Credit hedging – The good, the bad and the ugly
Henrik Wijkander, Prudential UK
Ben Mabley, Citigroup Global Markets

1. Government and supra holdings decreased
2. Average credit quality decreased from AA / A to A / BBB
3. Credit spread duration is expected to have increased
4. Credit risk the major driver of ‘market’ risk capital
5. Loss of diversification benefit between credit and longevity risk
6. More longevity risk is hedged through swaps and reinsurance

Credit risk management has become arguably the most important risk for insurance companies to manage.
Does it make sense for insurers to hedge credit risk?

Why Credit is “Special”
• Unlike many other market risks, credit is viewed as a “compensated risk” from which IG investors generally expect to earn the majority of the credit spread
• As such, credit assets are a key driver of IFRS profits. The downside is that they consume capital on the regulatory balance sheet
• Capital constrained profit-maximising insurers therefore face a number of important choices in how they manage this exposure, e.g.
 1. Do nothing?
 2. De-risk physical assets?
 3. Keep assets and use a credit derivative overlay?

In which scenarios might insurance companies opt for (3) ?
• This depends on a number of factors including (i) available of suitable hedging instruments and (ii) insurer objectives

Credit derivatives – A product overview

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-name CDS</td>
<td>Initial; and</td>
<td>'Credit Event'</td>
<td>Many cash-settled</td>
<td>Generally better liquidity on names in major indices (not limited to indices)</td>
<td>Mostly in EUR and USD</td>
<td>Best liquidity <5y</td>
</tr>
<tr>
<td></td>
<td>Quarterly</td>
<td></td>
<td>Historically, physical (CTD)</td>
<td></td>
<td>GBP quanto</td>
<td>Some liquidity beyond</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index CDS</td>
<td>Initial; and</td>
<td>'Credit Event'</td>
<td>Cash-settled</td>
<td>iTraxx (Main/Sen. Fin/ X-Over/Sub. Fin)</td>
<td>EUR / USD</td>
<td>Best liquidity 5y/10y</td>
</tr>
<tr>
<td></td>
<td>Quarterly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Some liquidity 3y/7y</td>
</tr>
<tr>
<td>Index Credit Spread Options</td>
<td>Single</td>
<td>Index level relative to strike</td>
<td>Physically-settled</td>
<td>Very liquid on OTR index (generally)</td>
<td>Generally EUR / USD</td>
<td>Generally <6m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'Credit Event'</td>
<td>into index CDS</td>
<td></td>
<td>GBP quanto</td>
<td></td>
</tr>
<tr>
<td>Index Tranches</td>
<td>Initial; and</td>
<td>'Credit Events' s.t. attachment point is breached</td>
<td>Cash-settled</td>
<td>OTR index; and</td>
<td>Generally EUR / USD</td>
<td>Generally <6m</td>
</tr>
<tr>
<td></td>
<td>Quarterly</td>
<td></td>
<td></td>
<td>Series 9</td>
<td>GBP quanto</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index TRS</td>
<td>N/A</td>
<td>Final 'Total Return' relative to strike</td>
<td>Cash-settled</td>
<td>6 major indices</td>
<td>USD / EUR / GBP</td>
<td>< 6m</td>
</tr>
</tbody>
</table>

Bespoke Transactions can be structured to meet a number of different investor requirements.

1. We define ‘credit event’ as any of the following – ‘bankruptcy’ / ‘Failure to Pay’ / ‘Restructuring’ / ‘repudiation/insolvent’ or ‘accelerated’. Depends on the name.
2. Generally 10bps running for 50 names and 50bps running for 500 names.
Index credit spread options – A brief history

- >$5 trillion gross notional traded in the market in 2015 (IG Notional Equivalent)
- Average ticket sizes between $0.5bn – $1.0bn. Larger tickets between $2bn – $4bn. Have quoted up to $10bn on a single option
- Before 2009: Limited liquidity. Options largely traded as bespoke structured solutions
- 2009/10: Investors realise that hedging tails / basis / negative convexity in credit portfolios is a good idea. Interest in trading options picks up
 - Clients look to options hedges (loan, correlation, CVA desks …). Dealers & hedge funds on the other side.
 - Options are expensive (implied vol. is high) relative to ‘fair value’ (realised volatility)
- 2011: Option markets standardise. Liquidity improves and volumes keep growing. The market starts attracting option sellers looking to profit from the disconnect between implied and realised volatility.
- 2012/13: The market continues growing with more involvement from real money investors and smaller funds.
- 2014-16: Volumes continue to almost double year on year. Less of a purely hedging-focused market. More “alpha” players, including from other asset classes. Some interest in more exotic structures…

Cumulative trading volume on iTraxx

Index split

By client type

Source: Citi. We use the following betas to compute “Main equivalent” volumes: 5x for Crossover, 1.5x for Senior Fin. iTraxx options only.

