The Actuarial Research Centre (ARC) is the Institute and Faculty of Actuaries’ network of actuarial researchers around the world. The ARC seeks to deliver research programmes that bridge academic rigour with practitioner needs by working collaboratively with academics, industry and other actuarial bodies. The ARC supports actuarial researchers around the world in the delivery of cutting-edge research programmes that aim to address some of the significant challenges in actuarial science.
Effect of Size of Exposure on Parameter Estimates and Correlations

Liang Chen

International Mortality and Longevity Symposium 2014

Birmingham

14 August 2014
Content

- Background and Motivation
- Method
- Results
- Conclusions
Background and Motivation

- Most mortality models are designed for large population size, e.g. England and Wales
- Actuaries are interested in modelling relatively much smaller population, e.g. Pension scheme
- Investigate how population size affects the accuracy of parameter estimates
- Mortality model, e.g. M7

\[
\text{logit } q(t, x) = \kappa_t^{(1)} + \kappa_t^{(2)}(x - \bar{x}) + \kappa_t^{(3)}((x - \bar{x})^2 - \hat{\sigma}_x^2) + \gamma_t^{(4)}
\]

- Sampling variation in death number, \(D(t, x) \), leads to noise in \(\kappa_t^{(i)} \), hence in drift \(\mu_{\kappa} \), variance \(\sigma_{\kappa}^2 \) of random walk
Method, $\theta = (\kappa^{(1)}, \kappa^{(2)}, \kappa^{(3)}, \gamma^{(4)})$

- $E^{EW}, D^{EW} \rightarrow \hat{\theta}^{EW}$
- $\hat{m}^{EW} \rightarrow E^{w} = w \times E^{EW}$
- $D^{w} \sim \text{Poi}(\hat{m}^{EW} E^{w}) \rightarrow D^{w,j}$
- $\bar{\theta}^{w,j}$

- England and Wales (EW), Male, age 50-89, year 1961-2011
- $w = 1, 0.1, 0.01$
- $j = 1, \ldots, 1000$, independent scenarios
- Fit M7 to $D^{w,j}, E^{w}$ of each scenario
Simulated Crude Death Rate \(m^w = \frac{D^w}{E^w} \)

Figure: The simulated death rate (upper) and its log-variance (lower), at year 1981 (left), age 70 (right)
Parameter Estimates

Estimates of $\kappa^{(1)}$

Estimates of $\kappa^{(2)}$

Estimates of $\kappa^{(3)}$

Estimates of $\gamma^{(4)}$

$w = 0.01$ $w = 0.1$

$w = 1$ England and Wales

14 August 2014
Uncertainty of Parameter Estimations

![Graphs showing log-St Dev of κ and γ for different years and birth years with different weights (w = 0.01, w = 0.1, w = 1).]

14 August 2014
Correlation of $\widehat{\theta}^{w,j} - \widehat{\theta}^{EW}$

- $X^w = (\epsilon_1^{(1),w} \ldots \epsilon_{n_y}^{(1),w}, \epsilon_1^{(2),w} \ldots \epsilon_{n_y}^{(2),w}, \epsilon_1^{(3),w} \ldots \epsilon_{n_y}^{(3),w}, \epsilon_1^{(4),w} \ldots \epsilon_{n_y+n_a-1}^{(4),w})$

- $\epsilon_t^{(1,2,3),w} = \tilde{\kappa}_t^{(1,2,3),w} - \tilde{\kappa}_t^{(1,2,3),EW}$

- $\epsilon_t^{(4),w} = \tilde{\gamma}_t^{(4),w} - \tilde{\gamma}_t^{(4),EW}$

- $\epsilon_{t-x} = \tilde{\gamma}_{t-x} - \tilde{\gamma}_{t-x}$
Colour palette for PowerPoint presentations

Dark blue: R176 G52 B88
Gold: R217 G171 B22
Mid blue: R64 G150 B184
Secondary colour palette
Light grey: R220 G221 B217
Pea green: R121 G163 B42
Forest green: R0 G132 B82
Bottle green: R177 G179 B162
Cyan: R0 G156 B200
Light blue: R124 G179 B225
Violet: R128 G118 B207
Purple: R143 G70 B147
Fuscia: R233 G69 B140
Red: R200 G30 B69
Orange: R238 G116 29

