Idiosyncratic Mortality Risk
Murray Wright, JLT Employee Benefits

Introduction

Idiosyncratic risk

- Idiosyncratic (or non-systematic) mortality risk arises through random fluctuations in a population
- Even if we know the ‘correct’ mortality distribution for a particular population, we do not know when each individual will die
- Though this risk can be diversified away through pooling, this is not possible for many pension schemes or for individuals
Pension scheme size
Scheme size by number of members

- 21% Fewer than 100 members
- 11% 100 to 499 members
- 34% 500 to 999 members
- 24% 1,000 members or more

Source: The Pensions Regulator, Scheme funding statistics 2017 appendix

Distribution of average age at death
Male age 60 – 1 Member

Source: JLT calculations

Distribution of average age at death
Male age 60 – 5 Members

Source: JLT calculations
Distribution of average age at death
Male age 60 – 10 Members

Source: JLT calculations
11 June 2018

Distribution of average age at death
Male age 60 – 20 Members

Source: JLT calculations
11 June 2018

Distribution of average age at death
Male age 60 – 50 Members

Source: JLT calculations
11 June 2018
Distribution of average age at death

Male age 60 – 100 Members

Source: JLT calculations

11 June 2018

Example of simulation output

Source: JLT calculations

11 June 2018
Mortality assumptions

“the mortality tables used and the demographic assumptions made must be based on prudent principles, having regard to the main characteristics of the members as a group and expected changes in the risks to the scheme”

Occupational Pension Schemes (Scheme Funding) Regulations 2005
Regulation 5(4)(c)

Mortality assumptions

Life expectancy assumption (years)

• Mortality assumptions adopted do not vary by scheme size
• No evidence that more prudent life expectancy assumptions are being adopted for smaller pension schemes

Source: The Pensions Regulator, Scheme funding statistics 2017, appendix

The problem

• Idiosyncratic mortality risk is a real and material risk for a large number of defined benefit pension schemes
• The problem is exacerbated by concentration risk where the majority of the liability sits with a small number of members
• For an individual member or a small pension scheme, the only standalone ‘solution’ is through an annuity
• A possible future solution is through some of the different forms of aggregation being considered, but not all involve pooling of mortality risks
A proposal

- In the absence of a ‘solution’, the key is to help trustees (and their advisors) understand and quantify the risk being run
- This will help improve decision making, and highlight the true value of different strategies
- It is reasonably straightforward to carry out simulations for a pension scheme to allow the risk to be quantified and understood
- However, smaller pension schemes will often be the ones who do not have the resources or support available to help them to do this
- We have developed a simplified approach to help

The goal

- The goal is to be able to quantify idiosyncratic mortality risk on an approximate basis without the need to carry out scheme specific simulations
- The output will identify a range of possible liabilities, or average life expectations, with different levels of confidence
- This will allow pension scheme trustees to
 - consider the amount of idiosyncratic mortality risk the pension scheme is exposed to; and / or
 - incorporate explicit margins for prudence in actuarial valuations if required

Variance of life expectancy

- Use variance as our initial risk measure
- The variance of any individual mortality distribution can be calculated analytically
- Consider what factors drive the variance to allow us to produce a parsimonious model
- For example, sex is not a material factor even at higher ages
Key factors

- Key factors are
 - Age
 - Contingent spouse proportion
 - ‘Shape’ of mortality distribution

- For this analysis we ignore shape by simply referring to the ‘S2’ Series mortality tables

- 92% of defined benefit pension schemes currently use SAPS

Loadings applied to base mortality tables

- No loading
- Rating by age
- Percentage adjustment to q(x)
- SAPS series light / heavy
- Combination of others

Source: The Pensions Regulator, Scheme funding statistics 2017: appendix

11 June 2018

Approximating variance of (joint) life expectancy

Variance by age

Source: JLT calculations

11 June 2018

Applying to data

- We require the following member data for each member \(i = 1 \ldots n \)
 - Age (\(A_i \))
 - Amount of pension (\(P_i \))

- We calculate the variance for each member (\(V_i \)) by reference to age and a simple linear approximation, for example
 \(V_i = 150 - 1.5 x A_i \)

- The variance for each member is weighted by the amount of pension

 Weighted average variance
 \[
 \sum_{i=1}^{n} \left(\frac{P_i^2 V_i}{\sum_{i=1}^{n} P_i} \right)
 \]

Source: The Pensions Regulator, Scheme funding statistics 2017: appendix

11 June 2018
Using the variance

- We can then use the weighted average variance to produce scheme specific confidence intervals
- For example, assume the weighted average life expectancy is 20 years
- The average variance is calculated to be 5
- We can calculate a confidence interval by reference to a normal distribution, so for example with 95% confidence average life expectancy for the population will be no more than

\[20 \pm 1.6445 \times \sqrt{5} = 23.7 \text{ years} \]

Our model compared to a full simulation

Impact on small scheme funding

- Consider aggregate funding position of schemes with less than 100 members
- Assume these schemes will need to eventually target self-sufficiency if they do not buyout
- Apply 90% confidence level as need to allow for idiosyncratic risk
- Almost doubles the funding shortfall

<table>
<thead>
<tr>
<th>Scheme</th>
<th>No allowance for idiosyncratic risk</th>
<th>90% allowance for idiosyncratic risk (90% confidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>£16.1bn</td>
<td>£16.1bn</td>
</tr>
<tr>
<td>Liabilities</td>
<td>£17.0bn</td>
<td>£19.0bn</td>
</tr>
<tr>
<td>Surplus / (Deficit)</td>
<td>£1.8bn</td>
<td>(£3.4bn)</td>
</tr>
<tr>
<td>Funding level</td>
<td>50%</td>
<td>83%</td>
</tr>
</tbody>
</table>

Source: The Pensions Regulator, Scheme Funding statistics 2017: appendix; The Purple Book 2017; JLT calculations

No allowance for idiosyncratic risk

With allowance for idiosyncratic risk (90% confidence)
Outcome

- We have arrived at a quick and straightforward method for calculating the value of idiosyncratic mortality risk for a pension scheme
- The impact of this risk can then be communicated to trustees and employers and included in funding reserves if desired
- This provides support for long-term strategy discussions. For example:
 - What value does a scheme buy-in / buyout provide?
 - If we target self-sufficiency how do we allow for this risk?
 - How could annuity top slicing benefit the pension scheme?
- This could also be used by financial advisors to help model this risk when providing advice to individuals

The views expressed in this presentation are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in the presentation, and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their relying upon any view, claim or representation made in this presentation.

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this presentation be reproduced without the written permission of the IFoA or authors.