 3.38 ×  104 

8000 0.01 9.67 ×  105 

8000 0.05 1.78 ×  105 

8000 0.1 8.96 ×  104 

10000 0.01 1.26 ×  106 
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10000 0.05 2.43 ×  105 

10000 0.1 1.17 ×  105 

 

Table 6: 5-fold CV Results for ANN Hyperparameter Tuning 

 

The CV error was lowest for the model with batch size 3000 and learning rate 0.1. 

Thus, the best neural network model was found to be a (33-120-60-1) model with 

batch size 3000 and learning rate 0.1.  

 

5. Model Comparison 

5.1 Test MSE 

Each of the 3 models was fitted on the test dataset, and the MSE’s were found. The results 

are summarized below. 

 

Model Test MSE 

Poisson-Gamma GLM 2.21 × 106 

Tweedie GLM 2.22 × 106 

Neural Network 2.23 × 106 

 

Table 7: Test MSE’s 

 

The above results show that, in terms of precision, the Poisson-Gamma GLM performs better 

than the Tweedie GLM, which in turn performs better than the Neural Network model. 
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A plot of the residuals against the fitted values is shown below for all three models. 

 

Figure 6: Poisson-Gamma Residual Plot 

 

 

Figure 7: Tweedie GLM Residual Plot 
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Figure 8: Neural Network Residual Plot 

 

The residual plots seem to indicate that the Tweedie GLM is a better fit than the Poisson-

Gamma GLM on the test dataset. There is clearly much less dispersion in the residuals in the 

Tweedie plot, where the residuals are a lot more clustered around 0 for different predicted 

values of risk premium. Further, the Poisson-Gamma residuals show slightly more dispersion 

than the ANN residuals. As a result, just by looking at the test MSE’s, it is hard to accurate 

compare the predictive power of these models. 

 

5.2 5-fold Cross Validation 

A 5-fold cross validation was performed on all 3 models using the entire dataset. This was 

done to generate a better picture of the overall predictive power of each model than the test 

MSE and residual plots. A 5-fold cross-validation was chosen in order to minimize variance-

bias trade-off. While a 10-fold cross-validation would also achieve this goal, this would 
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computationally be more time-consuming. The cross-validation MSE’s are given the table 

below. 

 

Model CV MSE 

Poisson-Gamma GLM 1.69 × 106 

Tweedie GLM 1.71 × 106 

ANN 1.71 × 106 

 

Table 8: 5-fold CV MSE’s 

 

The above results show that a Poisson-Gamma GLM seems to perform slightly better than both 

the Tweedie GLM and the ANN. For all models, the CV MSE’s are lower than the test data 

MSE’s. The cross-validation confirms the initial conclusion that, in terms of predictive 

accuracy, the Poisson-Gamma GLM is slightly better than the other models. On the other hand, 

while the test MSE’s show that the Tweedie GLM performs better than the Neural Network, 

the cross-validation shows that both models are equally accurate. 

 

5.3 AIC 

The AIC’s for the Poisson-Gamma model, Tweedie GLM and the most optimal Neural 

Network are summarized below. 

 

Model AIC 

Poisson-Gamma GLM 1.32 × 105 
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Tweedie GLM 1.32 × 105 

ANN 1.32 × 105 

 

Table 9: AIC Values 

 

The AIC’s are almost the same for all 3 models. This indicates that the all models can relatively 

equally approximate the distance between the predicted trends and the actual trends in claim 

costs. In other words, the AIC does not seem to present any distinctions between the models 

in terms of goodness-of-fit. Further analysis is, thus, needed. 

 

5.4 Risk Premium Ratios 

The aggregated risk premium ratios for all models are given in the table below. The aggregated 

risk premium ratio was calculated as the ratio of the total claim cost to the total expected risk 

premium in the entire test dataset. 

 

Poisson-Gamma GLM Tweedie GLM ANN 

1.114 0.917 0.893 

 

Table 10: Aggregated Risk Ratios 

 

This ratio is greater than 1 for the Poisson-Gamma model, and less than 1 for the Tweedie 

GLM and the ANN. Hence, from an actuarial standpoint, if only the expected risk premium is 

considered, the Tweedie GLM and the ANN are the adequate and fair models. From a 

profitability standpoint, the ANN seems to be the best model, since it has the lowest risk 
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premium ratio. In other words, given the expected risk premiums and claim costs, the profit 

margin is the highest for the ANN.  

 

Risk premium ratios were also calculated by risk factor, i.e., for each category of all 

explanatory variables in the data. For every such variable, the data was grouped by its levels, 

and the risk ratio was found for each level. These have been summarized in the subsequent 

tables. All tables have been arranged in increasing order of the number of observations of each 

category in the test dataset.  

