Proxy Modelling – An “in-cycle” solution with Least Squares Monte Carlo

Shaun Gibbs
Nick Jackson
Russell Ward

10 November 2017
Contents:

• Introduction.
• LSMC – Actuarial techniques.
• LSMC – systems and process architecture.
• Royal London’s experience to date.
Introduction
Royal London is the UK’s largest Mutual Insurer.

One Open fund (“RL Main”) writing significant volumes of new Unit Linked Pensions and Non Profit Protection business. Also significant legacy of with-profits business.

Seven Closed funds, dominated by with-profits business.

Three material Defined Benefit Pension Schemes, all closed to future accrual.

Non-insurance subsidiaries within funds not shown.
Reporting requirements and timescales have changed massively: It was 20 years ago today………

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure</td>
<td>Solvency I</td>
<td>Solvency I</td>
<td>Solvency I</td>
<td>Solvency I</td>
<td>Solvency II</td>
</tr>
<tr>
<td>Pillar 1 Available Capital</td>
<td>NPV</td>
<td>GPV</td>
<td>RBS</td>
<td>RBS</td>
<td>BEL/RM/TMTP</td>
</tr>
<tr>
<td>Ease of Calculation</td>
<td>😊</td>
<td>😊</td>
<td>😊😊😊</td>
<td>😊😊😊</td>
<td>😊😊😊😊</td>
</tr>
<tr>
<td>Pillar 1 Required Capital</td>
<td>RMM</td>
<td>RMM</td>
<td>LTICR (WPICC)</td>
<td>LTICR (WPICC)</td>
<td>(SF) IM SCR</td>
</tr>
<tr>
<td>Ease of Calculation</td>
<td>😊</td>
<td>😊</td>
<td>😊😊</td>
<td>😊😊</td>
<td>😊😊😊😊</td>
</tr>
<tr>
<td>Frequency</td>
<td>Annual</td>
<td>Annual</td>
<td>Half Yearly</td>
<td>Half Yearly</td>
<td>Quarterly</td>
</tr>
<tr>
<td>Timetable</td>
<td>26 weeks</td>
<td>13 weeks</td>
<td>13 weeks</td>
<td>13 weeks</td>
<td>≤13 weeks</td>
</tr>
<tr>
<td>Pillar 2 Required Capital</td>
<td>n/a</td>
<td>n/a</td>
<td>ICA</td>
<td>ICA</td>
<td>ORSA</td>
</tr>
<tr>
<td>Ease of Calculation</td>
<td>n/a</td>
<td>n/a</td>
<td>😊😊😊</td>
<td>😊😊</td>
<td>😊😊😊</td>
</tr>
</tbody>
</table>

“Twice as much; twice as fast; twice as often.”

- RL performed its first Market Consistent Realistic Balance Sheet in 2002.
- RL built its first proxy model in 2007 (using Replicating Portfolios) to monitor capital.
- RL is currently a SF firm. Internal capital is derived using the capital correlation matrix approach, with the proxy models calculating an all-risk Market and Credit element.
Economic and Business Conditions get ever more challenging:

Mergers and Acquisitions – additional legacy systems, harmonising methods and assumptions, reporting value added.

Search for yield – investments in new asset strategies.

Hedging strategies, particularly for with-profits business Guarantees and Options.

Increased desire for more granular management information – an acronym soup covering internal (MTP, EEV, SST), external (IFRS, EEV) and Regulatory (SII, BMA).

Industry developments in capital methodologies, such as the move to “All-Risk” modelling.

RL concluded that all its legacy actuarial systems - cashflow and capital - needed replacing to meet these more challenging conditions. For capital, we are moving to an All-Risk approach using an LSMC proxy model.

The fall in interest rates........
Enablers: Actuarial techniques
The modelling challenge

Multivariate distribution of profit & loss

Stochastic liability valuation

Solvency II timescales
Choosing a curve fitting approach

LSMC uses a very large number of outer scenarios, each with very few inner scenarios.

MCF uses a very large number of outer scenarios, each with very few inner scenarios.

Sliding scale choice between outer fitting scenarios and inner valuation scenarios.

LSMC

Manual Curve Fitting

Fitted Loss Function

Inner e.g. 10

Simulation budget n = 250,000

Outer e.g. 250

Inner e.g. 1,000

Fitted Loss Function

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Equity Value

0 1

Option Value

0 1

Calibration Points

LSMC Calibration Points

LSMC

MCF

10 November 2017
LSMC Enablers (1) – Quantity and Quality of outer points

- Sobol is a pseudo-random technique for generating multi-variate fitting points
- Risk-space is efficiently covered
- User defined limits (avoid points outside cash flow model boundary)
- No reliance on expert judgement
- Automatically adjusts to business dynamics
- Quantum dependent on number of risks modelled – range 10k – 50k

Sobol sequence in 2D
LSMC Enablers (2) – ESG Rebasing

- Each outer scenario represents a new market condition
- So new ESG required
- Traditional method = full recalibration of ESG from new base
- Alternative = rebased ESG, where each new ESG is an adjustment to base ESG
- Interest rate, inflation curves are directly scaled
- Risk premia scaled to reflect new volatilities
- Re-weighting of scenarios to achieve target volatilities
- Result = quicker
LSMC Enablers (3) – Automated Fitting

- Forward stepwise approach (start from constant)
- R-squared to Identify next most important term
- Refit the model
- Uses information criterion as penalty function to avoid overfitting
LSMC Validation (1) – Goodness of Fit

Out of Sample Testing

Probability Distribution Forecast

Dense sets of test points around the median (for solvency monitoring) and SCR

Single sample testing points across the entire PDF
Does analysis of fitting residuals indicate the model could be better specified?