Index tranches – A brief history

Commentary

- The standardised CDS index tranche market originally arose from a need of correlation desks to hedge out the residual exposure left when selling synthetic bespoke tranches (CSOs) and hedging with indices and single name CDS.
- When the bespoke market shut down at the end of 2007 the standardised tranche market no longer rolled into the new series of the CDS indices.
- However, a need to hedge the existing bespoke tranches still existed so liquidity continued in the tranches that had maturities and compositions best matched to the existing bespoke tranches.
- These tranches were the iTraxx Main Series 9 and CDX IG Series 9 series which, until 2013, were the only liquid CDS tranche products.
- The liquidity on standard tranches in new Series started gathering pace in 2013.

Source: Citi.

4th November 2016
Credit index TRS – A brief history

Tranches strategy view

• While total-return swaps have been around for years, trading of derivatives linked to Markit’s iBoxx bond indexes have only gathered pace since standardisation in 2012.

• iBoxx TRS are currently ‘liquid’ on 6 different iBoxx indices:
 - in the US, we have high grade (domestic corporates), high yield and loan TRS.
 - in Europe, we have high grade (GBP and EUR corporates), and high yield TRS.

• ‘Liquid’ maturities tend to be at the shorter end:
 - Typically 1 month, 3 month, 6 month, 9 month and 12 month maturities are traded.
 - Most of the liquidity is in the 1-6 month tenors.
 - Swap maturity dates always correspond to IMM dates.

Source: Citi.

Market drivers – A Bank’s perspective

• Cash corporate bond trading volumes down in general across USD / EUR / GBP, driven by primarily:
 1. Reduced broker / dealer inventories driven by bank SLR;
 2. Increased capital charges through B3 RWA; and
 3. General heightened awareness around risk levels and decreased risk appetite.

• Total volumes traded of index products have increased (mainly driven by index & index options) - this is driven by institutional investors and hedge funds who prefer the reduced bid / offer & increased liquidity of the synthetic products.

• Margining for non-cleared derivatives. Inter-bank transactions now require IM.

• ‘Negative basis’ opportunities prevalent through credit crisis through higher funding cost. Central bank buying & other factors may start to increase the prevalence of ‘positive basis’ opportunities.

• Considerations around intermediation of bespoke synthetic transactions:
 1. IM & VM (associated funding costs); and
 2. Hedging strategy & associated basis risk; and
 3. CVA.

• Level 3 asset disclosure requirements & investor focus

• General shift to cash-only CSAs

• EMIR – central clearing
Timing Considerations for Credit Hedging

- Timing hedge execution (especially on longer-dated transactions) is just as important as initial capital benefit achieved – a quantitative model can be built to create ‘Trigger’ execution levels based on spread levels (bonds, CDS), implied/realised volatility & change in liquidity over time.

Timing factors for options:

- Pairs trading
- Implied/realised volatility disconnect
- Flattener trades
- Tactical views

Timing factors for tranches:

- Pairs trading
- Implied/realised volatility disconnect
- Flattener trades
- Tactical views

Bank and insurance product overlay – ‘BUG’ analysis

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Liquidity</th>
<th>Capital Impact</th>
<th>Accounting</th>
<th>Basis risk</th>
<th>Practical considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-name CDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index CDS</td>
<td>Yes/10y liquid</td>
<td>No close matching index for bonds</td>
<td>Rolling treatment?</td>
<td>Duration matching?</td>
<td>Premium cost – where is this paid from?</td>
</tr>
<tr>
<td>Index Credit Spread Option</td>
<td>Limited liquidity beyond 6m</td>
<td>Quanto risk like better value on more OTM</td>
<td>Implied correlation</td>
<td>Duration</td>
<td>PRA discussion</td>
</tr>
<tr>
<td>Index Tranches</td>
<td>Depends on series</td>
<td></td>
<td>Senior tranche</td>
<td>Longer tenor is a positive</td>
<td>Marking can be challenging outside of widely traded tenors</td>
</tr>
<tr>
<td>Index TRS</td>
<td>Market is still developing in GBP</td>
<td></td>
<td></td>
<td>Duration</td>
<td>Marking can be challenging</td>
</tr>
<tr>
<td>Bespoke – Tranche / TRS / Downgrade</td>
<td>By definition – illiquid</td>
<td></td>
<td>Would hopefully be designed for better efficiency under capital model</td>
<td>Depends on structure – hopefully reduced by design compared to an index</td>
<td>Complex to structure and execute – can take time</td>
</tr>
</tbody>
</table>

