Older Age Dynamics
Mohamed Elsheemy
Pricing Analyst
Children and Young People Mental Health
@mre4
mohamed.elsheemy@nhs.net

15 June 2018

Agenda

- Background
- The datasets
- The models
- The results
- Comparing mortality measures

Background
Setting the context for the analysis
Background

Older age health dynamics

- Current developing technologies will enable the insurers to track the health of their customers at older age continuously

Objectives of this analysis

- Add evidence to current literature on older age dynamics
- Use English National Dataset to explore the interaction between the burden of disease and mortality in older age
- Support the debate on the benefits of continuous underwriting
The Dataset
English Longitudinal Study of Ageing

English Longitudinal study of Ageing

• ELSA is a longitudinal survey dataset for the study of:
 – health,
 – economic position, and
 – quality of life among the elderly.

• It was modelled after the Health and Retirement Study (HRS), a similar longitudinal survey dataset for the United States.

ELSA sampling

• The technical details of this study are also available at the web site of the Institute of Fiscal Studies
 http://www.ifs.org.uk/elsa/
ELSA – reported diagnoses

- Pulmonary diseases (lung disease and asthma)
- Arthritis
- Cancer
- Neurological (Parkinson’s, Alzheimer, dementia and senile)
- Cardiac diseases (Angina, heart attack, congestive heart failure, heart murmur and abnormal heart rhyme)
- Stroke

The analysis sample

- Demographics
 - Age
 - Sex
 - Marital status
- Socio-economics
 - Occupation
 - Social class
- Health related behaviour
 - Smoking
 - Alcohol intake
- Health status
 - Functional health
 - Chronic conditions

The models

Hazard model and multi-state actuarial model
Proportional hazard model

- competing risk cox proportional hazard model was estimated using 10 years follow up on mortality between 2002 to 2012

Multi-state actuarial model

- The goal is to estimate age-specific transition probabilities among a sample of English older adults aged 50 to 90 at baseline in 2002
- A time-continuous inhomogeneous Markov chain was adopted
- Generalized linear models (GLM) were adopted for graduating both mortality and disability transition intensities

Markov process for transition probabilities

- The transition probability P_{ij} from state i to state j after t years from policy issue is defined by
 $$P_{ij}(t) = \Pr(S(t + \Delta t) = j | S(\tau) = i), \quad \tau \leq t, \Delta t \geq 0, i, j \in \{H, F, D\}$$
- The instantaneous transition intensities are aged dependent and are assumed to be defined on compact intervals, and are defined by
 $$\lambda_{ij}(t) = \lim_{\Delta t \to 0} \frac{P_{ij}(t + \Delta t) - P_{ij}(t)}{\Delta t}, \quad t \geq 0, i \neq j$$
- Transition intensities were estimated from the data, the transition probabilities were derived using Kolmogorov differential equations (Haberman and Pitacco 1999)
Definitions of health states

- Reported chronic diseases were used to define the state (CH).
- Pulmonary disease is used as an example to demonstrate the modelling.
- Moving from the state of healthy (H) to chronically ill (CH) was captured by the change in number of respondents who are diagnosed with the underlying chronic condition in six ELSA interview waves, between 2002 to 2012.
- Follow up on death data were available for the years 2002 to 2012.
Mortality hazard ratios - compared with no medical conditions

- **Pulmonary Arthritis**
- **Cancer**
- **Stroke**
- **Cardiac diseases**

Mortality hazard ratios - compared with no smokers & regular drinkers

- **Ex-smoker**
- **Current smoker**
- **Occasional drinker**
- **Teetotaler**

Raw transitions counts and exposure years for pulmonary disease

<table>
<thead>
<tr>
<th>Age band</th>
<th>Number of transitions</th>
<th>Exposure years in state H</th>
<th>Exposure years in state CH</th>
<th>Exposure years in state D</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-54</td>
<td>53</td>
<td>6</td>
<td>9</td>
<td>7,140.1</td>
</tr>
<tr>
<td>55-59</td>
<td>107</td>
<td>57</td>
<td>23</td>
<td>14,648.9</td>
</tr>
<tr>
<td>60-64</td>
<td>114</td>
<td>90</td>
<td>36</td>
<td>13,631.8</td>
</tr>
<tr>
<td>65-69</td>
<td>122</td>
<td>124</td>
<td>55</td>
<td>11,356.9</td>
</tr>
<tr>
<td>70-74</td>
<td>80</td>
<td>176</td>
<td>88</td>
<td>10,244.4</td>
</tr>
<tr>
<td>75-79</td>
<td>80</td>
<td>273</td>
<td>118</td>
<td>9,985.5</td>
</tr>
<tr>
<td>80-84</td>
<td>49</td>
<td>346</td>
<td>91</td>
<td>5,703.3</td>
</tr>
<tr>
<td>85-89</td>
<td>24</td>
<td>362</td>
<td>91</td>
<td>3,203.8</td>
</tr>
<tr>
<td>90 and over</td>
<td>13</td>
<td>334</td>
<td>72</td>
<td>1,457.8</td>
</tr>
<tr>
<td>Total</td>
<td>653</td>
<td>1,790</td>
<td>613</td>
<td>75,590.2</td>
</tr>
</tbody>
</table>

