内 \qquad
\qquad
The Rise and Future of Longevity
by James W. Vaupel
Mortality and Longevity Seminar, Institute and Faculty of Actuaries \qquad
London 25 February 2016

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The fixed frontier of survival in evolutionary theories of aging	
Peter Medawar	Mutation accumulation
George Williams	Antagonistic pleiotropy
William Hamilton	Demographic mathematics Thomas Kirkwood
Annette Baudisch Inevitable senescence?	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

William Hamilton $(1966,1996)$

. show that no life schedule, even under the most
benign ecology imaginable, could escape my spectrum
of forces of selection.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

William Hamilton $(1966,1996)$

.. show that no life schedule, even under the most benign ecology imaginable, could escape my spectrum \qquad of forces of selection.
\qquad
..after a few hundred years of draconian eugenic measures...the human lifespan might be stretched out just a little...say [to] 75 instead of... 70. \qquad
\qquad
\qquad
\qquad

William Hamilton $(1966,1996)$

. show that no life schedule, even under the most benign ecology imaginable, could escape my spectrum of forces of selection.
\qquad
of
\qquad
.after a few hundred years of draconian eugenic measures...the human lifespan might be stretched out just a little...say [to] 75 instead of... 70. \qquad
[Research on] extension of active life seems to me \qquad comparable with the alchemists' search....[and] detracts both from unavoidable truth and from realistic social programs. \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Determinants of Longevity

\qquad

- Average lifespan in a population
- Biomedical knowledge, health care system, standard of living, education, healthy behavior, environment
- Variation in lifespans among individuals
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What do we know about the physiology of human longevity? MAJOR DISCOVERY:
The frontier of survival is advancing:
old-age mortality is not intractable
SUPPLEMENTAL DISCOVERIES:

1. The frontier of survival is advancing - because senescence is being delayed, not decelerated.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What do we know about the physiology of human longevity? MAJOR DISCOVERY:
The frontier of survival is advancing
old-age mortality is not intractable

SUPPLEMENTAL DISCOVERIES:

1. The frontier of survival is advancing - because senescence is being delayed, not decelerated.
2. Life expectancy is rising linearly, with no sign of a looming limit.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Revolution in Record Life Expectancy
Oeppen \& Vaupel Science 2002; extended

A. Best-practice national life expectancy (for women) has been rising linearly for the past 175 years at a steady pace of about 2.5 years per decade. The record is now above 87 . Over the next 50 years do you think that this record will increase:

1. Even faster--by more than 3 years per decade, reaching 102 or more;
2. At about the same pace-by 2-3 years per decade, approaching 100 or so;
3. At a slower and slower pace-declining from 2.5 years per decade to roughly 1 year per decade, reaching perhaps 95 or so;
4. At a much slower pace, reaching a plateau, a life expectancy limit, not much higher than the current record of 87-perhaps 90 or so;
5. At a negative rate, falling to a value below 87.
B. What do you think the probability is that record life expectancy will increase at about the same pace as in the past or somewhat faster-by at least 2 years per decade on average over the next 50 years, reaching a level of 97 or more?
6. Likely: at least 50% chance.
7. Possible but not likely: more than 25% but less than 50% chance.
8. Unlikely: more than 5% but less than 25% chance.
9. Very unlikely: less than 5% chance.
C. What do you think the probability is that record life expectancy will increase slowly or maybe even decline over the next 50 years, reaching a level less than 90.
10. Likely: at least 50% chance.
11. Possible but not likely: more than 25% but less than 50% chance.
12. Unlikely: more than 5% but less than 25% chance.
13. Very unlikely: less than 5% chance.
\qquad

The Sorry Saga of Looming Limits to
Life Expectancy Oeppen and Vaupel Science 2002

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Future will be different from the past

\qquad
Since 1840, future progress in extending life expectancy has been different from past progress. \qquad

- The country with the longest life expectancy has shifted from Sweden to Japan \qquad
- The causes of death against which progress has been made have shifted from infectious diseases to chronic diseases
\qquad
- The ages at which mortality has been reduced have \qquad shifted from childhood to old age
\qquad
\qquad