 

5.4.1 Vehicle Age 

Vehicle Age 

Group 
Count 

Poisson-

Gamma GLM 
Tweedie GLM ANN 

1 1865 1.19 0.97 0.77 

2 2213 1.24 1.05 1.08 

3 2421 0.96 0.8 0.81 

4 2545 1.09 0.88 0.9 

 

Table 11: Risk Premium Ratios for Vehicle Age 

 

Both GLM’s show the same trends in terms of risk division among groups for vehicle 

age. Group 3 seems to be the least risky, while Group 2 seems to be the riskiest. It is 

interesting to note that the ANN reflects a different trend. According to this model, Group 

1, i.e., the newest vehicles, carry less risk than Group 3, but here too Group 2 is the 

riskiest, followed by Group 4 (the oldest vehicles).   
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5.4.2 Driver Age  

Driver Age 

Group 
Count 

Poisson-

Gamma GLM 
Tweedie GLM ANN 

1 906 1.13 0.76 1.28 

6 911 0.82 0.54 0.51 

5 1462 1.21 1.03 0.64 

2 1777 1.09 0.97 1.12 

4 1962 1.23 1.27 0.99 

3 2026 1.06 0.83 0.85 

 

Table 12: Risk Premium Ratios for Driver Age 

 

For driver age categories, we see some difference in trends between models. All 3 models 

are similar in that they identify Age Group 6, i.e., older drivers, as the lowest risk group. 

This is in line with real world trends, as older drivers tend to be more careful. While both 

Poisson-Gamma and Tweedie GLM’s identify Group 4 as having the highest risk, the 

Neural Network identifies Group 1 as the riskiest. The ANN is closest to identifying the 

trend that, as drivers get older, their risk of incurring vehicle damage decreases.  
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5.4.3 Gender 

Gender Count 
Poisson-

Gamma GLM 
Tweedie GLM ANN 

M 4434 1.25 0.98 0.96 

F 4610 1.00 0.86 0.83 

 

Table 13: Risk Premium Ratios for Gender 

 

All 3 models are consistent in that they identify male drivers as having a higher risk of 

incurring vehicle damage than female drivers. The Poisson-Gamma GLM, however, 

cannot be followed here as it undercharges both groups. The trends detected by the 

models are in line with the real world, as women generally are better drivers than men. 

On the other hand, these trends might arise just because there are more female drivers 

than male drivers in the data. 

 

5.4.4 Vehicle Body Type 

Vehicle Body 

Type 
Count 

Poisson-

Gamma GLM 
Tweedie GLM ANN 

RDSTR 4 0 0 0 

CONVT 8 0 0 0 

BUS 10 3.02 2.3 2.26 

MCARA 36 0.49 0.49 0.16 

COUPE 119 1.3 1.2 1.25 
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MIBUS 120 1.5 1.51 0.99 

PANVN 138 0.87 0.63 0.72 

HDTOP 285 0.83 0.79 0.65 

TRUCK 319 1.39 0.77 1.08 

UTE 814 1.8 1.54 0.9 

HBACK 2066 1.09 0.91 1.06 

SEDAN 2525 0.84 0.68 0.75 

STNWG 2600 1.32 1.13 0.9 

 

Table 14: Risk Premium Ratios for Vehicle Body Type 

 

For all 3 models, the risk premium ratios for roadsters and convertibles are negligible, 

because of the lack of observations of this type in the data as well as claim costs being 

negligible for these groups. Across all models, buses are found to be the riskiest category. 

This makes sense, since buses are more at risk of high claims in case of damage, which in 

turn is more likely to occur given the general nature of the usage of buses as well as their 

size. For the groups with significant claims and exposure, caravans or motorhomes are least 

at risk. A possible explanation for this is that they are less likely used than other types of 

vehicles. In interesting observation and a possible anomaly is that, while both GLM’s 

classify larger vehicles such as trucks, minibuses and utility vehicle as having higher risk 

than smaller vehicles, the ANN places coupes as having the highest risk after buses.  
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5.4.5 Area 

Area Count 
Poisson-

Gamma GLM 
Tweedie GLM ANN 

F 609 1.04 0.81 1.04 

E 993 1.81 1.37 1.12 

D 1317 1.05 0.7 0.57 

B 1794 0.87 0.71 0.73 

A 2002 1.28 1.21 0.97 

C 2329 1.01 0.86 1.00 

 

Table 15: Risk Premium Ratios for Vehicle Body Type 

 

Looking at the risk ratios, it is apparent that Area D is the least risky area, while Area E is 

the riskiest. A possible interpretation is that Area D is the safest, while Area E is the last 

safe in terms of vehicle related crimes, such as car thefts or break-ins. Area B is also a 

relatively low risk area. 