Data from 10 years follow-up period between 2002 and 2012 of ELSA respondents for household residents aged 50 and over.
Testing linearity of the regressor $\eta(x)$

- Generally linear patterns support the use of the proposed log transformation based on Poisson GLMs.
- Mortality from CH state is higher than mortality from healthy at all ages.

Poisson GLM: Goodness of fit of the models

<table>
<thead>
<tr>
<th>k</th>
<th>AIC</th>
<th>BIC</th>
<th>G_0</th>
<th>G_1</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow CH$ disease incidence</td>
<td>1</td>
<td>5.18</td>
<td>123.88</td>
<td>49.48</td>
<td>0.403</td>
</tr>
<tr>
<td>2</td>
<td>5.29</td>
<td>120.90</td>
<td>39.56</td>
<td>-1.47</td>
<td>0.354</td>
</tr>
<tr>
<td>3</td>
<td>6.23</td>
<td>119.01</td>
<td>43.43</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>$H \rightarrow D$ death from healthy state</td>
<td>1</td>
<td>6.18</td>
<td>122.95</td>
<td>46.23</td>
<td>0.007</td>
</tr>
<tr>
<td>2</td>
<td>6.54</td>
<td>121.25</td>
<td>39.56</td>
<td>-6.67</td>
<td>0.010</td>
</tr>
<tr>
<td>3</td>
<td>7.77</td>
<td>119.32</td>
<td>41.14</td>
<td>0.203</td>
<td></td>
</tr>
<tr>
<td>$CH \rightarrow D$ death from chronic illness</td>
<td>1</td>
<td>5.77</td>
<td>87.32</td>
<td>81.14</td>
<td>0.203</td>
</tr>
<tr>
<td>2</td>
<td>5.76</td>
<td>86.71</td>
<td>79.52</td>
<td>-1.62</td>
<td>0.181</td>
</tr>
<tr>
<td>3</td>
<td>5.76</td>
<td>83.07</td>
<td>77.73</td>
<td>-1.79</td>
<td>0.181</td>
</tr>
</tbody>
</table>

- k denotes the number age related parameters.
- The use of cubic polynomial of age is statistically significant for mortality from healthy state, otherwise first order polynomial is sufficient.

Graduated (smoothed) transition rates

- Not surprisingly mortality from pulmonary disease is higher than mortality from healthy state at all ages.
Traditional approach to underwriting

- Under this approach, transitions into chronic illness is not observed, and mortality is underestimated.

Comparison of mortality estimates

Summary & Conclusion
Summary

- Inequality in health between socioeconomic groups was more prominent when changes in health and disability were allowed in the model.
- Taking into account changes in health and disability improves mortality prediction.
- The accuracy of mortality prediction improves when using continuous underwriting approach.
- The current model does not take account for the burden of disease.

Future research

- Investigate the inclusion of physical disability and cognitive impairments as measures of the burden of disease.
- Examine interaction between different diseases (comorbidity).
- Use the Cognitive Functioning for Ageing Study (CFAS) as it covers older and more frail respondents.
- Examine gender differentials, and other factors that affect mortality hazard rates.
Formatting your presentation

Page setup:
- This presentation is set to 16:9 screen size. Do not reset the size to any other screen size.
- Do not alter anything in the master slides.

Type and typography:
- Only use the font Arial and never use type smaller than 10pt.
- Headings and subheadings should always be in gold and body copy and chart text should always be dark grey.
- Page titles are pre-set to gold. Page text, text blocks and chart text are pre-set in the correct dark grey.
- Top level bullets should be round and second level bullets should be dashes. Further levels should alternate accordingly.
- Always write in sentence case unless a proper noun is used and do not use ampersands (&).
- Only use a full stop at the end of a bullet list.

Content styling:
- A selection of different title slides is offered, all accessible via the layout tab.
- Do not use clip art. If you need guidance regarding imagery please consult the brand guidelines.

Colour palette:
The full colour palette is to the left hand side of every slide. Do not use non-palette colours.