Impact on accounting balance sheet would depend on the specific strategy and interaction between asset valuation & accounting liability discount rate.
Credit Hedging – A Quick Poll

Question 1: Have you investigated credit hedging over the past 12 months on behalf on your insurance company or insurance client?

Question 2: Are you expecting to implement credit hedging over the next 12 months on behalf of your insurance company or insurance client?

Credit Hedging – An Illustration

“When you put it like that, it makes complete sense”
Insurer’s perspective – Sources of credit risk

Credit Risk in Non-MA/Non-VA Eligible Books
- Insurance companies need to hold capital against the full market value exposure on credit assets which don’t have corresponding liabilities
- Any potential hedge would need to offset exposure to credit spread stresses to provide capital relief

Credit Risk in MA Eligible Books
- Changes in market values largely neutralised through changes in liability discounting via MA
- Exposure to defaults and downgrades reduce liability discount rates via Fundamental Spreads
- Any potential hedge would need to offset Fundamental Spreads (base and/or stress) to provide capital relief

Overview of SII fundamental spreads

Any potential credit hedging transaction in respect of MA-Eligible Books requires analysis of composition of Fundamental Spreads in Base and Stress.

<table>
<thead>
<tr>
<th>Base fundamental spreads</th>
<th>Uplift to fundamental spreads</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are Fundamental Spreads?</td>
<td>Intended to reflect base case expected cost of defaults and downgrades</td>
</tr>
<tr>
<td>How are Fundamental Spreads determined?</td>
<td>EIOPA</td>
</tr>
<tr>
<td>When are Fundamental Spreads updated?</td>
<td>Updated on a monthly basis</td>
</tr>
<tr>
<td>How are Fundamental Spreads used?</td>
<td>Used in calculation of matching adjustment</td>
</tr>
<tr>
<td>What are the determinants of Fundamental Spreads?</td>
<td>Bond credit rating, term to maturity, category (financial/non-financial)</td>
</tr>
<tr>
<td>Fundamental spread = Max (PD + CoD, LT spread floor)</td>
<td></td>
</tr>
</tbody>
</table>
Insurer’s perspective – Potential hedging challenges and mitigants

- "Standard" challenges highlighted below typically apply when using more liquid instruments
- Additional challenges will likely apply depending on risks hedged and insurer’s objectives

<table>
<thead>
<tr>
<th>No.</th>
<th>Likely Challenges</th>
<th>Example</th>
<th>Potential Mitigants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mis-match of hedge constituents vs portfolio constituents</td>
<td>iTraxx Main Index consists of 125 names vs an underlying portfolio consisting of different names</td>
<td>Conduct extensive correlation analysis to set suitable haircuts</td>
</tr>
<tr>
<td>2</td>
<td>Mis-match of hedge credit quality and portfolio credit quality</td>
<td>The average credit quality of the index might be “BBB” vs “A” for underlying portfolio</td>
<td>Size hedge allowing for mis-match in credit quality and credit spread sensitivity</td>
</tr>
<tr>
<td>3</td>
<td>Mis-match of hedge currency vs portfolio currency</td>
<td>CDX NA IG Index denominated in USD vs. underlying portfolio denominated in mixed currencies</td>
<td>Quantify potential impact and consider quanto for large single name exposures</td>
</tr>
<tr>
<td>4</td>
<td>Mis-match of hedge credit duration vs portfolio duration</td>
<td>Hedge duration may run-off quicker than underlying portfolio</td>
<td>Consider need for rolling the hedges to manage mis-match</td>
</tr>
<tr>
<td>5</td>
<td>Mis-match arising from unfunded vs funded credit exposures</td>
<td>Certain CDS spreads tend to be less sensitive in market stress situations vs portfolio credit spreads</td>
<td>Understand how sensitivities are likely to vary over the cycle and set hedge notional accordingly</td>
</tr>
<tr>
<td>6</td>
<td>Exposure to non-observable variables pricing variables</td>
<td>Base correlations and implied volatility for index tranches and options (respectively)</td>
<td>Conduct sensitivity analysis to set suitable haircuts</td>
</tr>
</tbody>
</table>