 

5.4.6 Vehicle Value (Measured in $10,000’s) 

Vehicle Value 

Group 
Count 

Poisson-

Gamma GLM 
Tweedie GLM ANN 

15+ 4 0 0 0 

10 – 15 9 1.7 1.65 1.00 
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5 – 10 220 1.06 0.96 0.62 

0 - 5 8811 1.12 0.92 0.91 

   

Table 16: Risk Premium Ratios for Vehicle Value 

 

All models classify vehicles costing $15,000 or more as having the lowest risk. While this 

is not expected, a possible explanation is that there are only 4 observations of this category 

in the test dataset. For all other categories, the Tweedie GLM places the lowest risk on 

vehicles costing between $0 and $5000, with risk increasing as vehicles become more 

expensive. This is in line with the expected trend, as more expensive vehicles should be 

more at risk of damage. On the other hand, the Poisson-Gamma GLM and the Neural 

Network place a lower risk on vehicles costing between $5,000 and $10,000 than on 

vehicles costing between $0 and $5,000. A possible explanation for this is that the cheapest 

vehicles might not be in a very good condition (for instance, they may be used and older 

vehicles), thereby leading to a higher risk of damage and claims. Overall, excluding the 

most expensive vehicles (Group 15+), risk of damage increases as vehicles become more 

expensive.  

 

6. Conclusions 

This thesis explored 3 statistical methods for pricing insurance. These covered a broad range of 

spectra in terms of learning autonomy, i.e., how much of the distribution of the data is known and 

specified prior to modeling. On one end was the Poisson-Gamma models for claim frequency and 

claim severity, where the distributions of the response variables were specified. In the Tweedie 
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GLM, the model was allowed to deduce the distribution of the response variable under the 

constraint that the variance power parameter 𝐸𝐸 was between 1 and 2, indicating that the data 

followed a compound Poisson distribution. In the case of the Neural Network, nothing is specified 

or assumed about the distribution. The model is allowed to determine the learning weights and 

optimize them without any restrictions placed on the possible distribution of claims.  

 

In terms of predictive power on the test dataset, the Poisson-Gamma GLM marginally seems to be 

the best fit. A 5-fold cross validation on the entire dataset showed the Poisson-Gamma model 

performs marginally better than the Tweedie GLM and the Neural Network. A plot of the residuals 

vs. fitted values in the test data showed that the Tweedie GLM might be a better fit than the 

Poisson-Gamma model. Comparing the AIC’s of the models, it was evident that all models are 

equally good fits on the test dataset.  

 

Combining these results with an analysis of risk premium ratios on the aggregated test dataset 

showed that, while the Poisson-Gamma model might have a low test MSE, it is not an actuarially 

fair model. The Tweedie GLM and the Neural Network were actuarially fair in that, in total, they 

did not overcharge consumers. Breaking this analysis down for each risk factor rendered 

conclusions on which groups were more responsible for increasing the risk of the insured pool. 

The groups that were clearly identified as having a higher risk were male drivers, younger drivers, 

potentially unsafe areas, larger and more heavy-duty vehicles (such as buses, utility vehicles and 

minibuses). Overall, the Tweedie GLM and the Neural Network were able to identify trends 

between different groups for each rating factor, as well as price these groups, better than the 

Poisson-Gamma GLM. This is evident from the fact that, for the Poisson-Gamma model, almost 
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all of the risk premium ratios were greater than 1, indicating that this model undercharged 

consumers.  

 

Overall, the results show that more autonomous models such as Tweedie GLM’s and, particularly 

Neural Networks, are quite viable and implementable alternatives to the traditional Poisson-

Gamma GLM. In terms of predictive power, Neural Networks are comparable to both Poisson-

Gamma models and Tweedie models. From a business standpoint too, they can yield rates that are 

profitable. Further, they are easy to train since they do not require any prior knowledge of 

distributions and patterns in the data.  

 

There are some potential drawbacks to using Neural Networks as opposed to Tweedie GLM’s. The 

most obvious one is that Neural Networks can take more time to run than Tweedie models. This 

can be solved by using better computing systems such as GPU’s, and research on how to improve 

the speed of deep learning is being actively pursued by firms such as Google. Another drawback 

of Neural Networks stems from an advantage that it has over most models. While an ANN can 

detect hidden patterns in the data better than most statistical learning algorithms without any 

external input on the same, the results are less interpretable as compared to those from, say, a 

Tweedie GLM, even though they may be better or more accurate. The use of ANN’s can, therefore, 

lead to a trade-off between accuracy and interpretability. This could, however, be solved given 

more time, computing power and research, since Neural Networks clearly have a lot of potential 

in the insurance industry. 
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There is also scope for further research into using other machine learning algorithms for pricing 

insurance. Models such as k-means clustering, Support Vector Machines (SVM’s), regression trees 

and Random Forests can be further explored, as these have previously shown some potential. 

Moreover, since GLM’s have practical advantages than Neural Networks, especially in terms of 

interpretability, more research could be done on ways to combine the two models. A potential area 

of focus could be developing a method to incorporate offsets into neural networks, so that exposure 

could be better used in the modeling process.  
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