Visual inspection for unwanted curves e.g. turning points
LSMC Validation (3) – Optimisation tests

No. outer scenarios

Choices made for fitting can be tested by re-fitting on alternative bases

No. inner scenarios

Stability of the fit can be tested through k-folds testing
Enablers: Systems and process architecture
Actuarial modeling platform
Overview - an integrated process

Area of focus for today

Reduced operational risk and cost effective maintenance

Coherent business processes
Efficient cash-flow modelling
Seamless capital modelling
Operational governance
Enterprise level management and reporting
Integrated capital modelling
Overview - outputs

- SII metrics: SCR, MCR, Risk Margin, impacts of management actions and deferred tax

- Drilldown: views across different parts of the corporate structure, impacts of individual risks or combinations, non-linearity analysis, capital allocation

- What-if scenarios: current balance sheet impacts & solvency projections

- Frequency: formal results say quarterly but solvency reassessed say daily

A brief look at the process for the SCR
Process overview

Generate fitting data

- ESG rebase parameters
- Base ESG file
- Fitting scenarios defined automatically
- Single base ESG calibration automatically adjusted
- Sampling applied
- Calibration and validation scenario sets automatically passed to cashflow model
- Rebased scenario sets
- Model point data
- Assumptions
- Automatic execution of cashflow model run schedule
- Calibration data set automatically passed to LSMC model
- Validation data set generated
Process overview
Calibrate curves using LSMC

Fitting scenarios and dependent variable results
LSMC parameters

Fit curves
Fitted curves automatically passed to capital model

Automated model selection & fitting
Process overview

Produce results

- Fitted curves
- Capital model assumptions
- Multivariate risk scenario set
- Daily data (DSM)

DSM pre-processing

- Evaluate curves over risk scenarios
- Apply adjustments e.g. LADT
- Aggregate and rank results

Scenario level results
- SCR
- Risk Margin
- MCR
- etc

Current market data via automated extract

Base position and risk scenarios updated to reflect current market conditions = high frequency monitoring of solvency position
Process overview

Key features

- **Actuarial techniques** – ESG Rebasing and LSMC are key enablers of automation
- **Process** – whole end-to-end process is managed via an automated workflow with execution via a single click
- **Manual intervention** – none required
- **Computing resources** – work is parallelised and automatically distributed across cores in the “Cloud” which provides significant scalability, think 30,000+
- **Resilience** – work automatically reassigned if any core fails
- **Monitoring** – visibility on progress of each step in the workflow
- **Audit trail** – full reproducibility of results
- **Reporting** – integrated post-processing and report generation (external / internal MI)
Process overview

Working Timetable

• Time to complete the full end-to-end process:
Experience to date
Why RL have chosen LSMC to fit their all-risk proxy model…..

1. **Best fits complex liabilities** – the large range of fitting scenarios allows identification of complex risk behaviours. RL faces a wide range of risks over eight with-profits funds, including GAOs;

2. **Enables robust validation** – the calibration fitting data and out-of-sample scenarios are different, meaning that we can readily demonstrate independence of validation;

3. **Reduces expert judgement** – it is a data driven approach with an automated model choice. This reduces the requirement for expert judgement and the reliance on prior theoretical views;

4. **Enables automation** – LSMC facilitates a fully automated process. This reduces run times, enables on-cycle calibration of proxy models and removes the need for roll-forward methodologies together with their associated required expert judgements; and

5. **Is scalable** – LSMC can be readily applied to new blocks of business and/or reflect the addition of new risks without major changes to the process.
Challenges remain:

1. **Run Budget** – Cloud is scalable, but you are on a “pay-as-you-go” model. Be ruthless with your coding efficiency and run scheduling;

2. **Fitting** – The move to a data-driven approach leads to new ways of Validating your curve fits, impacting both first and second lines. Plus new education for your Executive teams and NEDs; and

3. **Cashflow Model** – This is critical for ensuring the success of your LSMC project. You will be running this process many, many thousands of times for all-risk stresses. The RL implementation involves a full replacement of its cashflow models.

Bearing in mind the well known saying......

“All models are wrong, but some are useful.”
George Box, Quality and Statistics Engineer.
……it’s not just about producing the IM SCR using LSMC. This End-to-End Solution gives the following additional business benefits:

1. **Cloud-based computing** – gives scalability and the potential to run huge numbers of scenarios;

2. **Stress and Scenario Testing** – leverages the LSMC fit to determine stresses to both Available and Required capital elements of the balance sheet;

3. **Daily Solvency Monitoring** – leverages the LSMC fit to provide regular updates of the capital position for market movements and/or demographic changes. Combine with SST functionality to update “what-ifs” on current market conditions; and

4. **Consistent Cashflow Model methodologies** – LSMC can be applied to new blocks of business and/or reflect the addition of new risks without major changes to the process. Also benefits from consistent cashflow coding when considering future changes, e.g. IFRS17.
The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].