Age-Specific Contributions to the Increase of Record Life Expectancy among Women 1850 to 2009 in \%

Age group	$1850-$	$1901-$	1925	1950	$1950-$	$1975-$
$1990-$						
0	14	32	15	21	10	4
$1-14$	55	8	16	12	4	2
$15-49$	25	38	39	20	7	4
$50-64$	3	13	19	17	20	11
$65-79$	2	8	11	24	41	37
$80+$	0	1	0	6	17	41
Total	100	100	100	100	100	100

\qquad
\qquad
\qquad
\qquad
\qquad

The Future Will Be Different from the Past

- In next decade or two, progress against cancer and dementia and in developing \qquad genotype-specific therapies
- Then progress in regenerating and eventually rejuvenating tissues and organs
- Accompanied by progress in replacing deleterious genes
- Aided by nanotechnologies (nanobots)
- Perhaps in a decade or two, probably later, progress in slowing the rate of aging (as opposed to further postponing aging).

29/33

Postponement vs. Deceleration of Senescence:

D. Consider the lifespans of the cohort of infants born in England \& Wales in 2016.
What is the chance the average lifespan for this cohort will exceed 100 ?

1. Likely: 50% or more.
2. Possible but not likely: more than 25% but less than 50%.
\qquad
3. Unlikely: more than 5% but less than 25%. \qquad
4. Very unlikely: less than 5%. \qquad
\qquad
\qquad
E. Consider the lifespans of the cohort of infants born in England \& Wales in 2016.
What is the chance the average lifespan for this cohort will exceed 120 ?
5. Likely: 50\% or more.
6. Possible but not likely: more than 25% but less than 50%.
7. Unlikely: more than 5% but less than 25%.
8. Very unlikely: less than 5%.

Forecasting Cohort Life Expectancy

For birth cohorts, life expectancy may increase by 4 months per year.

If so, most people born in Great Britain since 2000 will celebrate their $100^{\text {th }}$ birthdays.
\qquad

Oldest Age at which at least 50\% of a Birth Cohort is
Still Alive Christensen, Doblhammer, Rau \& Vaupel Lancet 2009, extended

Year of Birth:	2000	2005	2010
France	102	104	105
Germany	100	101	103
Great Britain	102	103	105
Japan	105	107	108
Sweden	101	102	104
USA	101	103	105

Data are ages in years. Baseline data were obtained from the Human Mortality
Database and refer to the total population of the respective countries.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Rise in Record Life Expectancy at Age 65 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Yau (atabase from Roland Rau and James Vaupel(,unpublished) \qquad

Consider the remaining life expectancy of people in England and Wales at age 65, currently about 20 years. How much will this value increase over the next 30 years?

1. 5 years or more. \qquad
2. More than 2 but less than 5 years.
3. More than 6 months but less than 2 years.
4. Close to zero: less than 6 months and perhaps the value might even decline.

French female longevity

Year	Born	e65	Ave. lifespan
2012 period		23	88

French female longevity			
Year	Born	e65	Ave. lifespan
2012 period		23	88
cohort	1947	27	92

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

French female longevity			
Year	Born	e65	Ave. lifespan
2012 period	23	88	
cohort	1947	27	92
cohort*	28	93	
*Rate of ageing slowed at a rate of 2\%/year			
after 2030			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

French female longevity			
Year	Born	e65	Ave. lifespan
2012 period		23	88
cohort	1947	27	92
cohort*	28	93	
2030 cohort	1965	30	95

French female longevity			
Year	Born	e65	Ave. lifespan
2012 period	23	88	
cohort	1947	27	92
cohort*	28	93	
2030 cohort	1965	30	95
cohort*	38	103	
*Rate of ageing slowed at a rate of $2 \% /$ year			
after 2030			

French female longevity			
Year	Born	e65	Ave. lifespan
2012 period		23	88
cohort	1947	27	92
cohort* 2030 cohort	1965	28	93
cohort*	30	95	
2060 cohort 203	1995	38	103

French female longevity				
$\underline{\text { Year }}$ 2012 period	Born	e65		. lifespan
		23	88	
cohort	1947	27	92	
cohort*		28	93	
2030 cohort cohort*	1965	30	95	
		38	103	Risk
2060 cohort cohort*	1995	38	103	
				Big Risk
*Rate of ageing slowed at a rate of 2\%/year after 2030				

The Failure of Expert Imagination

Mortality forecasts based on expert
\qquad
\qquad judgment have been less accurate than extrapolation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Best Forecasting Strategy

At present the best way to forecast $\mathrm{E} \& W$ life expectancy is to extrapolate long-term historical trends from countries with high life expectancy.