4th November 2016

Insurer’s perspective – Criteria for rolling hedges

Solvency II criteria

- SCR 11.3 requires the risk mitigation technique to be in force for at least the next 12 months. For shorter expiry risk mitigation techniques, full benefit could be obtained if the intention is to replace the risk mitigation technique at expiry with a similar arrangement, which requires the following qualitative criteria to be met (SCR 11.14):
 - Presence of a written policy on replacement of risk mitigation technique
 - At most quarterly rolling of strategy
 - Replacement is not subject to a future event that is outside the control of insurer
 - Not material liquidity risk for the risk mitigation technique
 - Risk of increase in cost of hedging reflected in solvency capital requirement
 - Replacement is not contrary to future management actions
 - Risk mitigation technique should not result in material basis risk or in creation of other risks
 - If risk mitigation technique has shorter expiry and does not satisfy above mentioned qualitative criteria, benefit of risk mitigation technique will be considered on a pro-rata basis

4th November 2016
Insurer’s perspective – Potential retained risks and mitigants

- Insurer needs a protocol for managing its retained risks which could be significant

<table>
<thead>
<tr>
<th>No.</th>
<th>Likely retained risk</th>
<th>Potential mitigants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Counterparty risk</td>
<td>Collateralisation under ISDA / CSA protocol</td>
</tr>
<tr>
<td>2</td>
<td>Basis risk</td>
<td>Hedge construction/haircut to capital relief</td>
</tr>
<tr>
<td>3</td>
<td>Operational risk</td>
<td>Consider “static” hedge structure</td>
</tr>
<tr>
<td>4</td>
<td>Regulatory risk</td>
<td>Engage regulator/future-proofing</td>
</tr>
<tr>
<td>5</td>
<td>Model risk</td>
<td>Model sensitivities and retain capital as required</td>
</tr>
</tbody>
</table>

- Example exposure to model risk: CDS Index Options

Bank pricing inputs
- Credit default probabilities e.g. derived from CDS
- Credit default volatility i.e. implied vol
- Option definition e.g. term and strike

Bank pricing model
- Model e.g. Black-Scholes based option pricing model

Output
- Option price

Transaction application 1 – CDS index tranches

- Potential reasons for using CDS index tranches: Cheaper running costs than ATM index and longer tenors and CDS index options
- Example Hedge: 12-100% iTraxx Main Tranche

Projected credit SCR vs. tranche sensitivity
- Reducing “delta” due to loss of time value

Projected cost of capital
- Can the increasing Annual CoC be managed through opportunistic rolling?
Transaction application 2 – TRS in an M&A situation

- Prior to closing, the client may not have control over the assets in the purchased block, hence direct reallocation of those assets may not be possible.
- Therefore, the client may wish to prepare for the intake of assets and liabilities via reallocation of other assets currently held in the client business (i.e., in the current shareholder capital or other areas of the business).
- There is of course the risk that regulatory approval is not granted for this transaction – in this context, it would be important for the client to select assets which also work in the context of the transaction not proceeding.

Signing
- Uncertain period of time

Closing and announcement
(subject to regulatory approval)

Switch from legacy portfolio to target portfolio

Total Return Swap
- The client will have a complex credit exposure profile in the interim between the signing and closing dates, depending on both the Legacy portfolio and the Target portfolio and the precise roll forward mechanism agreed between buyer and seller.
- For example, there may be an exposure to narrowing credit spreads for assets in the Target Portfolio or to widening of credit spreads for assets in the Legacy Portfolio.
- A TRS (in either direction) could be used as a short-term tool to manage this credit risk exposure. The TRS could be either an index or bespoke hedge, although bespoke TRS may be expensive and limited in size.
- Use of iTraxx credit spread options or indices are also possible with high liquidity. This strategy may not however offset the spread risk in an efficient manner, in particular in the context of UK-specific transactions.

4th November 2016

Questions?

4th November 2016