Parameter Projection

Estimated and Projected $\kappa^{(1)}$

Estimated and Projected $\kappa^{(2)}$

Estimated and Projected $\kappa^{(3)}$

Estimated and Projected $\gamma^{(4)}$

$w = 0.01$ $w = 0.1$ $w = 1$

England & Wales exposure

14 August 2014
Projected Mortality Rate and Survival Index

Log Projected Mortality Rates

Projected Survival Index

\[w = 0.01 \quad w = 0.1 \quad w = 1 \quad EW \]

14 August 2014
Drift of Multivariate Random Walk \(\mu^{(i)}_w = \frac{1}{n_y} \sum_{t=1}^{n_y} \Delta \kappa_t^{(i),w} \)

<table>
<thead>
<tr>
<th>Std Dev((\mu^{(i)}_w))</th>
<th>(i = 1)</th>
<th>(i = 2)</th>
<th>(i = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w = 1)</td>
<td>0.0000842</td>
<td>0.0000086</td>
<td>0.00000113</td>
</tr>
<tr>
<td>(w = 0.01)</td>
<td>0.0008289</td>
<td>0.0000844</td>
<td>0.0001095</td>
</tr>
</tbody>
</table>

\[\times 10 \]

- The higher the \(w \), the lower the standard deviation of drift.
- \(w \) has no significant effect on the mean of the drifts
- No significant linear correlation between drifts for all \(w \)
- The correlation generally decays as \(w \) decreases
Co-Variance Matrix of Multivariate Random Walk, V^W

- $V_{i,j}^W = E \left[(\Delta \kappa_t^{(i),w} - \mu_w^{(i)}) (\Delta \kappa_t^{(j),w} - \mu_w^{(j)}) \right]$, where $i, j = 1, 2, 3$

- $V_{i,j}^{EW} = \begin{pmatrix} 6.80 \times 10^{-4} & 2.19 \times 10^{-5} & 4.95 \times 10^{-7} \\ 2.19 \times 10^{-5} & 1.31 \times 10^{-6} & 3.22 \times 10^{-8} \\ 4.95 \times 10^{-7} & 3.22 \times 10^{-8} & 3.33 \times 10^{-9} \end{pmatrix}$

- $E[V_{i,j}^1] = \begin{pmatrix} 6.93 \times 10^{-4} & 2.15 \times 10^{-5} & 5.43 \times 10^{-7} \\ 2.15 \times 10^{-5} & 1.43 \times 10^{-6} & 2.99 \times 10^{-8} \\ 5.43 \times 10^{-7} & 2.99 \times 10^{-8} & 4.33 \times 10^{-9} \end{pmatrix}$

- $E[V_{i,j}^{0.01}] = \begin{pmatrix} 19.1 \times 10^{-4} & -1.69 \times 10^{-5} & 4.84 \times 10^{-6} \\ -1.69 \times 10^{-5} & 1.28 \times 10^{-5} & -1.98 \times 10^{-7} \\ 4.84 \times 10^{-6} & -1.98 \times 10^{-7} & 1.01 \times 10^{-7} \end{pmatrix}$

- The mean of $V_{i,j}^W$ shifts up from the original $V_{i,j}^{EW}$ as w decrease
- Lower w also results in higher standard deviation to the co-variance matrix
AR(1) model for the Cohort Effect $\gamma_{c}^{(4),w}$

- $\gamma_{c}^{(4),w} = \mu_{\gamma}^{w} + \delta_{1}^{w} c + \alpha_{\gamma}^{w} \gamma_{c-1}^{(4),w} + \xi_{c}^{w}$

Density of α_{γ}^{w}

Density of μ_{γ}^{w}

Density of δ_{1}^{w}

Density of St. Dev of ξ_{c}^{w}
Conclusions

• The accuracy of the parameter estimates depends significantly on the population size

• Hence smaller population results in greater uncertainty in projections

• Forecasting needs to allow for small population bias in parameter estimates