And then to ask: why might progress be faster? Why might it be slower?

Q: Will the postponement of senescence continue,
leading to reductions in mortality after age 100?
Q: Will the rate of ageing be slowed down, leading to even greater improvements?

How important is the Human Mortality Database to your work?

1. Very important and I would strongly favor improving it to include more up-to-date statistics, data for other populations, corrections of problematic data, etc.
2. Important but substantial improvements are not needed. \qquad
3. Of some value. \qquad
4. Of little or no value. \qquad
\qquad

Key publications

James W. Vaupel and Hans Lundström (1994) "Longer Life Expectancy? Evidence from Sweden of Reductions in Mortality Rates at Advanced Ages" in David A. Wise (editor) Studies in the Economics of Aging, U. of Chicago Press, pp. 79-94. This chapter presented the twin discoveries about the advancing frontier of human survival that Vaupel made in 1992 based on Swedish data compiled for him by Hans Lundström at Statistics Sweden. Unfortunately the research was presented in 1992 to a group of health and labor economists who did not understand the significance of the discoveries and the research was published in 1994 in a rather obscure book of the proceedings of the 1992 workshop. An article by Vaupel et al. in Science introduced a much wider audience to the research breakthroughs: J.W. Vaupel et al. (1998) "Biodemographic Trajectories of Longevity", Science 280, pp. 855-860. Jim Oeppen and James W. Vaupel (2002) "Broken Limits to Life Expectancy", Science 296, pp. 1029-1031. Although demographers knew that life expectancy was tending to increase in most countries, it was not realized until this article was published that an astonishing regularity underlay the progress: in the populations doing best, life expectancy has increased from a bit over 45 for Swedish women in 1840 to more than 87 for Japanese women today. The rise has been linear- 3 months per year. James W. Vaupel (2010) "Biodemography of Human Ageing", Nature 464, pp. 536-542. This comprehensive review describes Vaupel's discoveries and their implications for research and for society. James W. Vaupel (2005) "The Biodemography of Aging" in L.J. Waite (editor) Aging. Health, and Public Policy: Demographic and Economic Perspectives, Population Council, New York, pp. 48 -62 (Population and Development Review, 30, 2004, Suppl.). This is an earlier account by Vaupel of his research; the material in it is a lightly-edited transcript of impromptu remarks Vaupel made to a group of students. James R. Carey,..., James W. Vaupel (1992) "Slowing of Mortality Rates at Older Ages in Large Medfly Cohorts", Science 258, pp. 457-461. James W. Curtsinger,..., James W. Vaupel (1992) "Biodemography of Genotypes: Failure of the Limited Lifespan Paradigm in Drosophila melanogaster", Science 258, pp. 461-463.

Key publications continued

James W. Vaupel, Annette Baudisch et al. (2004) "The Case for Negative Senescence", Theoretical Population Biology 65, pp. 339-351.
Annette Baudisch and James W. Vaupel (2012) "Getting to the Root of Aging", Science 338, pp. 618-619. This short article summarizes why Hamilton was wrong: senescence is not inevitable.
Owen R. Jones,..., James W. Vaupel (2014) "Diversity of Ageing across the Tree of Life", Nature 505, 169-173.
Ralf Schaible,..., James W. Vaupel (2015) "Constant Mortality and Fertility over Age in Hydra", PNAS December 2015
Fernando Colchero,..., James W. Vaupel (2015) "Lifespan Equality and Life Expectancy in Humans and Other Primates", Science, under review.

A fuller list of Vaupel's publications can be found at user.demogr.mpg.de/jwv. This website provides electronic access to most of his articles. The website also provides access to several non-technical descriptions, published in the Lancet and elsewhere, of Vaupel and his research.

